首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intracellular accumulation of anthracycline derivatives was measured in a human embryonic kidney cell line (HEK) and a resistant subline (HEK/multidrug resistance protein (MRP1)) overexpressing MRP1 at the plasma membrane surface. Two compounds (daunorubicin and doxorubicin) were rejected outside the multidrug-resistant cells. On the contrary, three compounds (4'-deoxy-4'-iodo-doxorubicin, 4-demethoxy-daunorubicin and 3'-(3-methoxymorpholino)doxorubicin) accumulated equally within sensitive HEK cells and resistant HEK/MRP1 cells. Our main objective here was to characterize the MRP1 conformational changes mediated by the binding of these anthracycline derivatives and to determine whether these conformational changes are related to MRP1-mediated drug transport. MRP1 was reconstituted in lipid vesicles as previously described [Manciu, L., Chang, X.B., Riordan, J.R. and Ruysschaert, J.-M. (2000) Biochemistry 39, 13026-13033]. The reconstituted protein was shown to conserve its ATPase and drug transport activity. Acrylamide quenching of Trp fluorescence was used to monitor drug-dependent conformational changes. Binding of drugs (4-demethoxy-daunorubicin and 3'-(3-methoxymorpholino)doxorubicin) which accumulate in resistant cells immobilizes MRP1 in a conformational state that is insensitive to ATP binding whereas drugs rejected outside the resistant cells (daunorubicin, doxorubicin) favor a conformational change which may be a required step in the transport process.  相似文献   

2.
Cells that acquire multidrug resistance (MDR) are characterized by a decreased accumulation of a variety of drugs. In addition, sequestration of drugs in intracellular vesicles has often been associated with MDR. However, the nature and role of intracellular vesicles in MDR are unclear. We addressed the relationship between MDR and vesicular anthracycline accumulation in the erythroleukemia cell line K562 and a drug-resistant counterpart K562/ADR that overexpresses P-glycoprotein. We used four anthracyclines (all of which are P-glycoprotein substrates): daunorubicin and idarubicin, which have good affinity for DNA and as weak bases can accumulate inside acidic compartments; hydroxyrubicin, which binds to DNA but is uncharged at physiological or acidic pH and thus cannot accumulate in acidic compartments; and WP900, an enantiomer of daunorubicin, which is a weak DNA binder but has the same pKa and lipophilicity as daunorubicin. The intrinsic fluorescence of anthracyclines allowed us to use macro- and micro-spectrofluorescence, flow cytometry, and confocal microscopy to characterize their nuclear or intravesicular accumulation in living cells. We found that vesicular accumulation of daunorubicin, WP900 and idarubicin, containing a basic 3'-amine was predominantly restricted to lysosomes in both cell lines, that pH regulation of acidic compartments was not defective in human K562 cells, and that vesicular drug accumulation was much more pronounced in the parental tumor cell line than in the multidrug-resistant cells. These results indicate that vesicular anthracycline sequestration does not contribute to the diminished sensitivity to anthracyclines in multidrug-resistant K562 cells.  相似文献   

3.
Previous studies with the multidrug-resistant human HL60 cell line have shown a 3–4-fold decrease in VP-16 accumulation compared to the sensitive cell line, while the degree of resistance to VP-16 was 300-fold, indicating that other mechanisms of resistance are also operative. Since VP-16 has been shown to interfere with topoisomerase II activity, we have evaluated VP-16-dependent DNA strand break formation in the drug-sensitive and -resistant HL60 cells. Studies reported here show that the drug-resistant HL60 cells are extremely resistant to VP-16-dependent DNA cleavage compared to the sensitive cells. This decrease in DNA cleavage in the of VP-16 was, in part, related to a 2–3-fold decrease in both the amount and activity of topisomerase II in the resistant cell line compared to the sensitive cells. Nuclei from the resistant cell line were markedly more resistant to VP-16-dependent DNA cleavage than the WT cell nuclei. Interestingly, WT nuclei were found to be relatively more resistant to VP-16-induced DNA cleavage than the intact WT cells. Addition of WT cytosolic proteins to WT nuclei, however, significantly stimulated VP-16-dependent DNA cleavage and slightly increased DNA cleavage in resistant cell nuclei. In contrast, cytosolic proteins from the resistant cells had no effect on DNA cleavage in nuclei isolated from either cell line. These observations indicate that a decrease in the amount and activity of topoisomerase II in resistant HL60 cells translates into a decrease in VP-16-dependent DNA breakage and contributes to the resistance to VP-16. Furthermore, the cytosolic fraction from WT cells contains some factor, not present in the resistant cells, which is necessary for the maximal drug-induced DNA cleavage.  相似文献   

4.
Previous studies with the multidrug-resistant human HL60 cell line have shown a 3-4-fold decrease in VP-16 accumulation compared to the sensitive cell line, while the degree of resistance to VP-16 was 300-fold, indicating that other mechanisms of resistance are also operative. Since VP-16 has been shown to interfere with topoisomerase II activity, we have evaluated VP-16-dependent DNA strand break formation in the drug-sensitive and -resistant HL60 cells. Studies reported here show that the drug-resistant HL60 cells are extremely resistant to VP-16-dependent DNA cleavage compared to the sensitive cells. This decrease in DNA cleavage activity in the presence of VP-16 was, in part, related to a 2-3-fold decrease in both the amount and activity of topoisomerase II in the resistant cell line compared to the sensitive cells. Nuclei from the resistant cell line were markedly more resistant to VP-16-dependent DNA cleavage than the WT cell nuclei. Interestingly, WT nuclei were found to be relatively more resistant to VP-16-induced DNA cleavage than the intact WT cells. Addition of WT cytosolic proteins to WT nuclei, however, significantly stimulated VP-16-dependent DNA cleavage and slightly increased DNA cleavage in resistant cell nuclei. In contrast, cytosolic proteins from the resistant cells had no effect on DNA cleavage in nuclei isolated from either cell line. These observations indicate that a decrease in the amount and activity of topoisomerase II in resistant HL60 cells translates into a decrease in VP-16-dependent DNA breakage and contributes to the resistance to VP-16. Furthermore, the cytosolic fraction from WT cells contains some factor, not present in the resistant cells, which is necessary for the maximal drug-induced DNA cleavage.  相似文献   

5.
DNA damage was measured by flow cytometric analysis of cells sensitive and resistant to alkylating agents. Human ovarian carcinoma cell line A2780 and a subline which is 7 times more resistant to L-phenylalanine mustard (L-PAM) were treated with the drug, fixed, and stained with monoclonal antibody (MOAB) F7-26 which detects single-stranded regions in alkylated DNA. Mean fluorescent intensity was measured on a flow cytometer. Cells were heated before staining to amplify single-strandedness in alkylated DNA. Significantly larger amount of MOAB was bound to DNA in sensitive than in resistant cells. Fluorescence increased by 80 channels per micrograms L-PAM insensitive cells and only by 17 channels in resistant cells. Sensitive and resistant cells were treated with L-PAM, mixed in different proportions, and stained with MOAB. Populations of sensitive and resistant cells were clearly separated on fluorescence histograms by more than a decade difference in fluorescence intensity. Presence of 2-5% resistant cells was detected among sensitive cells as a separate cell subset. We conclude that staining with MOAB F7-26 can be used as an indicator of cell sensitivity or resistance to alkylating agents. Detection of minor subsets of resistant cells in heterogeneous populations by FCM analysis may be useful for monitoring emerging drug resistance.  相似文献   

6.
Induction of transient thermotolerance by heat or other cytotoxic stressors has been reported to confer a moderate degree of drug resistance to tumor cells in vitro. In this study, a genetically stable, heat-resistant mouse B16 melanoma variant (W-H75) was tested for its sensitivity to various cytotoxic and antiproliferative agents. The heat-resistant W-H75 cells displayed a moderate two- to threefold resistance to doxorubicin, VP-16, VM-26, colchicine, cis-dichlorodiammineplatinum(II), HgCl2, and CdCl2. Marginal resistance to 4'(9-acridinylamino)methanesulfon-m-anisidide vinblastine, 1,3-bis(2-chloroethyl)-1-nitro-sourea, and NaAsO2 was observed, while no difference in sensitivity to the anticancer drugs, actinomycin D and camptothecin, was observed. Although W-H75 cells were generally more resistant than the parental cells to most of the agents that were tested, they were collaterally sensitive to the antimetabolites methotrexate and 6-mercaptopurine. Resistance of the W-H75 cells to epipodophyllotoxins and anthracyclines was not due to differences in steady-state drug accumulation. For the epipodophyllotoxin VP-16, resistance may be related to a relative decrease in the number of drug-induced DNA strand breaks in W-H75 cells. However, no difference in DNA strand breakage was observed between W-H75 and parental cells which were treated with doxorubicin, suggesting that resistance to this drug occurred by a different mechanism. The possible involvement of glutathione and glutathione S-transferase in resistance was also investigated. The glutathione content in W-H75 cells was 35% higher than that in the parental line. However, glutathione S-transferase activity appeared to be identical in both cell lines. Two other heat-resistant B16 melanoma variants, B-H103 and R-H92, were also tested for sensitivity to doxorubicin and VP-16. In contrast to the W-H75 cells, these two heat-resistant variants were hypersensitive to doxorubicin. The B-H103 cells were also hypersensitive to VP-16. This study suggests that selection for cellular resistance to heat may result in cells that have an altered sensitivity to drugs.  相似文献   

7.
Reduced cyclosporin accumulation in multidrug-resistant cells   总被引:4,自引:0,他引:4  
Cyclosporin accumulation was reduced by 50% or more in multidrug- resistant CHRC5 CHO cells with high levels of P-glycoprotein expression compared to drug sensitive AuxB1 CHO cells. This difference could be overcome by verapamil which is known to interact with P-glycoprotein and reverse multidrug resistance. The difference in cyclosporin accumulation between sensitive and resistant cells decreased with increasing cyclosporin concentrations suggesting that cyclosporine itself regulated its own accumulation through interaction with P-glycoprotein. Indeed, cyclosporin also reversed differences in vinblastine accumulation between resistant and sensitive cell lines. Since P-glycoprotein is highly expressed in the kidney which is also a target for cyclosporin toxicity, the effects of verapamil on cyclosporin accumulation were studied in two renal cell lines, rat mesangial cells and LLCPK1, cells. Verapamil increased cyclosporin accumulation by approximately 70%. These results suggest that cellular cyclosporine accumulation is regulated at least in part by its interaction with P-glycoprotein.  相似文献   

8.
The mechanisms of action and resistance to menogaril, a clinically active anthracycline antitumor drug, were evaluated in sensitive and doxorubicin-selected multidrug resistant human breast tumor (MCF-7) cell lines. While MCF-7/ADRR cells were highly resistant (250-500-fold) to doxorubicin, they displayed only marginal resistance (10-fold) to menogaril. In contrast to doxorubicin, the mechanism of resistance to menogaril in these cells does not involve differential inhibition of DNA synthesis as measured by thymidine incorporation. P-170-glycoprotein-dependent drug transport did not contribute to resistance as there was no difference in the accumulation and retention of menogaril by sensitive and resistant cell lines. However, there was a 2-fold decrease in oxygen free radical formation in the resistant cells, compared to sensitive cells, in the presence of menogaril. Since resistant cells contain 12-fold higher glutathione peroxidase activity than the parental sensitive cells, the detoxification of hydrogen peroxide may be responsible for the decreased free radical formation and thus, may play a role in the resistance to menogaril.  相似文献   

9.
A method for detection of cells with reduced drug retention was evaluated in solid tumours. After a 1 h incubation with daunorubicin (DNR), the right angle scatter (RAS), forward angle scatter (FAS), and specific fluorescence (Fluo) were measured in sensitive and resistant cells; only Fluo was related qualitatively, but not quantitatively, to resistance. Various incubation conditions were examined. When the pH of the incubation medium increased, the DNR retention increased in sensitive and resistant cells. In contrast, when the cell concentration increased, the DNR retention decreased. Using sensitive and resistant cell lines, a proportion of resistant cells lower than 10% can be detected in a mixture. To analyse cells from solid tumours, the cells were dissociated by repeated fine needle aspirations. Tumours from 22 patients have been processed with this technique; 8 samples were classified as S (sensitive); 2 as R (resistant); and 12 as I (intermediate). Further experiments were run to study and improve the method. Another method of detection of dead cells was tested. The intra-assay variability of the technique was found to be less than 10%. When the study was performed with different fragments of the same tumour, the variation, corresponding to the tumour heterogeneity, rose to 21 to 36%. The inter-assay reproducibility was too bad, so a variant of this technique has been adapted, using verapamil or cyclosporin A, which is able to block DNR efflux; this new method allows tumour cells to be used as their own controls.  相似文献   

10.
The authors studied accumulation of the fluorescent probe Hoechst 33258 in leukemia P 388 sensitive (P 388/0) and resistant to doxorubicin (P 388/DOX) cells. It was shown that intensity of fluorescence of the dye increased after binding with nuclear DNA during 25 min for both lines of the cells. Intensity of fluorescence was 40% greater in sensitive than resistant cells. If Triton X-100 was added no difference between two lines of the cell was observed. When doxorubicin was added to the cells with dye, the intensity of fluorescence decreased. It was suggested to use Hoechst 33258 for assessment extent doxorubicin accumulation in nuclei of the cells.  相似文献   

11.
Adriamycin-resistant and normal cells of the sarcoma 180 of the mouse undergo qualitatively different deflections from the in situ state when prepared for an experiment. Resistant cells perform a fast reactive decline in the proliferative activity. They are capable of quiescence as defined by the time needed for the induction of the proliferation. Sensitive cells seem to be unable to quiesce and are only slowed down. These facts must be taken into account in interpretation of similar results. Differences in experiments need not necessarily imply differences in situ. Such in vitro appearing differences between sensitive and adriamycin-resistant cells of the murine sarcoma 180 include the retention of the mitochondria-specific stain rhodamine 123 and the uptake of anthracyclines, both being reduced in resistant cells. After labeling sensitive cells with thymidine in vivo and sorting them according to their rhodamine 123-derived fluorescence, the label was only found in the major, highly fluorescing fraction. A small low-fluorescing fraction remained unlabeled. We were able to demonstrate similar results with labeled anthracyclines applied to both the sensitive and the resistant cells in a short period between the removal of the cells from the ascites and the cell sorting. The adriamycin resistance seems to be joined with the ability of the cells to reduce their proliferative activity following changes to unfavorable conditions in vitro. Quiescent cells of the resistant line demonstrate the "anthracycline pump." Substances which are known to increase the sensitivity of anthracycline-resistant cells (TWEEN, verapamil) also shift the cells from low to high rhodamine 123-fluorescence.  相似文献   

12.
We selected for study an anthracycline-resistant mutant from the archaebacteria Haloferax volcanii. This resistance was reversed by a Ca(2+)-channel antagonist, nifedipine (NDP). This resistance and its reversal by NDP suggest P-glycoprotein (Pgp) to be responsible for maintaining an anticancer drug concentration below the cytotoxic level. Using rhodamine 123 (RH123) as a substrate for Pgp, we then examined whether the resistance to anthracyclines in this bacteria might involve a Pgp-like anthracycline efflux pump. RH123 accumulation by the bacteria was determined with flow cytometry. A steady-state RH123 accumulation by the resistant cells revealed approx. one-fifteenth of that by the wild-type cells, which could be remarkably enhanced by NDP. The other modulators of Pgp, diltiazem and verapamil, also enhanced RH123 accumulation in resistant cells. The uncoupler FCCP completely restored RH123 accumulation in resistant cells to the wild-type cell level. RH123 unidirectional efflux from resistant cells after its preloading revealed much greater than that from wild-type cells, which was remarkably inhibited by FCCP. These confirmed that RH123 low accumulation involves its active efflux mechanism. Taken together, the present study indicated that lower evolutionary archaebacteria might also express a Pgp-like protein very similar to mammalian Pgp.  相似文献   

13.
To investigate the phenomenon of active dissociation of the vital dye, Hoechst 33342 (Ho342), from DNA (DNA clearing), a new MCF7HoeR-7 human breast carcinoma cell line was isolated from parent MCF7 cells by step-wise selection with increasing concentrations of Ho342. This cell line possesses an enhanced ability for DNA clearing. The MCF7HoeR-7 line is characterised in detail and compared with the parental MCF7 line and a typical P-glycoprotein-mediated multidrug resistant (MDR) cell line, MCF7/Adr. MCF7HoeR-7 cells have an increased population growth rate, a lower DNA content and a reduced number of chromosomes. Enhanced DNA clearing in MCF7HoeR-7 cells is associated with the high resistance of the cells to the toxic effects of Ho342 and cross-resistance to etoposide, a topoisomerase II inhibitor in clinical use. The MCF7HoeR-7 and parent MCF7 cell lines have similar expression levels of transport proteins. The results obtained confirm that DNA clearing is an atypical MDR mechanism in tumour cells.  相似文献   

14.
Resistance of Escherichia coli to tetracyclines   总被引:15,自引:4,他引:11       下载免费PDF全文
1. A strain of Escherichia coli highly resistant to chlortetracycline and partially cross-resistant to tetracycline has been isolated. 2. The nitro-reductase system of the resistant cells was inhibited to a smaller extent by chlortetracycline than was the corresponding enzyme of sensitive cells. 3. The incorporation of leucine in vitro into the ribosomal protein of cell-free preparations from sensitive and resistant cells was equally inhibited by chlortetracycline. 4. Resistant cells accumulated much less chlortetracycline and tetracycline than did sensitive cells when both were cultured in the presence of these drugs. 5. The uptake of tetracycline by both sensitive and resistant E. coli was dependent on the presence of glucose in the medium. 6. Fractionation of cells cultured in medium containing [14C]chlortetracycline indicated that the largest proportion of radioactivity in sensitive cells was in the fraction consisting mainly of cell-wall material. There was no concentration of radioactivity in any one fraction of the resistant cells. 7. No evidence could be obtained for a specific tetracycline-excretion system in the resistant cells. 8. The significance of these results in relation to current theories of the antibiotic action of and resistance to the tetracycline drugs is discussed.  相似文献   

15.
C Wiezorek 《Histochemistry》1984,81(5):493-495
The effect of staining cellular DNA with the bisbenzimidazole dye Hoechst 33342 on the colony forming efficiency of Chinese Hamster Ovary Cells in different cell cycle phases has been studied. Exposures of 90 and 120 min to 5 microM Hoechst 33342 provided a considerable loss of clonogenicity depending on the cycle phase at staining procedure. The G2+M cells reveal to be the most sensitive fraction followed by the G1 cells. The highest resistance was found on S-phase cells with a colony forming efficiency exceeding that of the G2+M fraction by a factor of two.  相似文献   

16.
Doxorubicin-resistant P388 mouse leukemia cells are cross-resistant to anthracycline and non-anthracycline DNA intercalators as well as to natural and semisynthetic anthracyclines which bind weakly or not at all to DNA. In the presence of a non-lethal concentration of 5 microM trifluoperazine cytotoxic effects of the strong DNA binding drugs actinomycin-D, mitoxantrone and m-AMSA were enhanced less than 2 fold in doxorubicin-sensitive cells and up to 50 fold in doxorubicin-resistant cells. Additionally, trifluoperazine induced a greater than 2-fold enhancement in the cytotoxic effects (but not accumulation and retention) of the strong DNA binder N,N-dimethyladriamycin-14-valerate only in doxorubicin resistant cells. In contrast, cell kill, drug accumulation and retention in P388/S and P388/DOX cells treated with the weak DNA binders N-benzyl-adriamycin-14-valerate and 7(R)-O-methylnogarol, and DNA-nonbinding N,N-dibenzyldaunorubicin was similar with or without trifluoperazine treatment. The study demonstrates that the calmodulin inhibitor trifluoperazine induces a specific and marked enhancement in the cytotoxic effects of strong vs weak DNA binding antitumor drugs in doxorubicin-resistant cells.  相似文献   

17.
Earlier, we have described the process of active dissociation or "DNA clearing" from non-covalently bound agents in living mammalian cells. The vital fluorescent bisbenzimidazole dye Hoechst 33342, which binds DNA in the minor groove tightly but non-covalently, was used for studying the interaction of non-covalently binding agents with DNA. Multiple drug resistance (MDR) in tumour cells is related to the expression of transport proteins that alter the cellular drug transport and distribution. Three different groups of genes (mdr, MRP, and LRP) and their products are implicated in MDR (A. Krishan, C. M. Fitz, and I. Andritsch, Cytometry 29:279-285 (1997)). To obtain new cell lines characterized by enhanced process of active dissociation of non-covalently bound agents from DNA or "DNA clearing", we carried out step-by-step selection with increasing concentrations of Hoechst 33342. The rodent cell lines hyperresistant to Hoechst 33342 and selected from AA8 were named AA8Hoe-R-1-AA8Hoe-R-10, and the cell lines selected from L cells were called LHoe-R-1-LHoe-R-10. The most resistant of them, AA8Hoe-R-6 and AA8Hoe-R-7, were able to grow in the presence of 80 microm/ml of Hoechst 33342 in the cell culture medium. All mutants were analyzed with the flow cytometric technique and were divided into two different groups. We conclude that the drug resistance of the first group of cell lines was due to changes in transport proteins. The second group of the resistant cell lines was characterized by an enhanced dissociation of the bisbenzimidazole dye-DNA complex. As we believe, the enhanced level of "DNA clearing" was caused by the amplification of some genes, because the gradual increase of Hoechst resistance in the same cell line resulted from the increase in the ability to remove the dye from DNA. These lines were shown to be also resistant to netropsin.  相似文献   

18.
We selected for study an anthracycline-resistant mutant from the archaebacteria Haloferax volcanii. This resistance was reversed by a Ca2+-channel antagonist, nifedipine (NDP). This resistance and its reversal by NDP suggest P-glycoprotein (Pgp) to be responsible for maintaining an anticancer drug concentration below the cytotoxic level. Using rhodamine 123 (RH123) as a substrate for Pgp, we then examined whether the resistance to anthracyclines in this bacteria might involve a Pgp-like anthracycline efflux pump. RH123 accumulation by the bacteria was determined with flow cytometry. A steady-state RH123 accumulation by the resistant cells revealed approx. one-fifteenth of that by the wild-type cells, which could be remarkably enhanced by NDP. The other modulators of Pgp, diltiazem and verapamil, also enhanced RH123 accumulation in resistant cells. The uncoupler FCCP completely restored RH123 accumulation in resistant cells to the wild-type cell level. RH123 unidirectional efflux from resistant cells after its preloading revealed much greater than that from wild-type cells, which was remarkably inhibited by FCCP. These confirmed that RH123 low accumulation involves its active efflux mechanism. Taken together, the present study indicated that lower evolutionary archaebacteria might also express a Pgp-like protein very similar to mammalian Pgp.  相似文献   

19.
Cytotoxic activities, accumulation levels and dynamics, and intracellular distribution of the anthracycline antibiotics doxorubicin (DR) and carminomycin (CM) in the free forms or within conjugates with the epidermal growth factor (EGF) were for the first time compared in human breast carcinoma cell lines MCF-7Wt and MCF-7AdrR. The cytotoxic activities of DR and CM conjugates with EGF were higher than the cytotoxic activities of the free antibiotics in both cell lines. The accumulation levels of the free anthracyclines in both cell lines were lower than those of the conjugates and significantly depended on the cell sensitivities to the antibiotics. On receptor-mediated endocytosis of the anthracycline-EGF conjugates, the accumulation levels did not significantly depend on the cell sensitivities to the antibiotics. Both DR and CM, either free or conjugated with EGF, were mainly accumulated in nuclei. The free drugs were accumulated more rapidly, and the accumulation rates of both free and EGF-conjugated CM were higher than those of DR preparations. The intracellular distribution of the free antibiotics significantly depended on the cell sensitivities to the anthracyclines, whereas the cell sensitivities had no effect on the distribution of the conjugates between the nucleus and cytoplasm. The rate of intracellular degradation of DR and CM delivered to target cells within conjugates with EGF was twice lower than that of the free antibiotics. The difference in the accumulation levels and dynamics and in the intracellular distribution of the free and conjugated DR and CM is likely to underlie the higher cytotoxic activities of the anthracycline conjugates with EGF compared to the free drugs.  相似文献   

20.
Multidrug transporters mediate the active extrusion of antibiotics and toxic ions from the cell. This reaction is thought to be based on a switch of the transporter between two conformational states, one in which the interior substrate binding cavity is available for substrate binding at the inside of the cell, and another in which the cavity is exposed to the outside of the cell to enable substrate release. Consistent with this model, cysteine cross-linking studies with the Major Facilitator Superfamily drug/proton antiporter LmrP from Lactococcus lactis demonstrated binding of transported benzalkonium to LmrP in its inward-facing state. The fluorescent dye Hoechst 33342 is a substrate for many multidrug transporters and is extruded by efflux pumps in microbial and mammalian cells. Surprisingly, and in contrast to other multidrug transporters, LmrP was found to actively accumulate, rather than extrude, Hoechst 33342 in lactococcal cells. Consistent with this observation, LmrP expression was associated with cellular sensitivity, rather than resistance to Hoechst 33342. Thus, we discovered a hidden “Janus” amongst LmrP substrates that is translocated in reverse direction across the membrane by binding to outward-facing LmrP followed by release from inward-facing LmrP. These findings are in agreement with distance measurements by electron paramagnetic resonance in which Hoechst 33342 binding was found to stabilize LmrP in its outward-facing conformation. Our data have important implications for the use of multidrug exporters in selective targeting of “Hoechst 33342-like” drugs to cells and tissues in which these transporters are expressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号