首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Isothermal autohydrolysis treatments of brewery's spent grain were used as a method for hemicellulose solubilization and xylo-oligosaccharides production. The time course of the concentrations of residual hemicelluloses (made up of xylan and arabinan) and reaction products were determined in experiments carried out at temperatures in the range from 150 to 190 degrees C using liquid-to-solid ratios of 8 and 10 g/g. To model the experimental findings concerning to brewery's spent grain autohydrolysis several kinetic models based on sequential pseudo-homogeneous first-order reactions were tested. Xylan and arabinan were assumed to yield oligosaccharides, monosaccharides (xylose or arabinose), furfural, and other decomposition products in consecutive reaction steps. The models proposed provide a satisfactory interpretation of the hydrolytic conversion of xylan and arabinan. An additional model merging the two proposed models for xylan and arabinan degradation assuming that furfural was formed from both pentoses was developed and the results obtained are discussed. The dependence of the calculated kinetic coefficients on temperature was established using Arrhenius-type equations.  相似文献   

2.
Shi J  Ebrik MA  Wyman CE 《Bioresource technology》2011,102(19):8930-8938
Dacotah switchgrass was pretreated with sulfuric acid concentrations of 0.5, 1.0, and 2.0 wt.% at 140, 160, and 180 °C and with 1 and 3 wt.% sulfur dioxide at 180 °C over a range of times. Sulfur dioxide loadings of 0%, 1%, 3%, 5%, and 10%wt.% of dry biomass were also tested at 180 °C for 10 min. Sugar yields were tracked for pretreatment and subsequent enzymatic hydrolysis to identify conditions for the highest total sugar yields. Pretreatment with 1 wt.% dilute sulfuric acid at 140 °C for 40 min followed by enzymatic hydrolysis with 48.6 mg enzyme/g initial glucan in raw biomass resulted in ~86% of theoretical yield for glucose and xylose combined. For sulfur dioxide pretreatment, the highest total sugar yield of about 87% occurred at 5% SO? for 10 min and 180 °C. However, xylose yields were higher at shorter times and glucose yields at longer times.  相似文献   

3.
This paper will consider the influence of the temperature of autohydrolysis or hydrothermal process from Paulownia fortunei L. to obtain a valuable liquid phase and a suitable solid phase to produce pulp. The solid phase resulting of autohydrolysis was subjected to organosolv pulping process and formed paper sheets, analyzing the influence of operational variables (viz., ethanol concentration, temperature and pulping time) on the yield, viscosity, tensile index, burst index, tear index and brightness. Maximum glucose and xylose contents and minimum paper sheets characteristic loss have been obtained at 190 degrees C authohydrolysis temperature. Suitable characteristics of paper sheets and acceptable yield, viscosity and kappa number of pulp could be obtained by operating at 180 degrees C temperature, 30min pulping time and 20% ethanol concentration. Under those conditions sheets paper with 27.4% ISO brightness, 28.87Nm/g tensile index, 1.22kPam(2)/g burst index and 1.23kNm(2)/g tear index could be obtained.  相似文献   

4.
Hydrolysis of four timber species (aspen, balsam fir, basswood, and red maple) and switchgrass was studied using dilute sulfuric acid at 50 g dry biomass/L under similar conditions previously described as acid pretreatment. The primary goal was to obtain detailed kinetic data of xylose formation and degradation from a match between a first order reaction model and the experimental data at various final reactor temperatures (160-190 degrees C), sulfuric acid concentrations (0.25-1.0% w/v), and particle sizes (28-10/20 mesh) in a glass-lined 1L well-mixed batch reactor. Reaction rates for the generation of xylose from hemicellulose and the generation of furfural from xylose were strongly dependent on both temperature and acid concentration. However, no effect was observed for the particle sizes studied. Oligomer sugars, representing incomplete products of hydrolysis, were observed early in the reaction period for all sugars (xylose, glucose, arabinose, mannose, and galactose), but were reduced to low concentrations at later times (higher hemicellulose conversions). Maximum yields for xylose ranged from 70% (balsam) to 94% (switchgrass), for glucose from 10.6% to 13.6%, and for other minor sugars from 8.6% to 58.9%. Xylose formation activation energies and the pre-exponential factors for the timber species and switchgrass were in a range of 49-180 kJ/mol and from 7.5 x 10(4) to 2.6 x 10(20)min(-1), respectively. In addition, for xylose degradation, the activation energies and the pre-exponential factors ranged from 130 to 170 kJ/mol and from 6.8 x 10(13) to 3.7 x 10(17)min(-1), respectively. There was a near linear dependence on acid concentration observed for xylose degradation. Our results suggest that mixtures of biomass species may be processed together and still achieve high yields for all species.  相似文献   

5.
Jeong TS  Kim YS  Oh KK 《Bioresource technology》2011,102(22):10529-10534
Two-stage acid hydrolysis was conducted on easy reacting cellulose and resistant reacting cellulose of fractionated Gelidium amansii (f-GA). Acid hydrolysis of f-GA was performed at between 170 and 200 °C for a period of 0-5 min, and an acid concentration of 2-5% (w/v, H2SO4) to determine the optimal conditions for acid hydrolysis. In the first stage of the acid hydrolysis, an optimum glucose yield of 33.7% was obtained at a reaction temperature of 190 °C, an acid concentration of 3.0%, and a reaction time of 3 min. In the second stage, a glucose yield of 34.2%, on the basis the amount of residual cellulose from the f-GA, was obtained at a temperature of 190 °C, a sulfuric acid concentration of 4.0%, and a reaction time 3.7 min. Finally, 68.58% of the cellulose derived from f-GA was converted into glucose through two-stage acid saccharification under aforementioned conditions.  相似文献   

6.
In the bioconversion of lignocellulosic materials to ethanol, pretreatment of the material prior to enzymatic hydrolysis is essential to obtain high overall yields of sugar and ethanol. In this study, steam pretreatment of fast-growing Salix impregnated with sulfuric acid has been investigated by varying the temperature (180-210 degrees C), the residence time (4, 8 or 12 min), and the acid concentration (0.25% or 0.5% (w/w) H(2)SO(4)). High sugar recoveries were obtained after pretreatment, and the highest yields of glucose and xylose after the subsequent enzymatic hydrolysis step were 92% and 86% of the theoretical, respectively, based on the glucan and xylan contents of the raw material. The most favorable pretreatment conditions regarding the overall sugar yield were 200 degrees C for either 4 or 8 min using 0.5% sulfuric acid, both resulting in a total of 55.6g glucose and xylose per 100g dry raw material. Simultaneous saccharification and fermentation experiments were performed on the pretreated slurries at an initial water-insoluble content of 5%, using ordinary baker's yeast. An overall theoretical ethanol yield of 79%, based on the glucan and mannan content in the raw material, was obtained.  相似文献   

7.
The primary goal of this study was to determine the optimal condition to obtain fermentable monosaccharides (xylose and glucose) from hydrolysates of yellow poplar (Liriodendron tulipifera) by oxalic acid pretreatment as a potential bio-ethanol source. Based on 2(3) factorial design, fifteen operations were performed by varying on acid loading, reaction time and temperature, and the components of the solid and liquid fractions were analyzed. The sugar concentration (g/L) in hydrolysates and xylose solubilization (%) were applied to response surface methodology. The optimal condition for producing sugars was 151 °C, 0.042 g/g (weight of oxalic acid/dry matter), 13 min with predicted yield of 37.4 g/L, and for the xylose solubilization was 158 °C, 0.037 g/g, 13 min yielding 72.0% of the predicted value. Severe conditions generated inhibitors. By measuring the concentrations, the possibility utilizing hydrolysates for fermentation were estimated.  相似文献   

8.
Agroindustrial residues are materials often rich in cellulose and hemicellulose. The use of these substrates for the microbial production of enzymes of industrial interest is mainly due to their high availability associated with their low cost. In this work, corncob (CCs) particles decomposed to soluble compounds (liquor) were incorporated in the microbial growth medium through autohydrolysis, as a strategy to increase and undervalue xylanase and β-xylosidase production by Aspergillus terricola and Aspergillus ochraceus. The CCs autohydrolysis liquor produced at 200 °C for 5, 15, 30 or 50 min was used as the sole carbon source or associated with untreated CC. The best condition for enzyme synthesis was observed with CCs submitted to 30 min of autohydrolysis. The enzymatic production with untreated CCs plus CC liquor was higher than with birchwood xylan for both microorganisms. A. terricola produced 750 total U of xylanase (144 h cultivation) and 30 total U of β-xylosidase (96-168 h) with 0.75% untreated CCs and 6% CCs liquor, against 650 total U of xylanase and 2 total U of β-xylosidase in xylan; A. ochraceus produced 605 total U of xylanase and 56 total U of β-xylosidase (168 h cultivation) with 1% untreated CCs and 10% CCs liquor against 400 total U of xylanase and 38 total U of β-xylosidase in xylan. These results indicate that the treatment of agroindustrial wastes through autohydrolysis can be a viable strategy in the production of high levels of xylanolytic enzymes.  相似文献   

9.
Chen WH  Xu YY  Hwang WS  Wang JB 《Bioresource technology》2011,102(22):10451-10458
A combination of a twin-screw extrusion and an acid-catalyzed hot water extraction process performed at a bench-scale was used to prepare high monomeric xylose hydrolysate for cellulosic production. The influences of the screw speed (30-150 rpm), barrel temperature (80-160 °C) and corresponding specific mechanical energy of the extruder on the structural properties of the pretreated rice straw, sugar concentration and conversion were investigated. The optimal condition for the extrusion step was determined to be 40 rpm with 3% H2SO4 at 120 °C; the optimal condition for the extraction step was determined to be 130 °C for 20 min. After the pretreatment at the optimal condition, 83.7% of the xylan was converted to monomeric xylose, and the concentration reached levels of 53.7 g/L. Finally, after the subsequent enzymatic hydrolysis, an 80% yield of the total saccharification was obtained.  相似文献   

10.
Autohydrolysis explosion pretreatment of hardwood (Eucalyptus regnans) sawdust at 200°C and 6.9 MPa gas pressure (steam + nitrogen) for 5 min solubilized 85% of the total hemicellulose components and produced a pulp that was highly accessible to attack by cellulases from Trichoderma reesei C-30 and by a commercial preparation, Meicelase. The autohydrolysis liquor, representing 15% of the original weight of the sawdust on a solids basis, consisted mainly of xylose, xylose oligomers and minor amounts of galactose, mannose, arabinose, glucose and uronic acids. Enzymic hydrolysis of pretreated E. regnans pulps using Trichodermal cellulases resulted in saccharification yields of <50% within 24 h from 10% (w/v) substrate slurries and 20 cellulase (FPU) units per g of pretreated pulp. The cellulose-to-glucose conversions were lower and this was attributable to the production of a compound(s) during enzymic hydrolysis that was inhibitory to the β-glucosidase component, but not the cellulases, in the Trichodermal cellulase preparations. Enzymic digests supplemented with Novozym 188 β-glucosidase showed >70% cellulose-to-glucose conversion within 24 h under similar conditions of hydrolysis. The inhibitor compound was not inhibitory to the Novozym 188 β-glucosidases. Alkali-extracted autohydrolysis-exploded pulps were less susceptible to hydrolysis than unextracted pulps. Factors that influenced the extent of cellulose conversion into glucose such as enzyme-substrate and cellulase-to-β-glucosidase ratios are also discussed.  相似文献   

11.
To release sugars effectively from sweet sorghum bagasse (SSB), a cellulose solvent and organic solvent‐based lignocellulose fractionation pretreatment approach was studied using response surface methodology (RSM). Based on RSM's central composite design, a batch experimental matrix was set up to determine the effects of reaction time (20–60 min) and temperature (40–60 °C) on delignification, total reducing sugar yield, glucan digestibility, and overall glucose yields following a pretreatment‐hydrolysis process. The optimum pretreatment conditions of 50 °C and 40 min led to 51.4% delignification, 86% overall glucose yield, and 61% overall xylose yield. An effort has also been made to obtain predictive models to illustrate the correlation between independent and dependent variables using RSM. The significance of the correlations and adequacy of these models were statistically tested for the selected objective functions. The optimum pretreatment condition predicted by the model was 49.1 °C and 39.2 min which matched the experimental data well. Results from this study can be applied to large scale biorefineries using sugars released from SSB for producing various biofuels. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:367–375, 2014  相似文献   

12.
Chen WH  Pen BL  Yu CT  Hwang WS 《Bioresource technology》2011,102(3):2916-2924
The combined pretreatment of rice straw using dilute-acid and steam explosion followed by enzymatic hydrolysis was investigated and compared with acid-catalyzed steam explosion pretreatment. In addition to measuring the chemical composition, including glucan, xylan and lignin content, changes in rice straw features after pretreatment were investigated in terms of the straw's physical properties. These properties included crystallinity, surface area, mean particle size and scanning electron microscopy imagery. The effect of acid concentration on the acid-catalyzed steam explosion was studied in a range between 1% and 15% acid at 180°C for 2 min. We also investigated the influence of the residence time of the steam explosion in the combined pretreatment and the optimum conditions for the dilute-acid hydrolysis step in order to develop an integrated process for the dilute-acid and steam explosion. The optimum operational conditions for the first dilute-acid hydrolysis step were determined to be 165°C for 2 min with 2% H(2)SO(4) and for the second steam explosion step was to be carried out at 180°C for 20 min; this gave the most favorable combination in terms of an integrated process. We found that rice straw pretreated by the dilute-acid/steam explosions had a higher xylose yield, a lower level of inhibitor in the hydrolysate and a greater degree of enzymatic hydrolysis; this resulted in a 1.5-fold increase in the overall sugar yield when compared to the acid-catalyzed steam explosion.  相似文献   

13.
Efficient conversion of lignocellulosic biomass requires biocatalysts able to tolerate inhibitors produced by many pretreatment processes. Recombinant Zymomonas mobilis 8b, a recently developed integrant of Zymomonas mobilis 31821(pZB5), tolerated acetic acid up to 16 g l(-1) and achieved 82%-87% (w/w) ethanol yields from pure glucose/xylose solutions at pH 6 and temperatures of 30 degrees C and 37 degrees C. An ethanol yield of 85% (w/w) was achieved on glucose/xylose from hydrolysate produced by dilute sulfuric acid pretreatment of corn stover after an overliming' process was used to improve hydrolysate fermentability.  相似文献   

14.
In this work, a novel laboratory-scale direct steam-injection apparatus (DSIA) was developed to overcome the main drawback of the conventional batch-driven lab rigs, namely the long time needed to heat fiber slurry from room to reaction temperatures greater than 150 °C. The novel apparatus mainly consisted of three units: (i) a mechanically-stirred bioreactor where saturated steam at 5-30 bar can be injected; (ii) an automatic on-off valve to flash suddenly the reaction medium after a prefixed reaction time; (iii) a cyclone separator to recover the reacted slurry. This system was tested using 0.75 dm3 of an aqueous solution of H?SO? (0.5%, v/v) enriched with 50 kg m?3 of either commercial particles of Avicel? and Larch xylan or 0.5 mm sieved particles of Tamarix jordanis. Each slurry was heated to about 200 °C by injecting steam at 28 bar for 90 s. The process efficiency was assessed by comparing the dissolution degree of suspended solid (Y(S)), as well as xylose (Y(X)), glucose (Y(G)), and furfural (Y(F)) yields, with those obtained in a conventional steam autoclave at 130 °C for 30 or 60 min. Treatment of T. jordanis particles in DSIA resulted in Y(S) and Y(G) values quite similar to those obtained in the steam autoclave at 130 °C for 60 min, but in a less efficient hemicellulose solubilization. A limited occurrence of pentose degradation products was observed in both equipments, suggesting that hydrolysis predominated over degradation reactions. The susceptibility of the residual solid fractions from DSIA treatment to a conventional 120 h long cellulolytic treatment using an enzyme loading of 5.4 FPU g?1 was markedly higher than that of samples hydrolysed in the steam autoclave, their corresponding glucose yields being equal to 0.94 and 0.22 g per gram of initial cellulose, respectively. Thus, T. jordanis resulted to be a valuable source of sugars for bioethanol production as proved by preliminary tests in the novel lab rig developed here.  相似文献   

15.
Pretreatment of bagasse by autohydrolysis at 200 degrees C for 4 min and explosive defibration resulted in the solubilization of 90% of the hemicellulose (a heteroxylan) and in the production of a pulp that was highly susceptible to hydrolysis by cellulases from Trichoderma reesei C-30 and QM 9414, and by a comercial preparation, Meicelase. Saccharification yields of 50% resulted after 24 h at 50 degrees C (pH 5.0) in enzymic digests containing 10% (w/v) bagasse pulps and 20 filter paper cellulase units (FPU). Saccharifications could be increased to more than 80% at 24 h by the addition of exogenous beta-glucosidase from Aspergillus niger. The crystallinity of cellulose in bagasse remained unchanged following autohydrolysis-explosion and did not appear to hinder the rate or extent of hydrolysis of cellulose. Autohydrolysis-exploded pulps extracted with alkali or ethanol to remove lignin resulted in lowere conversions of cellulose (28-36% after 25 h) than unextracted pulps. Alkali extracted pulps arising from autohydrolysis times of more than 10 min at 200 degrees C were less susceptible to enzymic hydrolysis than unextracted pulps and alkali-extracted pulps arising from short autohydrolysis times (e.g., 2 min at 200 degrees C). Autohydrolysis-explosion was as effective a pretreatment method as 0.25M NaOH (70 degrees C/2 h) both yielded pulps that resulted in high cellulose conversions with T. reesei cellulase preparations and Meicelase. Supplementation of T. reesei C-30 cellulose preparations with A. niger beta-glucosidases was effective in promoting the conversion of cellulose into glucose. A ration of FPU to beta-glucosidase of 1:1.25 was the minimum requirement to achieve more than 80% conversion of cellulose into glucose within 24 h. Other factors which influenced the extent of saccharification of autohydrolysis-exploded bagasse pulps were the enzyme-substrate ratio, the substrate concentration, and the saccharification mode.  相似文献   

16.
Dilute sulfuric acid was used to pretreat coastal Bermuda grass at high temperature prior to enzymatic hydrolysis. After both pretreatment and enzymatic hydrolysis processes, the highest yield of total sugars (combined xylose and glucose) was 97% of the theoretical value. The prehydrolyzate liquor was analyzed for inhibitory compounds (furfural, hydroxymethylfurfural (HMF)) in order to assess potential risk for inhibition during the following fermentation. Accounting for the formation of the inhibitory compounds, a pretreatment with 1.2% acid at 140 °C for 30 min with a total sugar yield of 94% of the theoretical value may be more favorable for fermentation. From this study, it can be concluded that dilute sulfuric acid pretreatment can be successfully applied to coastal Bermuda grass to achieve high yields of monomeric glucose and xylose with acceptable levels of inhibitory compound formation.  相似文献   

17.
Simultaneous isomerisation and fermentation (SIF) of xylose and simultaneous isomerisation and cofermentation (SICF) of glucose-xylose mixture was carried out by the yeastSaccharomyces cerevisiae in the presence of a compatible xylose isomerase. The enzyme converted xylose to xylulose andS. cerevisiae fermented xylulose, along with glucose, to ethanol at pH 5.0 and 30°C. This compatible xylose isomerase fromCandida boidinii, having an optimum pH and temperature range of 4.5–5.0 and 30–50°C respectively, was partially purified and immobilized on an inexpensive, inert and easily available support, hen egg shell. An immobilized xylose isomerase loading of 4.5 IU/(g initial xylose) was optimum for SIF of xylose as well as SICF of glucose-xylose mixture to ethanol byS. cerevisiae. The SICF of 30 g/L glucose and 70 g xylose/L gave an ethanol concentration of 22.3 g/L with yield of 0.36 g/(g sugar consumed) and xylose conversion efficiency of 42.8%.  相似文献   

18.
应用非结构的逻辑增殖模型研究了两种酵母的单碳源和双碳源单细胞蛋白间歇培养的动力学,用改进的逻辑增殖模型研究了双碳源流加培养过程的动力学,从实验数据拟合了动力学模型参数,模型计算值与实验数据吻合良好。  相似文献   

19.
Zymomonas mobilis is a superb ethanol producer with productivity exceeding yeast strains by several fold. Although metabolic engineering was successfully applied to expand its substrate range to include xylose, xylose fermentation lagged far behind glucose. In addition, xylose fermentation was often incomplete when its initial concentration was higher than 5%. Improvement of xylose fermentation is therefore necessary. In this work, we applied adaptation to improve xylose fermentation in metabolically engineered strains. As a result of adaptation over 80 days and 30 serial transfers in a medium containing high concentration of xylose, a strain, referred as A3, with markedly improved xylose metabolism was obtained. The strain was able to grow on 10% (w/v) xylose and rapidly ferment xylose to ethanol within 2 days and retained high ethanol yield. Similarly, in mixed glucose-xylose fermentation, a total of 9% (w/v) ethanol was obtained from two doses of 5% glucose and 5% xylose (or a total of 10% glucose and 10% xylose). Further investigation reveals evidence for an altered xylitol metabolism in A3 with reduced xylitol formation. Additionally xylitol tolerance in A3 was increased. Furthermore, xylose isomerase activity was increased by several times in A3, allowing cells to channel more xylose to ethanol than to xylitol. Taken together, these results strongly suggest that altered xylitol metabolism is key to improved xylose metabolism in adapted A3 strain. This work further demonstrates that adaptation and metabolic engineering can be used synergistically for strain improvement.  相似文献   

20.
Biotechnological conversion of biomass into fuels and chemicals requires hydrolysis of the polysaccharide fraction into monomeric sugars. Hydrolysis can be performed enzymatically and with dilute or concentrate mineral acids. The present study used dilute sulfuric acid as a catalyst for hydrolysis of Eucalyptus grandis residue. The purpose of this paper was to optimize the hydrolysis process in a 1.4 l pilot-scale reactor and investigate the effects of the acid concentration, temperature and residue/acid solution ratio on the hemicellulose removal and consequently on the production of sugars (xylose, glucose and arabinose) as well as on the formation of by-products (furfural, 5-hydroxymethylfurfural and acetic acid). This study was based on a model composition corresponding to a 2(3) orthogonal factorial design and employed the response surface methodology (RSM) to optimize the hydrolysis conditions, aiming to attain maximum xylose extraction from hemicellulose of residue. The considered optimum conditions were: H(2)SO(4) concentration of 0.65%, temperature of 157 degrees C and residue/acid solution ratio of 1/8.6 with a reaction time of 20 min. Under these conditions, 79.6% of the total xylose was removed and the hydrolysate contained 1.65 g/l glucose, 13.65 g/l xylose, 1.55 g/l arabinose, 3.10 g/l acetic acid, 1.23 g/l furfural and 0.20 g/l 5-hydroxymethylfurfural.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号