首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 481 毫秒
1.
The major goal of this study was to elucidate how troponin T (TnT) dilated cardiomyopathy (DCM) mutations in fetal TnT and fetal troponin affect the functional properties of the fetal heart that lead to infantile cardiomyopathy. The DCM mutations R141W and DeltaK210 were created in the TnT1 isoform, the primary isoform of cardiac TnT in the embryonic heart. In addition to a different TnT isoform, a different troponin I (TnI) isoform, slow skeletal TnI (ssTnI), is the dominant isoform in the embryonic heart. In skinned fiber studies, TnT1-wild-type (WT)-treated fibers reconstituted with cardiac TnI.troponin C (TnC) or ssTnI.TnC significantly increased Ca(2+) sensitivity of force development when compared with TnT3-WT-treated fibers at both pH 7.0 and pH 6.5. Porcine cardiac fibers treated with TnT1 that contained the DCM mutations (R141W and DeltaK210), when reconstituted with either cardiac TnI.TnC or ssTnI.TnC, significantly decreased Ca(2+) sensitivity of force development compared with TnT1-WT at both pH values. The R141W mutation, which showed no significant change in the Ca(2+) sensitivity of force development in the TnT3 isoform, caused a significant decrease in the TnT1 isoform. The DeltaK210 mutation caused a greater decrease in Ca(2+) sensitivity and maximal isometric force development compared with the R141W mutation in both the fetal and adult TnT isoforms. When complexed with cardiac TnI.TnC or ssTnI.TnC, both TnT1 DCM mutations strongly decreased maximal actomyosin ATPase activity as compared with TnT1-WT. Our results suggest that a decrease in maximal actomyosin ATPase activity in conjunction with decreased Ca(2+) sensitivity of force development may cause a severe DCM phenotype in infants with the mutations.  相似文献   

2.
Striated muscle contraction is powered by actin-activated myosin ATPase. This process is regulated by Ca(2+) via the troponin complex. Slow- and fast-twitch fibers of vertebrate skeletal muscle express type I and type II myosin, respectively, and these myosin isoenzymes confer different ATPase activities, contractile velocities, and force. Skeletal muscle troponin has also diverged into fast and slow isoforms, but their functional significance is not fully understood. To investigate the expression of troponin isoforms in mammalian skeletal muscle and their functional relationship to that of the myosin isoforms, we concomitantly studied myosin, troponin T (TnT), and troponin I (TnI) isoform contents and isometric contractile properties in single fibers of rat skeletal muscle. We characterized a large number of Triton X-100-skinned single fibers from soleus, diaphragm, gastrocnemius, and extensor digitorum longus muscles and selected fibers with combinations of a single myosin isoform and a single class (slow or fast) of the TnT and TnI isoforms to investigate their role in determining contractility. Types IIa, IIx, and IIb myosin fibers produced higher isometric force than that of type I fibers. Despite the polyploidy of adult skeletal muscle fibers, the expression of fast or slow isoforms of TnT and TnI is tightly coupled. Fibers containing slow troponin had higher Ca(2+) sensitivity than that of the fast troponin fibers, whereas fibers containing fast troponin showed a higher cooperativity of Ca(2+) activation than that of the slow troponin fibers. These results demonstrate distinct but coordinated regulation of troponin and myosin isoform expression in skeletal muscle and their contribution to the contractile properties of muscle.  相似文献   

3.
Kobayashi T  Zhao X  Wade R  Collins JH 《Biochemistry》1999,38(17):5386-5391
We have mutated eight conserved, charged amino acid residues in the N-terminal, regulatory domain of troponin C (TnC) so we could investigate their role in troponin-linked Ca2+ regulation of muscle contraction. These residues surround a hydrophobic pocket in the N-terminal domain of TnC which, when Ca2+ binds to regulatory sites in this domain, is exposed and interacts with the inhibitory region of troponin I (TnI). We constructed three double mutants (E53A/E54A, E60A/E61A, and E85A/D86A) and two single mutants (R44A and R81A) of rabbit fast skeletal muscle troponin C (TnC) in which the charged residues were replaced with neutral alanines. All five of these mutants retained TnC's ability to bind TnI in a Ca2+-dependent manner, to neutralize TnI's inhibition of actomyosin S1 ATPase activity, and to form a ternary complex with TnI and troponin T (TnT). Ternary complexes formed with TnC(R44A) or TnC(R81A) regulated actomyosin S1 ATPase activity normally, with TnI-based inhibition in the absence of Ca2+ and TnT-based activation in the presence of Ca2+. TnC(E53A/E54A) and TnC(E85A/D86A) interacted weakly with TnT, as judged by native gel electrophoresis. Ternary complexes formed with these mutants inhibited actomyosin S1 ATPase activity in both the presence and absence of Ca2+, and did not undergo Ca2+-dependent structural changes in TnI which can be detected by limited chymotryptic digestion. TnC(E60A/E61A) interacted normally with TnT. Its ternary complex showed Ca2+-dependent structural changes in TnI, inhibited actomyosin S1 ATPase in the absence of Ca2+, but did not activate ATPase in the presence of Ca2+. This is the first demonstration that selective mutation of TnC can abolish the activating effect of troponin while its inhibitory function is retained. Our results suggest the existence of an elaborate network of protein-protein interactions formed by TnI, TnT, and the N-terminal domain of TnC, all of which are important in the Ca2+-dependent regulation of muscle contraction.  相似文献   

4.
Cardiac muscle contraction is regulated by Ca(2+) through the troponin complex consisting of three subunits: troponin C (TnC), troponin T (TnT), and troponin I (TnI). We reported previously that the abnormal splicing of cardiac TnT in turkeys with dilated cardiomyopathy resulted in a greater binding affinity to TnI. In the present study, we characterized a polymorphism of cardiac TnI in the heart of wild turkeys. cDNA cloning and sequencing of the novel turkey cardiac TnI revealed a single amino acid substitution, R111C. Arg(111) in avian cardiac TnI corresponds to a Lys in mammals. This residue is conserved in cardiac and skeletal muscle TnIs across the vertebrate phylum, implying a functional importance. In the partial crystal structure of cardiac troponin, this amino acid resides in an alpha-helix that directly contacts with TnT. Structural modeling indicates that the substitution of Cys for Arg or Lys at this position would not disrupt the global structure of troponin. To evaluate the functional significance of the different size and charge between the Arg and Cys side chains, protein-binding assays using purified turkey cardiac TnI expressed in Escherichia coli were performed. The results show that the R111C substitution lowered binding affinity to TnT, which is potentially compensatory to the increased TnI-binding affinity of the cardiomyopathy-related cardiac TnT splicing variant. Therefore, the fixation of the cardiac TnI Cys(111) allele in the wild turkey population and the corresponding functional effect reflect an increased fitness value, suggesting a novel target for the treatment of TnT myopathies.  相似文献   

5.
Recent structural studies of the troponin (Tn) core complex have shown that the regulatory head containing the N-lobe of TnC is connected to the IT arm by a flexible linker of TnC. The IT arm is a long coiled-coil formed by alpha-helices of TnI and TnT, plus the C-lobe of TnC. The TnT is thought to play a pivotal role in the linking of Ca(2+) -triggered conformational changes in thin filament regulatory proteins to the activation of cross-bridge cycling. However, a functional domain at the C-terminus of TnT is missing from the Tn core complex. In this study, we intended to determine the proximity relationship between the central helix of TnC and the TnT C-terminus in the binary and the ternary complex with and without Ca2+ by using pyrene excimer fluorescence spectroscopy and fluorescence resonance energy transfer. Chicken fast skeletal TnC contains a Cys102 at the E helix, while TnT has a Cys264 at its C-terminus. These two cysteines were specifically labeled with sulfhydryl-reactive fluorescence probes. The measured distance in the binary complex was about 19 Angstroms and slightly increased when they formed the ternary complex with TnI (20 Angstroms). Upon Ca2+ binding the distance was not affected in the binary complex but increased by approximately 4 Angstroms in the ternary complex. These results suggest that TnI plays an essential role in the Ca(2+) -mediated change in the spatial relationship between the C-lobe of TnC and the C-terminus of TnT.  相似文献   

6.
Thin filament proteins tropomyosin (Tm), troponin T (TnT), and troponin I (TnI) form an allosteric regulatory complex that is required for normal cardiac contraction. Multiple isoforms of TnT, Tm, and TnI are differentially expressed in both cardiac development and disease, but concurrent TnI, Tm, and TnT isoform switching has hindered assignment of cellular function to these transitions. We systematically incorporated into the adult sarcomere the embryonic/fetal isoforms of Tm, TnT, and TnI by using gene transfer. In separate experiments, greater than 90% of native TnI and 40-50% of native Tm or TnT were specifically replaced. The Ca(2+) sensitivity of tension development was markedly enhanced by TnI replacement but not by TnT or Tm isoform replacement. Titration of TnI replacement from >90% to <30% revealed a dominant functional effect of slow skeletal TnI to modulate regulation. Over this range of isoform replacement, TnI, but not Tm or TnT embryonic isoforms, influenced calcium regulation of contraction, and this identifies TnI as a potential target to modify contractile performance in normal and diseased myocardium.  相似文献   

7.
J Leszyk  J H Collins  P C Leavis  T Tao 《Biochemistry》1988,27(18):6983-6987
The sulfhydryl-specific, heterobifunctional, photoactivatable cross-linker 4-maleimidobenzophenone (BPMal) was used to study the interaction of rabbit skeletal muscle troponin subunits TnC, TnT, and TnI. TnC was labeled at Cys-98 by the maleimide moiety of BPMal and then mixed with either TnT alone or TnI plus TnT, in the presence of Ca2+. Upon photolysis, TnI and/or TnT formed covalent cross-links with TnC. The cross-linked TnC-TnT heterodimer obtained from the binary complex was digested into progressively smaller cross-linked peptides that were purified by HPLC and then characterized by amino acid analysis and sequencing. An initial cross-linked CNBr fraction contained the expected peptide CB9 (residues 84-135) of TnC, plus CNBr peptides spanning residues 152-230 of TnT. Results from a peptic digest of the CNBr cross-linked fraction permitted the identification of residues 159-197 as the most highly cross-linked region in TnT. A final subtilisin digest yielded a heterogeneous cross-linked fraction, which suggested that an especially high degree of cross-links was formed in the vicinity of residues 175-178 (Met-Lys-Lys-Lys) of TnT. Although this region of TnT had previously been implicated in binding, we show here for the first time that it is close to Cys-98 of TnC. In an analogous study on the binary complex of TnC and TnI [Leszyk, J., Collins, J. H., Leavis, P. C., & Tao, T. (1987) Biochemistry 26, 7042-7047], we previously showed that Cys-98 of TnC was cross-linked mainly to CN4, the "inhibitory region", of TnI.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The troponin (Tn) complex is formed by TnC, TnI and TnT and is responsible for the calcium-dependent inhibition of muscle contraction. TnC and TnI interact in an antiparallel fashion in which the N domain of TnC binds in a calcium-dependent manner to the C domain of TnI, releasing the inhibitory effect of the latter on the actomyosin interaction. While the crystal structure of the core cardiac muscle troponin complex has been determined, very little high resolution information is available regarding the skeletal muscle TnI-TnC complex. With the aim of obtaining structural information regarding specific contacts between skeletal muscle TnC and TnI regulatory domains, we have constructed two recombinant chimeric proteins composed of the residues 1-91 of TnC linked to residues 98-182 or 98-147 of TnI. The polypeptides were capable of binding to the thin filament in a calcium-dependent manner and to regulate the ATPase reaction of actomyosin. Small angle X-ray scattering results showed that these chimeras fold into compact structures in which the inhibitory plus the C domain of TnI, with the exception of residues 148-182, were in close contact with the N-terminal domain of TnC. CD and fluorescence analysis were consistent with the view that the last residues of TnI (148-182) are not well folded in the complex. MS analysis of fragments produced by limited trypsinolysis showed that the whole TnC N domain was resistant to proteolysis, both in the presence and in the absence of calcium. On the other hand the TnI inhibitory and C-terminal domains were completely digested by trypsin in the absence of calcium while the addition of calcium results in the protection of only residues 114-137.  相似文献   

9.
This study focuses on the effects ofmechanical unloading of rat soleus muscle on the isoform patterns ofthe three troponin (Tn) subunits: troponin T (TnT), troponin I (TnI),and troponin C (TnC). Mechanical unloading was achieved by hindlimbunloading (HU) for time periods of 7, 15, and 28 days. Relativeconcentrations of slow and fast TnT, TnI, and TnC isoforms wereassessed by electrophoretic and immunoblot analyses. HU inducedprofound slow-to-fast isoform transitions of all Tn subunits, althoughto different extents and with different time courses. The effectivenessof the isoform transitions was higher for TnT than for TnI and TnC.Indeed, TnI and TnC encompassed minor partial exchanges of slowisoforms with their fast counterparts, whereas the expression patternof fast TnT isoforms (TnTf) was largely increased after HU. Moreover, slow and fast isoforms of the different Tn were not affected in thesame manner by HU. This suggests that the slow and fast counterparts ofthe Tn subunit isoforms are regulated independently in response to HU.The changes in TnTf composition occurred in parallel with previouslydemonstrated transitions within the pattern of the fast myosin heavychains in the same muscles.

  相似文献   

10.
11.
H C Cheung  C K Wang  N A Malik 《Biochemistry》1987,26(18):5904-5907
We have determined the free energy of formation of the binary complexes formed between skeletal troponin C and troponin T (TnC.TnT) and between troponin T and troponin I (TnT.TnI). This was accomplished by using TnC fluorescently modified at Cys-98 with N-(iodoacetyl)-N'-(5-sulfo-1-naphthyl)ethylenediamine for the first complex and TnI labeled at Cys-133 with the same probe for the other complex. The free energy of the ternary complex formed between troponin C and the binary complex TnT.TnI [TnC.(TnT.TnI)] was also measured by monitoring the emission of 5-(iodoacetamido)eosin attached to Cys-133 of the troponin I in TnT.TnI. The free energies were -9.0 kcal.mol-1 for TnC.TnT, -9.2 kcal.mol-1 for TnT.TnI, and -8.7 kcal.mol-1 for TnC.(TnT.TnI). In the presence of Mg2+ the free energies of TnC.TnT and TnC.(TnT.TnI) were -10.3 and -10.9 kcal.mol-1, respectively; in the presence of Ca2+ the corresponding free energies were -10.6 and -13.5 kcal.mol-1. Mg2+ and Ca2+ had negligible effect on the free energy of TnT.TnI. From these results the free energies of the formation of troponin from the three subunits were found to be -16.8 kcal.mol-1, -18.9 kcal.mol-1, and -21.6 kcal.mol-1 in the presence of EGTA, Mg2+, and Ca2+, respectively. Most of the free energy decrease caused by Ca2+ binding to the Ca2+-specific sites is derived from stabilization of the TnI-TnC linkage.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Interactions between troponin C (TnC) and troponin I (TnI) play an important role in the Ca(2+)-dependent regulation of vertebrate striated muscle contraction. In the present study, we investigated the sites of interaction between the N-terminal regulatory domain of TnC and the inhibitory region (residues 96-116) of TnI, using a mutant rabbit skeletal TnC (designated as TnC57) that contains a single Cys at residue 57 in the C-helix. TnC57 was modified with the photoreactive cross-linker 4-maleimidobenzophenone (BP-Mal), and, after formation of a binary complex with TnI, cross-linking between the proteins was induced by photolysis. The resulting product was cleaved with CNBr and several proteases, and peptides containing cross-links were purified and subjected to amino acid sequencing. The results show that Cys-57 of TnC57 is cross-linked to the segment of TnI spanning residues 113-121. Previously, we showed that Cys-98 of TnC can be cross-linked via BP-Mal to TnI residues 103-110 (Leszyk, J., Collins, J.H., Leavis, P.C., and Tao, T. (1987) Biochemistry 26, 7042-7047). Taken together, these results demonstrate that both the C- and the N-terminal domains of TnC interact with the inhibitory region of TnI and are consistent with the hypothesis that, in a complex with TnI, TnC adopts a more compact conformation than in the crystal structure.  相似文献   

13.
Ward DG  Brewer SM  Cornes MP  Trayer IP 《Biochemistry》2003,42(34):10324-10332
Phosphorylation of the unique N-terminal extension of cardiac troponin I (TnI) by PKA modulates Ca(2+) release from the troponin complex. The mechanism by which phosphorylation affects Ca(2+) binding, however, remains unresolved. To investigate this question, we have studied the interaction of a fragment of TnI consisting of residues 1-64 (I1-64) with troponin C (TnC) by isothermal titration microcalorimetry and cross-linking. I1-64 binds extremely tightly to the C-terminal domain of TnC and weakly to the N-terminal domain. Binding to the N-domain is weakened further by phosphorylation. Using the heterobifunctional cross-linker benzophenone-4-maleimide and four separate cysteine mutants of I1-64 (S5C, E10C, I18C, R26C), we have probed the protein-protein interactions of the N-terminal extension. All four I1-64 mutants cross-link to the N-terminal domain of TnC. The cross-linking is enhanced by Ca(2+) and reduced by phosphorylation. By introducing the same monocysteine mutations into full-length TnI, we were able to probe the environment of the N-terminal extension in intact troponin. We find that the full length of the extension lies in close proximity to both TnC and troponin T (TnT). Ca(2+) enhances the cross-linking to TnC. Cross-linking to both TnC and TnT is reduced by prior phosphorylation of the TnI. In binary complexes the mutant TnIs cross-link to both the isolated TnC N-domain and whole TnC. Cyanogen bromide digestion of the covalent TnI-TnC complex formed from intact troponin demonstrates that cross-linking is predominantly to the N-terminal domain of TnC.  相似文献   

14.
In contrast to skeletal muscles that simultaneously express multiple troponin T (TnT) isoforms, normal adult human cardiac muscle contains a single isoform of cardiac TnT. To understand the significance of myocardial TnT homogeneity, we examined the effect of TnT heterogeneity on heart function. Transgenic mouse hearts overexpressing a fast skeletal muscle TnT together with the endogenous cardiac TnT was investigated in vivo and ex vivo as an experimental system of concurrent presence of two classes of TnT in the adult cardiac muscle. This model of myocardial TnT heterogeneity produced pathogenic phenotypes: echocardiograph imaging detected age-progressive reductions of cardiac function; in vivo left ventricular pressure analysis showed decreased myocardial contractility; ex vivo analysis of isolated working heart preparations confirmed an intrinsic decrease of cardiac function in the absence of neurohumoral influence. The transgenic mice also showed chronic myocardial hypertrophy and degeneration. The dominantly negative effects of introducing a fast TnT into the cardiac thin filaments to produce two classes of Ca(2+) regulatory units in the adult myocardium suggest that TnT heterogeneity decreases contractile function by disrupting the synchronized action during ventricular contraction that is normally activated as an electrophysiological syncytium.  相似文献   

15.
Striated muscle contraction is regulated by Ca2+ binding to troponin, which has a globular domain and an elongated tail attributable to the NH2-terminal portion of the bovine cardiac troponin T (TnT) subunit. Truncation of the bovine cardiac troponin tail was investigated using recombinant TnT fragments and subunits TnI and TnC. Progressive truncation of the troponin tail caused progressively weaker binding of troponin-tropomyosin to actin and of troponin to actin-tropomyosin. A sharp drop-off in affinity occurred with NH2-terminal deletion of 119 rather than 94 residues. Deletion of 94 residues had no effect on Ca2+-activation of the myosin subfragment 1-thin filament MgATPase rate and did not eliminate cooperative effects of Ca2+ binding. Troponin tail peptide TnT1-153 strongly promoted tropomyosin binding to actin in the absence of TnI or TnC. The results show that the anchoring function of the troponin tail involves interactions with actin as well as with tropomyosin and has comparable importance in the presence or absence of Ca2+. Residues 95-153 are particularly important for anchoring, and residues 95-119 are crucial for function or local folding. Because striated muscle regulation involves switching among the conformational states of the thin filament, regulatory significance for the troponin tail may arise from its prominent contribution to the protein-protein interactions within these conformations.  相似文献   

16.
Troponin is a pivotal regulatory protein that binds Ca(2+) reversibly to act as the muscle contraction on-off switch. To understand troponin function, the dynamic behavior of the Ca(2+)-saturated cardiac troponin core domain was mapped in detail at 10 °C, using H/D exchange-mass spectrometry. The low temperature conditions of the present study greatly enhanced the dynamic map compared with previous work. Approximately 70% of assessable peptide bond hydrogens were protected from exchange sufficiently for dynamic measurement. This allowed the first characterization by this method of many regions of regulatory importance. Most of the TnI COOH terminus was protected from H/D exchange, implying an intrinsically folded structure. This region is critical to the troponin inhibitory function and has been implicated in thin filament activation. Other new findings include unprotected behavior, suggesting high mobility, for the residues linking the two domains of TnC, as well as for the inhibitory peptide residues preceding the TnI switch helix. These data indicate that, in solution, the regulatory subdomain of cardiac troponin is mobile relative to the remainder of troponin. Relatively dynamic properties were observed for the interacting TnI switch helix and TnC NH(2)-domain, contrasting with stable, highly protected properties for the interacting TnI helix 1 and TnC COOH-domain. Overall, exchange protection via protein folding was relatively weak or for a majority of peptide bond hydrogens. Several regions of TnT and TnI were unfolded even at low temperature, suggesting intrinsic disorder. Finally, change in temperature prominently altered local folding stability, suggesting that troponin is an unusually mobile protein under physiological conditions.  相似文献   

17.
Ca2+ regulation of vertebrate striated muscle contraction is initiated by conformational changes in the N-terminal, regulatory domain of the Ca2+-binding protein troponin C (TnC), altering the interaction of TnC with the other subunits of troponin complex, TnI and TnT. We have investigated the role of acidic amino acid residues in the N-terminal, regulatory domain of TnC in binding to the inhibitory region (residues 96-116) of TnI. We constructed three double mutants of TnC (E53A/E54A, E60A/E61A and E85A/D86A), in which pairs of acidic amino acid residues were replaced by neutral alanines, and measured their affinities for synthetic inhibitory peptides. These peptides had the same amino acid sequence as TnI segments 95-116, 95-119 or 95-124, except that the natural Phe-100 of TnI was replaced by a tryptophan residue. Significant Ca2+-dependent increases in the affinities of the two longer peptides, but not the shortest one, to TnC could be detected by changes in Trp fluorescence. In the presence of Ca2+, all the mutant TnCs showed about the same affinity as wild-type TnC for the inhibitory peptides. In the presence of Mg2+ and EGTA, the N-terminal, regulatory Ca2+-binding sites of TnC are unoccupied. Under these conditions, the affinity of TnC(E85A/D86A) for inhibitory peptides was about half that of wild-type TnC, while the other two mutants had about the same affinity. These results imply a Ca2+-dependent change in the interaction of TnC Glu-85 and/or Asp-86 with residues (117-124) on the C-terminal side of the inhibitory region of TnI. Since Glu-85 and/or Asp-86 of TnC have also been demonstrated to be involved in Ca2+-dependent regulation through interaction with TnT, this region of TnC must be critical for troponin function.  相似文献   

18.
The determination of crystal structures of the troponin complex (Takeda et al. 2003. Nature. 424:35-41; Vinogradova et al. 2005. Proc. Natl. Acad. Sci. USA. 102:5038-5043) has advanced knowledge of the regulation of muscle contraction at the molecular level. However, there are domains important for actin binding that are not visualized. We present evidence that the C-terminal region of troponin I (TnI residues 135-182) is flexible in solution and has no stable secondary structure. We use NMR spectroscopy to observe the backbone dynamics of skeletal [2H, 13C, 15N]-TnI in the troponin complex in the presence of Ca2+ or EGTA/Mg2+. Residues in this region give stronger signals than the remainder of TnI, and chemical shift index values indicate little secondary structure, suggesting a very flexible region. This is confirmed by NMR relaxation measurements. Unlike TnC and other regions of TnI in the complex, the C-terminal region of TnI is not affected by Ca2+ binding. Relaxation measurements and reduced spectral density analysis are consistent with the C-terminal region of TnI being a tethered domain connected to the rest of the troponin complex by a flexible linker, residues 137-146, followed by a collapsed region with at most nascent secondary structure.  相似文献   

19.
The binding of the NH2-terminal region of troponin T (TnT) to the COOH-terminal region of tropomyosin (Tm) and the head-to-tail overlap between Tm molecules is thought to provide a pivotal link between troponin (Tn) and Tm (White, S.P., Cohen, C., and Phillips, G.N., Jr. (1987) Nature 325, 826-828). To further explore the structure-function relationship of the NH2-terminal region of TnT, we studied the binding of a 26,000-dalton TnT fragment (26K-TnT, Ohtsuki, I., Shiraishi, F., Suenaga, N., Miyata, T., and Tanokura, M.J. (1984) J. Biochem. (Tokyo) 95, 1337-1342) which corresponds to residues 46-259 of TnT2f, the major isoform of TnT in rabbit fast twitch muscle, to immobilized alpha-Tm. Both 26K-TnT and TnT2f were retained by the alpha-Tm affinity column in the presence of 150 mM NaCl. However, upon increasing the NaCl concentration 26K-TnT was eluted from the column at a higher ionic strength than was TnT. When applied alone, the binary complex of TnI and TnC (TnC.TnI) was not retained by the alpha-Tm affinity column. When applied subsequently to prebound TnT2f or 26K-TnT, TnI.TnC was retained by the alpha-Tm affinity column and eluted together with TnT2f or 26K-TnT as ternary troponin complexes. Whether Ca2+ was present or not, Tn containing 26K-TnT was eluted at a higher ionic strength than was Tn containing TnT2f, indicating that removal of the first 45 residues of TnT2f strengthens the binding of Tn to Tm. In the presence of Tm, reconstituted Tn containing 26K-TnT conferred Ca2+ sensitivity on actomyosin-S1 MgATPase, and the steepness of the pCa-ATPase relation was unchanged with respect to the actoS1 ATPase regulated by TnT2f. It is concluded that the first 45 residues of TnT2f are not essential for anchoring the troponin complex to the thin filament and do not play a crucial role in the cooperative response of regulated actoS1 ATPase to Ca2+.  相似文献   

20.
Lindhout DA  Boyko RF  Corson DC  Li MX  Sykes BD 《Biochemistry》2005,44(45):14750-14759
We have addressed the electrostatic interactions occurring between the inhibitory region of cardiac troponin I with the C-lobe of troponin C using scanning glycine mutagenesis of the inhibitory region. We report variations in the electric potentials due to mutation of charged residues within this complex based upon the solved NMR structure (1OZS). These results demonstrate the importance of electrostatics within this complex, and it is proposed that electrostatic interactions are integral to the formation and function of larger ternary troponin complexes. To address this hypothesis, we report (15)N NMR relaxation measurements, which suggest that, within a ternary complex involving the C-lobe and the N-terminal region of troponin I (residues 34-71), the inhibitory region maintains the electrostatic interactions with the E-helix of the C-lobe as observed within the binary complex. These results imply that, in solution, the cardiac troponin complex behaves in a manner consistent with that of the crystal structure of the skeletal isoform (1YTZ). A cardiac troponin complex possessing domain orientations similar to that of the skeletal isoform provides structural insights into altered troponin I activities as observed for the familial hypertrophic cardiomyopathy mutation R144G and phosphorylation of Thr142.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号