首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
A packed-bed reactor (PBR) system using fungus whole-cell biocatalyst was developed for biodiesel fuel production by plant oil methanolysis. Lipase-producing Rhizopus oryzae cells were immobilized within 6 mm × 6 mm × 3 mm cuboidal polyurethane foam biomass support particles (BSPs) during batch cultivation in a 20-l air-lift bioreactor. Emulsification of the reaction mixture containing soybean oils and water improved the methanolysis reaction rate. Using a high flow rate for the reaction mixture in the PBR caused exfoliation of the immobilized cells from the BSPs, while the inefficient mixing of the reaction mixture at low flow rates allowed the BSPs to be covered with a hydrophilic layer of high methanol concentration, leading to a significant decrease in lipase activity. A high methyl ester content of over 90% was achieved at a flow rate of 25 l/h in the first cycle of repeated batch methanolysis and a high value of around 80% was maintained even after the tenth cycle. Comparison with methanolysis reaction in a shaken bottle suggested that the PBR enhances repeated batch methanolysis by protecting immobilized cells from physical damage and excess amounts of methanol. The process presented here is therefore considered to be promising for industrial biodiesel-fuel production.  相似文献   

2.
Biodiesel production catalyzed by free lipase has been drawing attention for its lower cost and faster reaction rate compared to immobilized lipase. It has been found that free lipase NS81006 could efficiently catalyze alkyl esters production and a certain amount of water is demonstrated to be necessary for the catalytic process. The effect of water content on liquid lipase NS81006-mediated methanolysis and ethanolysis for biodiesel production was first explored respectively in this paper. It was found that with water content ranging from 3% to 10% (based on oil weight), there was no significant difference in the final alkyl ester yield either in NS81006-mediated methanolysis or ethanolysis process, while the quality of biodiesel varied obviously. The acid value as well as the contents of monoglyceride and diglyceride were much lower in the lower water-containing system. With the water content decreasing from 10% to 3%, the acid value reduced from 8.24 to 4.89 mg KOH/g oil, and the content of MAG and DAG dropped to 0.31 and 0.22, from 0.62 and 0.74, respectively. Lipase could maintain rather good stability with proper alcohol adding strategy and the gradual reduction in biodiesel yield in the repeated uses resulted from the accumulation of by-product glycerol. The continuous running of lipase-mediated methanolysis of waste cooking oil was successfully realized at 30L reactor and a final methyl ester yield of over 90% could be obtained.  相似文献   

3.
The accumulation of partial glycerides such as monoglyceride (MG) and diglyceride (DG) is one of the rate-limiting steps in plant oil methanolysis catalyzed by Rhizopus oryzae producing triacylglycerol lipase. To convert partial glycerides efficiently into their corresponding methyl esters (MEs), we attempted to use a mono- and diacylglycerol lipase (mdlB) derived from Aspergillus oryzae. By considering cost efficiency, R. oryzae and recombinant mdlB-producing A. oryzae were immobilized independently within polyurethane foam biomass support particles and directly utilized as a whole-cell biocatalyst. The mdlB-producing A. oryzae effectively exhibited substrate specificity toward MG and DG and was then used for the methanolysis of intermediate products (approximately 82% ME), which were produced using R. oryzae. In the presence of 5% water, the use of mdlB-producing A. oryzae resulted in less than 0.1% of MG and DG, whereas a considerable amount of triglyceride was present in the final reaction mixture. On the basis of these results, we developed a packed-bed reactor (PBR) system, which consists of the first column with R. oryzae and the second column containing both R. oryzae and mdlB-producing A. oryzae. Ten repeated-batch methanolysis cycles in the PBR maintained a high ME content of over 90% with MG and DG at 0.08–0.69 and 0.22–1.45%, respectively, indicating that the PBR system can be used for long-term repeated-batch methanolysis with partial glycerides at low levels. The proposed method is therefore effective for improving enzymatic biodiesel production.  相似文献   

4.
《Process Biochemistry》2010,45(12):1888-1893
The lipase of Rhizopus oryzae (R. oryzae) was reported to have 1(3)-positional specificity, but in the process of R. oryzae-catalyzed biodiesel production, the yield of biodiesel (methyl esters) could reach over 80%. Although during 1(3)-positional specific lipase-catalyzed methanolysis of triglycerides, acyl migration was thought as one of the major reasons for higher methyl ester yield, there was no further study on the mechanism exploration regarding to acyl migration. In this paper, acyl migration and the related kinetics of R. oryzae-mediated methanolysis of triolein was studied systematically. Through our study, it was revealed that during the methanolysis process, acyl migration between 2-MG and 1-MG as well as acyl migration between 1,2-DG and 1,3-DG could take place independent of enzymatic catalysis. The kinetic study showed that the acyl migration was first-order reversible reaction. Based on this finding, a two-step mechanic model including acyl migration was developed for the enzyme-mediated methanolysis for biodiesel production and it was found that the reaction included consecutive hydrolysis and esterification. Further investigation on kinetics showed that R. oryzae lipase was not restrict selectivity of 1(3)-position acyl group, but a preference of 1(3)-position over 2-position, which also contributed to the higher yield of methyl esters.  相似文献   

5.
We have investigated the conditions required to obtain a quantitative yield of methyl esters from cholesteryl esters by alkaline methanolysis. Methanolysis of the cholesteryl ester for 60 min at room temperature with 1 m methoxide reagent ensured complete reaction. Some ester hydrolysis always accompanied methanolysis and necessitated acid-catalyzed methylation of the resultant fatty acids after completion of the alcoholysis. Analysis of the composition of methyl ester product and remaining cholesteryl ester substrate before methanolysis had gone to completion showed selective hydrolysis of some fatty acid cholesteryl esters and illustrates the importance of obtaining a quantitative yield of methyl esters following methanolysis.  相似文献   

6.
In this study, hydrolysis and methanolysis of glycerol trioleate (TG) by lipase Candida sp. 99–125 were investigated under different water conditions. Both the reaction rates were relatively low without water, while increasing water content to 5 wt.% (or more, from 10–20%) based on the TG amount caused remarkable higher TG conversion for both reactions. Moreover, comparing the time course curves of the hydrolysis and methanolysis, it could be concluded that the methanolysis reaction catalyzed by this Candida sp. 99–125 appeared to accord with the successive reaction mechanism. TG was first hydrolyzed to partial glycerides and oleic acid (OA), then oleic acid methyl ester (OAME) was produced by esterification of the OA with methanol. This water effect was also confirmed by the experiments that water substitutions such as t-butanol and some surfactants added into the system did not get such high yields as that of the water included system. So these results showed that water took part in the methanolysis reaction, and successive hydrolysis–esterification process might be the catalytic mechanism of this lipase.  相似文献   

7.
A study was undertaken to examine the effect of temperature, moisture and storage time on the accumulation of free fatty acid in the rice bran. Rice bran stored at room temperature showed that most triacylglyceride was hydrolyzed and free fatty acid (FFA) content was raised up to 76% in six months. A two-step acid-catalyzed methanolysis process was employed for the efficient conversion of rice bran oil into fatty acid methyl ester (FAME). The first step was carried out at 60 degrees C. Depending on the initial FFA content of oil, 55-90% FAME content in the reaction product was obtained. More than 98% FFA and less than 35% of TG were reacted in 2 h. The organic phase of the first step reaction product was used as the substrate for a second acid-catalyzed methanolysis at 100 degrees C. By this two-step methanolysis reaction, more than 98% FAME in the product can be obtained in less than 8 h. Distillation of reaction product gave 99.8% FAME (biodiesel) with recovery of more than 96%. The residue contains enriched nutraceuticals such as gamma-oryzanol (16-18%), mixture of phytosterol, tocol and steryl ester (19-21%).  相似文献   

8.
Enzymatic methanolysis of canola oil in the solvent-free system was studied in a packed-bed reactor (PBR) using small pieces of loofa plus Novozym 435. Response surface methodology (RSM) was applied to determine the effect of the transesterification conditions, namely flow rate of substrate (x1), temperature (x2) and methanol to canola oil molar ratio (x3) as the regressors, on the methyl ester production. A central composite design (CCD) was employed to optimize the reaction. A second-order polynomial multiple regression model was chosen and analysis of variance (ANOVA) showed a high coefficient of determination (R2) value of 0.996, thus adjustment of the model with experimental data was ensured. The methyl ester yield increased as the flow rate of the reaction mixture in the PBR increased from its low to the middle level thereafter, increasing the flow rate corresponded to decreasing the yield. The same trends of changes were observed for the other two factors. The optimum process conditions for biodiesel production in the PBR were found to be: x1 = 6.3 mL/min, x2 = 38 °C and x3 = 4.3. The same batch was successfully used repeatedly in the PBR for six enzymatic cycles (432 h), where the methyl ester yield was maintained above 97%.  相似文献   

9.
Enzymatic lipase transesterification of palm oil to biodiesel in a packed‐bed reactor (PBR) using a novel strain of the fungus Aspergillus niger, immobilized within polyurethane biomass support particles (BSPs), was investigated. A three‐step addition of methanol was used to reduce lipase inhibition by immiscible methanol. The influence of water content and PBR flow rate was investigated. FAME yield was enhanced with an increase of PBR flow rate in the range of 0.15–30 L h?1, where inefficient mixing of the reaction mixture at lower flow rates resulted in low conversion rates i.e. 69% after 72‐h reaction. Adding the third mole equivalent of methanol resulted in lipase inhibition due to methanol migration into the accumulated glycerol layer. Glutaraldehyde (GA) solution (0.5 vol.%) was used to stabilize lipase activity, which led to a high FAME yield (>90%) in the PBR after 72‐h of reaction time at a flow rate of 15 L h?1, and a water content of 15%. Moreover, a high conversion rate (>85%) was maintained after four palm oil batch conversion cycles in the PBR. In contrast, lipase activity of non‐GA‐treated cells decreased with each PBR batch cycle, where only 70% FAME was produced after the forth PBR cycle. Transesterification of palm oil in a PBR system using BSPs‐immobilized A. niger as a whole‐cell biocatalyst is a viable process for enzymatic biodiesel production.  相似文献   

10.
Ilham Z  Saka S 《Bioresource technology》2009,100(5):1793-1796
In this study, the non-catalytic supercritical method has been studied in utilizing dimethyl carbonate. It was demonstrated that, the supercritical dimethyl carbonate process without any catalysts applied, converted triglycerides to fatty acid methyl esters with glycerol carbonate and citramalic acid as by-products, while free fatty acids were converted to fatty acid methyl esters with glyoxal. After 12 min of reaction at 350 degrees C/20 MPa, rapeseed oil treated with supercritical dimethyl carbonate reached 94% (w/w) yield of fatty acid methyl ester. The by-products from this process which are glycerol carbonate and citramalic acid are much higher in value than glycerol produced by the conventional process. In addition, the yield of the fatty acid methyl esters as biodiesel was almost at par with supercritical methanol method. Therefore, supercritical dimethyl carbonate process can be a good candidate as an alternative biodiesel production process.  相似文献   

11.
The enzymatic production of biodiesel by methanolysis of cottonseed oil was studied using immobilized Candida antarctica lipase as catalyst in t-butanol solvent. Methyl ester production and triacylglycerol disappearance were followed by HPLC chromatography. It was found, using a batch system, that enzyme inhibition caused by undissolved methanol was eliminated by adding t-butanol to the reaction medium, which also gave a noticeable increase of reaction rate and ester yield. The effect of t-butanol, methanol concentration and temperature on this system was determined. A methanolysis yield of 97% was observed after 24h at 50 degrees C with a reaction mixture containing 32.5% t-butanol, 13.5% methanol, 54% oil and 0.017 g enzyme (g oil)(-1). With the same mixture, a 95% ester yield was obtained using a one step fixed bed continuous reactor with a flow rate of 9.6 mlh(-1) (g enzyme)(-1). Experiments with the continuous reactor over 500 h did not show any appreciable decrease in ester yields.  相似文献   

12.
【目的】探讨复合酶协同催化体系在含水量较高的体系中催化油脂制备生物柴油的工艺条件。【方法】通过基因工程手段在毕赤酵母中分别高效分泌表达南极假丝酵母脂肪酶(CALB)和米根霉脂肪酶(ROL),构建CALB和ROL复合酶协同催化体系制备生物柴油,利用单因素实验优化工艺条件,以甲酯化得率作为复合酶协同催化体系效能的评价标准。【结果】优化工艺条件为:CALB?ROL最佳复合酶配比为7?3,每克大豆油中加入16 U的复合脂肪酶,甲醇与大豆油摩尔比为4?1,并按0 h时2?1醇油摩尔比,12 h和24 h时以1?1醇油摩尔比分批加入甲醇,含水量为30%-60%之间,40°C反应29-34 h,甲酯得率达到93%。【结论】该复合酶协同催化体系对环境友好,与常规酶法制备生物柴油工艺相比对酶的使用量和催化时间减少幅度都在50%以上,本复合酶协同催化体系能有效降低生物柴油制备成本,具有较好的工业化应用前景。  相似文献   

13.
The conversion of soybean oil to biodiesel fuel was investigated in the presence of a lipase from Thermomyces lanuginosus (commercially called Lipozyme TL IM) in a solvent-free medium. The lipase was inactivated when more than 1.5 molar equivalent of methanol was added to the oil mixture. To fully convert the oil to its corresponding methyl esters, the reaction was performed successfully by a three-step addition of 1 molar equivalent of methanol and under the optimized conditions (40°C, 150 rpm, 10% enzyme quantity based on oil weight), the maximum methyl ester (ME) yield was 98% after 12 h reaction. By-product glycerol had a negative effect on enzymatic activity and iso-propanol was found to be effective for glycerol removal, in the presence of which lipase expressed relatively high activity and more than 94% of the ME yield was maintained after being used repeatedly for 15 batches.  相似文献   

14.
Acid oil, which is a by-product in vegetable oil refining, mainly contains free fatty acids (FFAs) and acylglycerols, and is a candidate of materials for production of biodiesel fuel. A mixture (acid oil model) of refined FFAs and vegetable oil was recently reported to be converted to fatty acid methyl esters (FAMEs) at >98% conversion by a two-step reaction system comprising methyl esterification of FFAs and methanolysis of acylglycerols using immobilized Candida antarctica lipase. The two-step system was thus applied to conversion of acid oil by-produced in vegetable oil refining to biodiesel fuel. Under similar conditions that were determined by using acid oil model, however, the lipase was unstable and was not durable for repeated use. The inactivation of the lipase was successfully avoided by addition of excess amounts of methanol (MeOH) in the first-step reaction, and by addition of vegetable oil and glycerol in the second-step reaction. Hence, the first-step reaction was conducted by shaking a mixture of 66 wt% acid oil (77.9 wt% FFAs, 10.8 wt% acylglycerols) and 34 wt% MeOH with 1 wt% immobilized lipase, to convert FFAs to their methyl esters. The second-step reaction was performed by shaking a mixture of 52.3 wt% dehydrated first-step product (79.7 wt% FAMEs, 9.7 wt% acylglycerols), 42.2 wt% rapeseed oil, and 5.5 wt% MeOH using 6 wt% immobilized lipase in the presence of additional 10 wt% glycerol, to convert acylglycerols to FAMEs. The resulting product was composed of 91.1 wt% FAMEs, 0.6 wt% FFAs, 0.8 wt% triacylglycerols, 2.3 wt% diacylglycerols, and 5.2 wt% other compounds. Even though each step of reaction was repeated every 24 h by transferring the immobilized lipase to the fresh substrate mixture, the composition was maintained for >100 cycles.  相似文献   

15.
Xu Y  Du W  Liu D  Zeng J 《Biotechnology letters》2003,25(15):1239-1241
A new enzymatic route for biodiesel production from soybean oil was developed using methyl acetate as a novel acyl acceptor. Novozym 435 (immobilized Candida antarctica lipase) gave the highest methyl ester (ME) yield of 92%. The optimum conditions of the transesterification were 30% enzyme based on oil weight; a molar ratio of methyl acetate/oil of 12:1; temperature 40 °C and reaction time 10 h. Since no glycerol was produced in the process, this method is very convenient for recycling the catalyst and by-product triacetylglycerol showed no negative effect on the fuel property.  相似文献   

16.
Summary The synthesis of L-tyrosine glyceryl ester, from glycerol and L-tyrosine methyl ester, was carried out by a transesterification reaction catalyzed by -chymotrypsin. Values of 60 % (v/v) for glycerol and 200 mM for L-tyrosine methyl ester were optimal for the transesterification reaction. Additionally to glycerol, several other water miscible cosolvents (acetonitrile, N,N'-dimetyl formamide and tetrahydrofurane) were tested in the reaction media, but their presence did not give an enhancement on the transesterification activity with respect to the glycerol/water medium. However, increasing the hydrophobicity of the cosolvent resulted in a reduction of the enzyme activity, the water:glycerol mixture being the best reaction media.  相似文献   

17.
Enzymatic synthesis of glyceryl monoundecylenate (GMU) was performed using indigenously immobilized Candida anatarctica lipase B preparation (named as PyCal) using glycerol and undecylenic acid as substrates. The effect of molar ratio, enzyme load, reaction time, and organic solvent on the reaction conversion was determined. Both batch and continuous processes for GMU synthesis with shortened reaction time were developed. Under optimized batch reaction conditions such as 1:5 molar ratio of undecylenic acid and glycerol, 2?h of reaction time at 30% substrate concentration in tert-butyl alcohol, conversion of 82% in the absence of molecular sieve, and conversion of 93% in the presence of molecular sieve were achieved. Packed bed reactor studies resulted in high conversion of 86% in 10-min residence time. Characterization of formed GMU was performed by FTIR, MS/MS. Enzymatic process resulted in GMU as a predominant product in high yield and shorter reaction time periods with GMU content of 92% and DAG content of 8%. Optimized GMU synthesis in the present study can be used as a useful reference for industrial synthesis of fatty acid esters of glycerol by the enzymatic route.  相似文献   

18.
The conversion of soybean oil to biodiesel fuel was investigated in the presence of a lipase from Thermomyces lanuginosus (commercially called Lipozyme TL IM) in a solvent-free medium. The lipase was inactivated when more than 1.5 molar equivalent of methanol was added to the oil mixture. To fully convert the oil to its corresponding methyl esters, the reaction was performed successfully by a three-step addition of 1 molar equivalent of methanol and under the optimized conditions (40°C, 150 rpm, 10% enzyme quantity based on oil weight), the maximum methyl ester (ME) yield was 98% after 12 h reaction. By-product glycerol had a negative effect on enzymatic activity and iso-propanol was found to be effective for glycerol removal, in the presence of which lipase expressed relatively high activity and more than 94% of the ME yield was maintained after being used repeatedly for 15 batches.  相似文献   

19.
Enzymatic production of methyl esters (biodiesel) by methanolysis of palm oil in presence and absence of organic solvent was investigated using Candida antarctica lipase immobilized on acrylic resin as a biocatalyst. Although, at least molar equivalent of methanol (methanol-palm oil ratio 3:1) is required for the complete conversion of palm oil to methyl esters, lipase catalyzed methanolysis of palm oil in absence of organic solvent was poisoned by adding more than 1/3 molar equivalent of methanol. The use of polar organic solvents prevented the lipase to be poisoned in methanolysis with a molar equivalent of methanol, and tetrahydrofuran (THF) was found to be the most effective. The presence of water in methanolysis of palm oil both in presence and absence of THF inhibited the reaction rate but this inhibition was considerably low in THF containing system. The palm oil-lipase (w/w) ratio significantly influenced the activity of lipase and the optimal ratio in presence and absence of THF was 100 and 50, respectively.  相似文献   

20.
《Process Biochemistry》2010,45(4):446-450
Compared to immobilized lipase, soluble lipase has the merits of lower cost and faster reaction rate, thus much attention has been paid to soluble lipase-mediated methanolysis for biodiesel (fatty acid methyl ester, FAME) production in recent years. Our previous study showed that soluble lipase NS81006 could effectively catalyze the methanolysis of soybean oil (triglyceride, TG) for FAME preparation in oil/water biphasic system. Study on the related mechanism of soluble lipase NS81006-mediated methanolysis of TG was carried out in this paper. Based on the analysis of substances change in the reaction process, mechanism model was hypothesized and the model parameters were simulated by Matlab. The simulated model was validated further. The results showed that in the reaction process of soluble lipase NS81006-mediated methanolysis of TG in oil/water biphasic system, TG proceeded three-step hydrolysis to generate FFA (free fatty acid), and then FFA transformed into FAME by esterification with methanol. During the whole process, FFA is mainly generated through the hydrolysis of TG and intermediate DG (diglyceride), while the hydrolysis of FAME could be ignored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号