首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have examined hair bulb and skin melanocytes of rufous albinos from Southern Africa to further characterize this form of albinism. In the skin melanocytes we find both eumelanosomes and pheomelanosomes at various stages of melanization and, in addition, there appeared to be many aberrant incompletely melanized melanosomes. On average, rufous melanosomes are 30% smaller than normal black skin melanosomes. In the keratinocytes, the melanosomes are packaged into distinct aggregations, whereas in normal black skin, they occur singly. We suggest that the reddish skin color of these albinos is a consequence of an increase in the pheomelanin synthesis resulting in a raised pheomelanin/eumelanin ratio and that the aggregation of melanosomes results in a skin color slightly lighter than normal. In hair bulb melanocytes, only eumelanosomes were seen and these were mostly incompletely melanized. These findings correlate with our visual observations that the hair color of Southern African albinos is very pale (light brown or ginger). Based on our observations, we speculate on the possible cause of rufous albinism.  相似文献   

2.
Malignant transformation of melanocytes leads to melanoma, the most fatal form of skin cancer. Ultraviolet radiation (UVR)‐induced DNA photoproducts play an important role in melanomagenesis. Cutaneous melanin content represents a major photoprotective mechanism against UVR‐induced DNA damage, and generally correlates inversely with the risk of skin cancer, including melanoma. Melanoma risk is also determined by susceptibility genes, one of which is the melanocortin 1 receptor (MC1R) gene. Certain MC1R alleles are strongly associated with melanoma. We hereby present experimental evidence for the role of two melanoma risk factors, constitutive pigmentation, as assessed by total melanin, eumelanin and pheomelanin contents, and MC1R genotype and function, in determining the induction and repair of DNA photoproducts in cultured human melanocytes after irradiation with increasing doses of UVR. We found that total melanin and eumelanin contents (MC and EC) correlated inversely with the extent of UVR‐induced growth arrest, apoptosis and induction of cyclobutane pyrimidine dimers (CPD), but not with hydrogen peroxide release in melanocytes expressing functional MC1R. In comparison, melanocytes with loss‐of‐function MC1R, regardless of their MC or EC, sustained more UVR‐induced apoptosis and CPD, and exhibited reduced CPD repair. Therefore, MC, mainly EC, and MC1R function are independent determinants of UVR‐induced DNA damage in melanocytes.  相似文献   

3.
The color of hair, skin, and eyes in animals mainly depends on the quantity, quality, and distribution of the pigment melanin, which occurs in two types: black to brown eumelanin and yellow to reddish pheomelanin. Microanalytical methods to quantify the amounts of eumelanin and pheomelanin in biological materials were developed in 1985. The methods are based on the chemical degradation of eumelanin to pyrrole-2,3,5-tricarboxylic acid and of pheomelanin to aminohydroxyphenylalanine isomers, which can be analyzed and quantitated by high performance liquid chromatography. This review summarizes and compares eumelanin and pheomelanin contents in various pigmented tissues obtained from humans, mice, and other animals. These methods have become valuable tools to study the functions of melanin, the control of melanogenesis, and the actions and interactions of pigmentation genes. The methods have also found applications in many clinical studies. High levels of pheomelanin are found only in yellow to red hairs of mammals and in red feathers of birds. It remains an intriguing question why lower vertebrates such as fishes do not synthesize pheomelanin. Detectable levels of pheomelanin are detected in human skin regardless of race, color, and skin type. However, eumelanin is always the major constituent of epidermal melanin, and the skin color appears to be determined by the quantity of melanin produced but not by the quality.  相似文献   

4.
The color of hair, skin, and eyes in animals mainly depends on the quantity, quality, and distribution of the pigment melanin, which occurs in two types: black to brown eumelanin and yellow to reddish pheomelanin. Microanalytical methods to quantify the amounts of eumelanin and pheomelanin in biological materials were developed in 1985. The methods are based on the chemical degradation of eumelanin to pyrrole‐2,3,5‐tricarboxylic acid and of pheomelanin to aminohydroxyphenylalanine isomers, which can be analyzed and quantitated by high performance liquid chromatography. This review summarizes and compares eumelanin and pheomelanin contents in various pigmented tissues obtained from humans, mice, and other animals. These methods have become valuable tools to study the functions of melanin, the control of melanogenesis, and the actions and interactions of pigmentation genes. The methods have also found applications in many clinical studies. High levels of pheomelanin are found only in yellow to red hairs of mammals and in red feathers of birds. It remains an intriguing question why lower vertebrates such as fishes do not synthesize pheomelanin. Detectable levels of pheomelanin are detected in human skin regardless of race, color, and skin type. However, eumelanin is always the major constituent of epidermal melanin, and the skin color appears to be determined by the quantity of melanin produced but not by the quality.  相似文献   

5.
MC1R and the response of melanocytes to ultraviolet radiation   总被引:5,自引:0,他引:5  
The constitutive color of our skin plays a dramatic role in our photoprotection from solar ultraviolet radiation (UVR) that reaches the Earth and in minimizing DNA damage that gives rise to skin cancer. More than 120 genes have been identified and shown to regulate pigmentation, one of the key genes being melanocortin 1 receptor (MC1R) that encodes the melanocortin 1 receptor (MC1R), a seven-transmembrane G protein-coupled receptor expressed on the surface of melanocytes. Modulation of MC1R function regulates melanin synthesis by melanocytes qualitatively and quantitatively. The MC1R is regulated by the physiological agonists alpha-melanocyte-stimulating hormone (alphaMSH) and adrenocorticotropic hormone (ACTH), and antagonist agouti signaling protein (ASP). Activation of the MC1R by binding of an agonist stimulates the synthesis of eumelanin primarily via activation of adenylate cyclase. The significance of cutaneous pigmentation lies in the photoprotective effect of melanin, particularly eumelanin, against sun-induced carcinogenesis. Epidermal melanocytes and keratinocytes respond to UVR by increasing their expression of alphaMSH and ACTH, which up-regulate the expression of MC1R, and consequently enhance the response of melanocytes to melanocortins. Constitutive skin pigmentation dramatically affects the incidence of skin cancer. The pigmentary phenotype characterized by red hair, fair complexion, inability to tan and tendency to freckle is an independent risk factor for all skin cancers, including melanoma. The MC1R gene is highly polymorphic in human populations, and allelic variation at this locus accounts, to a large extent, for the variation in pigmentary phenotypes and skin phototypes (SPT) in humans. Several allelic variants of the MC1R gene are associated with the red hair and fair skin (RHC) phenotype, and carrying one of these variants is thought to diminish the ability of the epidermis to respond to DNA damage elicited by UVR. The MC1R gene is considered a melanoma susceptibility gene, and its significance in determining the risk for skin cancer is of tremendous interest.  相似文献   

6.
Malignant transformation of melanocytes leads to melanoma, the most fatal form of skin cancer. Ultraviolet radiation (UVR)-induced DNA photoproducts play an important role in melanomagenesis. Cutaneous melanin content represents a major photoprotective mechanism against UVR-induced DNA damage, and generally correlates inversely with the risk of skin cancer, including melanoma. Melanoma risk is also determined by susceptibility genes, one of which is the melanocortin 1 receptor (MC1R) gene. Certain MC1R alleles are strongly associated with melanoma. We hereby present experimental evidence for the role of two melanoma risk factors, constitutive pigmentation, as assessed by total melanin, eumelanin and pheomelanin contents, and MC1R genotype and function, in determining the induction and repair of DNA photoproducts in cultured human melanocytes after irradiation with increasing doses of UVR. We found that total melanin and eumelanin contents (MC and EC) correlated inversely with the extent of UVR-induced growth arrest, apoptosis and induction of cyclobutane pyrimidine dimers (CPD), but not with hydrogen peroxide release in melanocytes expressing functional MC1R. In comparison, melanocytes with loss-of-function MC1R, regardless of their MC or EC, sustained more UVR-induced apoptosis and CPD, and exhibited reduced CPD repair. Therefore, MC, mainly EC, and MC1R function are independent determinants of UVR-induced DNA damage in melanocytes.  相似文献   

7.
Although it is recognized that certain environmental factors are important determinants of the expression of melanin‐based traits, their influence in wild populations of animals is poorly known. One of these factors is the availability of amino acids that serve as precursors of melanins. Here we measured eumelanin and pheomelanin content in feathers of northern goshawk Accipiter gentilis nestlings, hypothesizing that, if the availability of melanin precursors is related to food abundance and habitat quality, plumage melanization should be affected by those variables. Although the eumelanin content increased with food abundance as predicted, the levels of this variable were higher in low‐quality habitats (homogeneous coniferous forests) and in nestlings in poor condition, and the pheomelanin content and eumelanin:pheomelanin ratio were lower and higher, respectively, in subpopulations where nestlings were in poorer condition. Therefore, environmental availability of melanin precursors seems to determine plumage melanization in goshawks, but our findings may also be explained by the differential effects of environmental oxidative stress on both forms of melanin, as eumelanin and pheomelanin production are favoured under high and low levels, respectively, of oxidative stress.  相似文献   

8.
The degree and type of melanogenesis, i.e., either eumelanin of pheomelanin, has been shown to be a reliable marker for the differentiation of the melanocyte. If exposed to UV light, these two melanins were reported to behave differently; eumelanin was photoprotective whereas pheomelanin was phototoxic to cultured tumor cells. Our previous study indicated that dysplastic melanocytic nevus (DMN) undergoes altered melanogenesis, forming pheomelanosome-like granules. The present study examined chemically the type and degree of melanin synthesized in 31 melanocytic nevi excised from 27 patients as compared with that occurring in the surrounding normal skin. The tissue content of eumelanin and pheomelanin was expressed by the amounts of pyrrole-2,3,5-tricarboxylic acid (PTCA) and aminohydroxyphenylalanine (AHP), respectively. We found that DMN lesions contain significantly higher amounts of pheomelanin than either common melanocytic nevus (CMN) or normal skin. Differences in pheomelanin content between DMN and CMN could not be accounted for by inherently higher levels of pheomelanin within the skin in general from DMN patients. Our present finding substantiates our previous claim that epidermal melanocytes in DMN undergo deranged melanogenesis.  相似文献   

9.
The melanocortin 1 receptor (MC1R) is a G protein‐coupled receptor crucial for the regulation of melanocyte proliferation and function. Upon binding melanocortins, MC1R activates several signaling cascades, notably the cAMP pathway leading to synthesis of photoprotective eumelanin. Polymorphisms in the MC1R gene are a major source of normal variation of human hair color and skin pigmentation, response to ultraviolet radiation (UVR), and skin cancer susceptibility. The identification of a surprisingly high number of MC1R natural variants strongly associated with pigmentary phenotypes and increased skin cancer risk has prompted research on the functional properties of the wild‐type receptor and frequent mutant alleles. We summarize current knowledge on MC1R structural and functional properties, as well as on its intracellular trafficking and signaling. We also review the current knowledge about the function of MC1R as a skin cancer, particularly melanoma, susceptibility gene and how it modulates the response of melanocytes to UVR.  相似文献   

10.
A method for the quantitative analysis of eumelanin and pheomelanin in tissues, e.g., hair and melanoma, is described. The method is simple and rapid because it does not require the isolation of melanins from the tissues. The rationale is that permanganate oxidation of eumelanin yields pyrrole-2,3,5-tricarboxylic acid (PTCA) which may serve as a quantitatively significant indicator of eumelanin, while hydriodic acid hydrolysis of pheomelanin yields aminohydroxyphenylalanine (AHP) as a specific indicator of pheomelanin. The degradation products, PTCA and AHP, can be readily analyzed by high-performance liquid chromatography. Chemical degradations of synthetic melanins, prepared from dopa, 5-S-cysteinyldopa, and their mixtures in various ratios, gave PTCA and AHP in yields that correlated with the dopa/5-S-cysteinyldopa ratio. The PTCA/AHP ratio as well as the contents of PTCA and AHP reflected well the type of melanogenesis in hair and melanomas. The amounts needed for each degradation were 0.5 mg of melanin, 2 mg of hair, and 5 mg of tissue samples. As many as 20 samples can be analyzed within 3 working days.  相似文献   

11.
We previously reported a constant ratio of the benzothiazole pheomelanin marker thiazole‐2,4,5‐tricarboxylic acid (TTCA) to the eumelanin marker pyrrole‐2,3,5‐tricarboxylic acid (PTCA) in eumelanic, black human hair. A constant level (20%–25%) of benzothiazole‐type pheomelanin was recently demonstrated in human skin with varying concentrations of melanin. Therefore, in this study, we aimed to investigate the origin of pheomelanin markers in black to brown human hair by developing a method to remove protein components from hair by heating with 6 M HCl at 110°C for 16 hr. For comparison, synthetic melanins were prepared by oxidizing mixtures of varying ratios of dopa and cysteine with tyrosinase. Hair melanins and synthetic melanins were subjected to acid hydrolysis followed by alkaline H2O2 oxidation. The results show that the hydrolysis leads to decarboxylation of the 5,6‐di‐hydroxyindole‐2‐carboxylic acid moiety in eumelanin and the benzothiazole moiety in pheomelanin and that eumelanic human hair contains 11%–17% benzothiazole‐type pheomelanin.  相似文献   

12.
The degree and type of melanogenesis, i.e., either eumelanin of pheomelanin, has been shown to be a reliable marker for the differentiation of the melanocyte. If exposed to UV light, these two melanins were reported to behave differently; eumelanin was photoprotective whereas pheomelanin was phototoxic to cultured tumor cells. Our previous study indicated that dysplastic melanocytic nevus (DMN) undergoes altered melanogenesis, forming pheomelanosome-like granules. The present study examined chemically the type and degree of melanin synthesized in 31 melanocytic nevi excised from 27 patients as compared with that occurring in the surrounding normal skin. The tissue content of eumelanin and pheomelanin was expressed by the amounts of pyrrole-2,3,5-tricarboxylic acid (PTCA) and aminohydroxyphenylalanine (AHP), respectively. We found that DMN lesions contain significantly higher amounts of pheomelanin than either common melanocytic nevus (CMN) or normal skin. Differences in pheomelanin content between DMN and CMN could not be accounted for by inherently higher levels of pheomelanin within the skin in general from DMN patients. Our present finding substantiates our previous claim that epidermal melanocytes in DMN undergo deranged melanogenesis.  相似文献   

13.
The mouse slaty (Dct(slt)) mutation is known to reduce the activity of dopachrome tautomerase (DCT). The reduced DCT activity inhibits melanosome maturation and reduces the melanin content in the skin, hair and eyes. It is not known whether eumelanin and pheomelanin synthesis in slaty melanocytes is modulated by melanogenic factors. In this study, to address this point, epidermal melanocytes derived from 0.5-, 3.5- and 7.5-day-old wild-type mice (Dct(+)/Dct(+) at the slaty locus) and from congenic mice mutant (Dct(slt) /Dct(slt) at that locus) were cultured in serum-free primary culture with or without additional L-tyrosine (Tyr). The content of melanin was measured by high-performance liquid chromatography in the cultured melanocytes as well as culture supernatants in serum-free primary culture. L-Tyr was found to increase the content of pheomelanin in addition to eumelanin in cultured slaty melanocytes and cuture supernatants at all ages tested. The eumelanin and pheomelanin contents in culture supernatants were greater than in cultured melanocytes. The eumelanin and pheomelanin contents in culture supernatants from 7.5-day-old slaty melanocytes in the presence of L-Tyr were greater than those from wild-type melanocytes. These results suggest that the inhibition of eumelanin synthesis by the slaty mutation can be partly restored by the addition of excess L-Tyr. Eumelanin and pheomelanin may accumulate with difficulty in slaty melanocytes and be easily released from them during skin development. L-Tyr may stimulate this release.  相似文献   

14.
Eumelanin and pheomelanin in tissue samples can be specifically measured as the markers pyrrole-2,3,5-tricarboxylic acid (PTCA) and 4-amino-3-hydroxyphenylalanine after acidic permanganate oxidation and hydroiodic acid hydrolysis, respectively. Those degradation methods, although widely applied, are not easily performed in most laboratories. To overcome this difficulty, we developed alkaline H(2)O(2) oxidation in 1 M K(2)CO(3) that produces, in addition to the eumelanin marker PTCA, thiazole-2,4,5-tricarboxylic acid (TTCA) and thiazole-4,5-dicarboxylic acid (TDCA) as markers for pheomelanin and pyrrole-2,3-dicarboxylic acid (PDCA) as a marker for 5,6-dihydroxyindole-derived eumelanin. Those four degradation products can be easily separated by HPLC and analyzed with ultraviolet detection. The alkaline H(2)O(2) oxidation method is simple, reproducible and applicable to all pigmented tissues. Its application to characterize eumelanin and pheomelanin in human hair shows that PTCA and TTCA serve as specific markers for eumelanin and pheomelanin, respectively, although some caution is needed regarding the artificial production of TTCA from eumelanic tissue proteins.  相似文献   

15.
Hair color and skin color are frequently coordinated in mammalian species. To explore this, we have studied mutations in two different G protein coupled pathways, each of which affects the darkness of both hair and skin color. In each mouse mutant (GnaqDsk1, Gna11Dsk7, and Mc1re), we analyzed the melanocyte density and the concentrations of eumelanin (black pigment) and pheomelanin (yellow pigment) in the hair or skin to determine the mechanisms regulating pigmentation. Surprisingly, we discovered that each mutation affects hair and skin color differently. Furthermore, we have found that in the epidermis, the melanocortin signaling pathway does not couple the synthesis of eumelanin with pheomelanin, as it does in hair follicles. Even by shared signaling pathways, hair and skin melanocytes are regulated quite independently.  相似文献   

16.
Eumelanin is photoprotective while pheomelanin is phototoxic to pigmented tissues. Ultraviolet A (UVA)-induced tanning seems to result from the photooxidation of pre-existing melanin and contributes no photoprotection. However, data available for melanin biodegradation remain limited. In this study, we first examined photodegradation of eumelanin and pheomelanin in human black hairs and found that the ratio of Free (formed by peroxidation in situ) to Total (after hydrogen peroxide oxidation) pyrrole-2,3,5-tricarboxylic acid (PTCA) increases with hair aging, indicating fission of the dihydroxyindole moiety. In red hair, the ratio of thiazole-2,4,5-tricarboxylic acid (TTCA) to 4-amino-3-hydroxyphenylalanine (4-AHP) increases with aging, indicating the conversion from benzothiazine to benzothiazole moiety. These photodegradation of melanins were confirmed by UVA (not UVB) irradiation of melanins from mice and human hairs and synthetic eumelanin and pheomelanin. These results show that both eumelanin and pheomelanin degrade by UVA and that Free/Total PTCA and TTCA/4-AHP ratios serve as sensitive indicators of photodegradation.  相似文献   

17.
Melanin pigments produced in human melanocytes are classified into two categories; black coloured eumelanin and reddish-yellow pheomelanin. Stimulation of melanocytes with alpha-melanocyte-stimulating hormone (alpha-MSH), one of several melanogenic factors, has been reported to enhance eumelanogenesis to a greater degree than pheomelanogenesis, which contributes to hyperpigmentation in skin. Nitric oxide (NO) and histamine are also melanogenesis-stimulating factors that are released from cells surrounding melanocytes following ultraviolet (UV) irradiation. In this study, the effects of NO and histamine on the ratio of eumelanin and pheomelanin were examined in human melanocytes, and then compared with that of alpha-MSH. The amounts of eumelanin and pheomelanin were quantified using high-performance liquid chromatography analysis after oxidation and hydrolysis of melanin. Melanogenesis was induced by the addition of alpha-MSH, NO, or histamine to melanocytes. The amount of eumelanin production significantly increased with independent stimulation by these melanogenic factors, especially histamine, while that of pheomelanin significantly increased with alpha-MSH and NO, but only slightly with histamine. As a result, the ratio of eumelanin and pheomelanin increased significantly with the addition of NO or histamine. These results suggest that NO and histamine, as in the case of alpha-MSH, may contribute to UV-induced hyperpigmentation by enhancing eumelanogenesis.  相似文献   

18.
Melanin pigments produced in human melanocytes are classified into two categories; black coloured eumelanin and reddish‐yellow pheomelanin. Stimulation of melanocytes with α‐melanocyte‐stimulating hormone (α‐MSH), one of several melanogenic factors, has been reported to enhance eumelanogenesis to a greater degree than pheomelanogenesis, which contributes to hyperpigmentation in skin. Nitric oxide (NO) and histamine are also melanogenesis‐stimulating factors that are released from cells surrounding melanocytes following ultraviolet (UV) irradiation. In this study, the effects of NO and histamine on the ratio of eumelanin and pheomelanin were examined in human melanocytes, and then compared with that of α‐MSH. The amounts of eumelanin and pheomelanin were quantified using high‐performance liquid chromatography analysis after oxidation and hydrolysis of melanin. Melanogenesis was induced by the addition of α‐MSH, NO, or histamine to melanocytes. The amount of eumelanin production significantly increased with independent stimulation by these melanogenic factors, especially histamine, while that of pheomelanin significantly increased with α‐MSH and NO, but only slightly with histamine. As a result, the ratio of eumelanin and pheomelanin increased significantly with the addition of NO or histamine. These results suggest that NO and histamine, as in the case of α‐MSH, may contribute to UV‐induced hyperpigmentation by enhancing eumelanogenesis.  相似文献   

19.
The effects of selection of agouti rats (with genotype AAHH) on the tame and aggressive behavior and dietary methyl given to females from the eighth day of pregnancy to the fifth day after the birth of the offspring on the intensity of the agouti coat color in the offspring have been studied. The morphometric parameters of hair determining the darkness of the agouti color (the total length of guard hairs, the lengths of their eumelanin end and pheomelanin band, the ratio between the lengths of the eumelanin and pheomelanin portions of the hair, the total length of the awn hairs, and the relative length of their widened “lanceolate” upper end) have been compared. It has been found that selection of agouti rats for aggressive behavior is accompanied by darkening of the coat color compared to tame rats due to an increase in the ratio of the length of the black eumelanin end of the guard hairs to the length of the yellow pheomelanin band. Methyl-containing additives to the diet of females affect the intensity of the agouti coat color in the offsprings with both types of behavior, but to different extents. Aggressive offspring is more sensitive to the mother’s methyl-containing diet: the percentage of animals that are darker than control rats is higher among aggressive animals than among tame ones due to a greater increase in the ratio between dark and light portions of hairs. The possible mechanisms of differences in the phenotypic modifications of coat color in control and experimental agouti rats with different types of behavior are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号