首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In previous work,we modified blade element theory by implementing three-dimensional wing kinematics and modeled the unsteady aerodynamic effects by adding the added mass and rotational forces.This method is referred to as Unsteady Blade Element Theory (UBET).A comparison between UBET and Computational Fluid Dynamics (CFD) for flapping wings with high flapping frequencies (>30 Hz) could not be found in literature survey.In this paper,UBET that considers the movement of pressure center in pitching-moment estimation was validated using the CFD method.We investigated three three-dimensional (3D) wing kinematics that produce negative,zero,and positive aerodynamic pitching moments.For all cases,the instantaneous aerodynamic forces and pitching moments estimated via UBET and CFD showed similar trends.The differences in average vertical forces and pitching moments about the center of gravity were about 10% and 12%,respectively.Therefore,UBET is proven to reasonably estimate the aerodynamic forces and pitching moment for flight dynamic study of FW-MAV.However,the differences in average wing drags and pitching moments about the feather axis were more than 20%.Since study of aerodynamic power requires reasonable estimation of wing drag and pitching moment about the feather axis,UBET needs further improvement for higher accuracy.  相似文献   

2.
In this work, we develop an artificial foldable wing that mimics the hind wing of a beetle (Allomyrina dichotoma). In real flight, the beetle unfolds forewings and hind wings, and maintains the unfolded configuration unless it is exhausted. The artificial wing has to be able to maintain a fully unfolded configuration while flapping at a desirable flapping frequency. The artificial foldable hind wing developed in this work is based on two four-bar linkages which adapt the behaviors of the beetle's hind wing. The four-bar-linkages are designed to mimic rotational motion of the wing base and the vein folding/unfolding motion of the beetle's hind wing. The behavior of the artificial wings, which are installed in a flapping-wing system, is observed using a high-speed camera. The observation shows that the wing could maintain a fully unfolded configuration during flapping motion. A series of thrust measurements are also conducted to estimate the force generated by the flapping-wing system with foldable artificial wings. Although the artificial foldable wings give added burden to the flapping-wing system because of its weight, the thrust measurement results show that the flapping-wing system could still generate reasonable thrust.  相似文献   

3.
A physical model for a micro air vehicle with Flapping Rotary Wings (FRW) is investigated by measuring the wing kinematics in trim conditions and computing the corresponding aerodynamic force using computational fluid dynamics.In order to capture the motion image and reconstruct the positions and orientations of the wing,the photogrammetric method is adopted and a method for automated recognition of the marked points is developed.The characteristics of the realistic wing kinematics are presented.The results show that the non-dimensional rotating speed is a linear function of non-dimensional flapping frequency regardless of the initial angles of attack.Moreover,the effects of wing kinematics on aerodynamic force production and the underlying mechanism are analyzed.The results show that the wing passive pitching caused by elastic deformation can significantly enhance lift production.The Strouhal number of the FRW is much higher than that of general flapping wings,indicating the stronger unsteadiness of flows in FRW.  相似文献   

4.
Flying insects can tolerate substantial wing wear before their ability to fly is entirely compromised. In order to keep flying with damaged wings, the entire flight apparatus needs to adjust its action to compensate for the reduced aerodynamic force and to balance the asymmetries in area and shape of the damaged wings. While several studies have shown that damaged wings change their flapping kinematics in response to partial loss of wing area, it is unclear how, in insects with four separate wings, the remaining three wings compensate for the loss of a fourth wing. We used high-speed video of flying blue-tailed damselflies (Ischnura elegans) to identify the wingbeat kinematics of the two wing pairs and compared it to the flapping kinematics after one of the hindwings was artificially removed. The insects remained capable of flying and precise maneuvering using only three wings. To compensate for the reduction in lift, they increased flapping frequency by 18 ± 15.4% on average. To achieve steady straight flight, the remaining intact hindwing reduced its flapping amplitude while the forewings changed their stroke plane angle so that the forewing of the manipulated side flapped at a shallower stroke plane angle. In addition, the angular position of the stroke reversal points became asymmetrical. When the wingbeat amplitude and frequency of the three wings were used as input in a simple aerodynamic model, the estimation of total aerodynamic force was not significantly different (paired t-test, p = 0.73) from the force produced by the four wings during normal flight. Thus, the removal of one wing resulted in adjustments of the motions of the remaining three wings, exemplifying the precision and plasticity of coordination between the operational wings. Such coordination is vital for precise maneuvering during normal flight but it also provides the means to maintain flight when some of the wings are severely damaged.  相似文献   

5.
The aerodynamic role of the elytra during a beetle's flapping motion is not well-elucidated, although it is well-recognized that the evolution of elytra has been a key in the success of coleopteran insects due to their protective function. An experimental study on wing kinematics reveals that for almost concurrent flapping with the hind wings, the flapping angle of the elytra is 5 times smaller than that of the hind wings. Then, we explore the aerodynamic forces on elytra in free forward flight with and without an effect of elytron-hind wing interaction by three-dimensional numerical simulation. The numerical results show that vertical force generated by the elytra without interaction is not sufficient to support even its own weight. However, the elytron-hind wing interaction improves the vertical force on the elytra up to 80%; thus, the total vertical force could fully support its own weight. The interaction slightly increases the vertical force on the hind wind by 6% as well.  相似文献   

6.
Detailed 3-Dimensional (3D) wing kinematics was experimentally presented in free flight of a beetle,Trypoxylus dichotomus,which has a pair of elytra (forewings) and flexible hind wings.The kinematic parameters such as the wing tip trajectory,angle of attack and camber deformation were obtained from a 3D reconstruction technique that involves the use of two synchronized high-speed cameras to digitize various points marked on the wings.Our data showed outstanding characteristics of deformation and flexibility of the beetle's hind wing compared with other measured insects,especially in the chordwise and spanwise directions during flapping motion.The hind wing produced 16% maximum positive camber deformation during the downstroke.It also experienced twisted shape showing large variation of the angle of attack from the root to the tip during the upstroke.  相似文献   

7.
Flapping wing flight as seen in hummingbirds and insects poses an interesting unsteady aerodynamic problem: coupling of wing kinematics, structural dynamics and aerodynamics. There have been numerous studies on the kinematics and aerodynamics in both experimental and computational cases with both natural and artificial wings. These studies tend to ignore wing flexibility; however, observation in nature affirms that passive wing deformation is predominant and may be crucial to the aerodynamic performance. This paper presents a multidisciplinary experimental endeavor in correlating a flapping micro air vehicle wing's aeroelasticity and thrust production, by quantifying and comparing overall thrust, structural deformation and airflow of six pairs of hummingbird-shaped membrane wings of different properties. The results show that for a specific spatial distribution of flexibility, there is an effective frequency range in thrust production. The wing deformation at the thrust-productive frequencies indicates the importance of flexibility: both bending and twisting motion can interact with aerodynamic loads to enhance wing performance under certain conditions, such as the deformation phase and amplitude. By measuring structural deformations under the same aerodynamic conditions, beneficial effects of passive wing deformation can be observed from the visualized airflow and averaged thrust. The measurements and their presentation enable observation and understanding of the required structural properties for a thrust effective flapping wing. The intended passive responses of the different wings follow a particular pattern in correlation to their aerodynamic performance. Consequently, both the experimental technique and data analysis method can lead to further studies to determine the design principles for micro air vehicle flapping wings.  相似文献   

8.
Recent advances in the understanding of biological flight have inspired roboticists to create flapping-wing vehicles on the scale of insects and small birds. While our understanding of the wing kinematics, flight musculature and neuromotor control systems of insects has expanded, in practice it has proven quite difficult to construct an at-scale mechanical device capable of similar flight performance. One of the key challenges is the development of an effective and efficient transmission mechanism to control wing motions. Here we present multiple insect-scale robotic thorax designs capable of producing asymmetric wing kinematics similar to those observed in nature and utilized by dipteran insects to maneuver. Inspired by the thoracic mechanics of dipteran insects, which entail a morphological separation of power and control muscles, these designs show that such distributed actuation can also modulate wing motion in a robotic design.  相似文献   

9.
Insect- and bird-size drones—micro air vehicles (MAV) that can perform autonomous flight in natural and man-made environments are now an active and well-integrated research area. MAVs normally operate at a low speed in a Reynolds number regime of 104–105 or lower, in which most flying animals of insects, birds and bats fly, and encounter unconventional challenges in generating sufficient aerodynamic forces to stay airborne and in controlling flight autonomy to achieve complex manoeuvres. Flying insects that power and control flight by flapping wings are capable of sophisticated aerodynamic force production and precise, agile manoeuvring, through an integrated system consisting of wings to generate aerodynamic force, muscles to move the wings and a control system to modulate power output from the muscles. In this article, we give a selective review on the state of the art of biomechanics in bioinspired flight systems in terms of flapping and flexible wing aerodynamics, flight dynamics and stability, passive and active mechanisms in stabilization and control, as well as flapping flight in unsteady environments. We further highlight recent advances in biomimetics of flapping-wing MAVs with a specific focus on insect-inspired wing design and fabrication, as well as sensing systems.This article is part of the themed issue ‘Moving in a moving medium: new perspectives on flight’.  相似文献   

10.
模仿昆虫扑翼飞行的飞行器具有重量轻、质量小、噪音低、效率高、隐蔽性好等优点,在军用、民用领域被广泛地关注与应用.枯叶蛱蝶是典型的扑翼昆虫,在连续上升飞行过程中会出现停顿和跃升的现象.为了研究停顿和跃升现象的产生原因,对枯叶蛱蝶的翅型和扑翼行为进行了力学分析.通过测量鳞翅结构参数,记录飞行行为,运用能量守恒与动量守恒原理,考虑生物能的作用,视空气为不可压缩颗粒,建立了数学模型模拟枯叶蛱蝶飞行情况.结果表明,扑翼行为通过改变飞行动力的动量和分力大小来影响枯叶蛱蝶的飞行轨迹,鳞翅形状则通过改变飞行动力的大小来影响枯叶蛱蝶的飞行轨迹,扑翼行为导致停顿和跃升现象的产生.本文为设计扑翼型飞行器提供了力学仿生学基础与生物学模型,为进一步设计出更优化的仿生飞行器提供科学依据.  相似文献   

11.
The effect of wing flexibility in hoverflies was investigated using an at-scale mechanical model. Unlike dynamically-scaled models, an at-scale model can include all phenomena related to motion and deformation of the wing during flapping. For this purpose, an at-scale polymer wing mimicking a hoverfly was fabricated using a custom micromolding process. The wing has venation and corrugation profiles which mimic those of a hoverfly wing and the measured flexural stiffness of the artificial wing is comparable to that of the natural wing. To emulate the torsional flexibility at the wing-body joint, a discrete flexure hinge was created. A range of flexure stiffnesses was chosen to match the torsional stiffness of pronation and supination in a hoverfly wing. The polymer wing was compared with a rigid, flat, carbon-fiber wing using a flapping mechanism driven by a piezoelectric actuator. Both wings exhibited passive rotation around the wing hinge; however, these rotations were reduced in the case of the compliant polymer wing due to chordwise deformations during flapping which caused a reduced effective angle of attack. Maximum lift was achieved when the stiffness of the hinge was similar to that of a hoverfly in both wing cases and the magnitude of measured lift is sufficient for hovering; the maximum lift achieved by the single polymer and carbon-fiber wings was 5.9?×?10(2)(?)μN and 6.9?×?10(2)(?)μN, respectively. These results suggest that hoverflies could exploit intrinsic compliances to generate desired motions of the wing and that, for the same flapping motions, a rigid wing could be more suitable for producing large lift.  相似文献   

12.
The remarkable maneuverability of flying animals results from precise movements of their highly specialized wings. Bats have evolved an impressive capacity to control their flight, in large part due to their ability to modulate wing shape, area, and angle of attack through many independently controlled joints. Bat wings, however, also contain many bones and relatively large muscles, and thus the ratio of bats’ wing mass to their body mass is larger than it is for all other extant flyers. Although the inertia in bat wings would typically be associated with decreased aerial maneuverability, we show that bat maneuvers challenge this notion. We use a model-based tracking algorithm to measure the wing and body kinematics of bats performing complex aerial rotations. Using a minimal model of a bat with only six degrees of kinematic freedom, we show that bats can perform body rolls by selectively retracting one wing during the flapping cycle. We also show that this maneuver does not rely on aerodynamic forces, and furthermore that a fruit fly, with nearly massless wings, would not exhibit this effect. Similar results are shown for a pitching maneuver. Finally, we combine high-resolution kinematics of wing and body movements during landing and falling maneuvers with a 52-degree-of-freedom dynamical model of a bat to show that modulation of wing inertia plays the dominant role in reorienting the bat during landing and falling maneuvers, with minimal contribution from aerodynamic forces. Bats can, therefore, use their wings as multifunctional organs, capable of sophisticated aerodynamic and inertial dynamics not previously observed in other flying animals. This may also have implications for the control of aerial robotic vehicles.  相似文献   

13.
In recent decades, the take-off mechanisms of flying animals have received much attention in insect flight initiation. Most of previous works have focused on the jumping mechanism, which is the most common take-off mechanism found in flying animals. Here, we presented that the rhinoceros beetle, Trypoxylus dichotomus, takes offwithout jumping. In this study, we used 3-Dimensional (3D) high-speed video techniques to quantitatively analyze the wings and body kinematics during the initiation periods of flight. The details of the flapping angle, angle of attack of the wings and the roll, pitch and yaw angles of the body were investigated to understand the mechanism of take-off in T. dichotomus. The beetle took off gradually with a small velocity and small acceleration. The body kinematic analyses showed that the beetle exhibited stable take-off. To generate high lift force, the beetle modulated its hind wing to control the angle of attack; the angle of attack was large during the upstroke and small during the downstroke. The legs of beetle did not contract and strongly release like other insects. The hind wing could be con- sidered as a main source of lift for heavy beetle.  相似文献   

14.
We explore the implementation of wing feather separation and lead-lagging motion to a flapping wing. A biomimetic flapping wing system with separated outer wings is designed and demonstrated. The artificial wing feather separation is implemented in the biomimetic wing by dividing the wing into inner and outer wings. The features of flapping, lead-lagging, and outer wing separation of the flapping wing system are captured by a high-speed camera for evaluation. The performance of the flapping wing system with separated outer wings is compared to that of a flapping wing system with closed outer wings in terms of forward force and downward force production. For a low flapping frequency ranging from 2.47 to 3.90 Hz, the proposed biomimetic flapping wing system shows a higher thrust and lift generation capability as demonstrated by a series of experiments. For 1.6 V application (lower frequency operation), the flapping wing system with separated wings could generate about 56% higher forward force and about 61% less downward force compared to that with closed wings, which is enough to demonstrate larger thrust and lift production capability of the separated outer wings. The experiments show that the outer parts of the separated wings are able to deform, resulting in a smaller amount of drag production during the upstroke, while still producing relatively greater lift and thrust during the downstroke.  相似文献   

15.
Aerodynamic characteristic of the beetle, Trypoxylus dichotomus, which has a pair of elytra (forewings) and hind wings, is numerically investigated. Based on the experimental results of wing kinematics, two-dimensional (2D) and three-dimensional (3D) computational fluid dynamic simulations were carried out to reveal aerodynamic performance of the hind wing. The roles of the spiral Leading Edge Vortex (LEV) and the spanwise flow were clarified by comparing 2D and 3D simulations. Mainly due to pitching down of chord line during downstroke in highly inclined stroke plane, relatively high averaged thrust was produced in the free forward flight of the beetle. The effects of the local corrugation and the camber variation were also investigated for the beetle's hind wings. Our results show that the camber variation plays a significant role in improving both lift and thrust in the flapping. On the other hand, the local corrugation pattern has no significant effect on the aerodynamic force due to large angle of attack during flapping.  相似文献   

16.
Analysis of Maneuvering Flight of an Insect   总被引:1,自引:0,他引:1  
Wing motion of a dragonfly in the maneuvering flight, which was measured by Wang et al. was investigated. Equations of motion for a maneuvering flight of an insect were derived. These equations were applied for analyzing the maneuvering flight. Inertial forces and moments acting on a body and wings were estimated by using these equations and the measured motions of the body and the wings. The results indicated the following characteristics of this flight: ( 1 ) The phase difference in flapping motion between the two fore wings and two hind wings, and the phase difference between the flapping motion and the feathering motion of the four wings are equal to those in a steady forward flight with the maximum efficiency. (2)The camber change and the feathering motion were mainly controlled by muscles at the wing bases.  相似文献   

17.
Insect wings can undergo significant chordwise (camber) as well as spanwise (twist) deformation during flapping flight but the effect of these deformations is not well understood. The shape and size of butterfly wings leads to particularly large wing deformations, making them an ideal test case for investigation of these effects. Here we use computational models derived from experiments on free-flying butterflies to understand the effect of time-varying twist and camber on the aerodynamic performance of these insects. High-speed videogrammetry is used to capture the wing kinematics, including deformation, of a Painted Lady butterfly (Vanessa cardui) in untethered, forward flight. These experimental results are then analyzed computationally using a high-fidelity, three-dimensional, unsteady Navier-Stokes flow solver. For comparison to this case, a set of non-deforming, flat-plate wing (FPW) models of wing motion are synthesized and subjected to the same analysis along with a wing model that matches the time-varying wing-twist observed for the butterfly, but has no deformation in camber. The simulations show that the observed butterfly wing (OBW) outperforms all the flat-plate wings in terms of usable force production as well as the ratio of lift to power by at least 29% and 46%, respectively. This increase in efficiency of lift production is at least three-fold greater than reported for other insects. Interestingly, we also find that the twist-only-wing (TOW) model recovers much of the performance of the OBW, demonstrating that wing-twist, and not camber is key to forward flight in these insects. The implications of this on the design of flapping wing micro-aerial vehicles are discussed.  相似文献   

18.
Insect wings are deformable structures that change shape passively and dynamically owing to inertial and aerodynamic forces during flight. It is still unclear how the three-dimensional and passive change of wing kinematics owing to inherent wing flexibility contributes to unsteady aerodynamics and energetics in insect flapping flight. Here, we perform a systematic fluid-structure interaction based analysis on the aerodynamic performance of a hovering hawkmoth, Manduca, with an integrated computational model of a hovering insect with rigid and flexible wings. Aerodynamic performance of flapping wings with passive deformation or prescribed deformation is evaluated in terms of aerodynamic force, power and efficiency. Our results reveal that wing flexibility can increase downwash in wake and hence aerodynamic force: first, a dynamic wing bending is observed, which delays the breakdown of leading edge vortex near the wing tip, responsible for augmenting the aerodynamic force-production; second, a combination of the dynamic change of wing bending and twist favourably modifies the wing kinematics in the distal area, which leads to the aerodynamic force enhancement immediately before stroke reversal. Moreover, an increase in hovering efficiency of the flexible wing is achieved as a result of the wing twist. An extensive study of wing stiffness effect on aerodynamic performance is further conducted through a tuning of Young's modulus and thickness, indicating that insect wing structures may be optimized not only in terms of aerodynamic performance but also dependent on many factors, such as the wing strength, the circulation capability of wing veins and the control of wing movements.  相似文献   

19.
We describe a two-dimensional (2-D) fringe projection method, projecting two groups of comb-fringe patterns with high intensity and sharpness onto the flapping wings of a moth (Helicoverpa armigera) from two directions. The images of distorted fringes are caught by two high speed cameras from two orthogonal views. By three-dimensional reconstruction of the wing, we obtain the wing kinematics of the moth including the flapping angle, torsion angle and camber deformation.  相似文献   

20.
Flight in flies results from a feedback cascade in which the animal converts mechanical power produced by the flight musculature into aerodynamic forces. A major goal of flight research is to understand the functional significance of the various components in this cascade ranging from the generation of the neural code, the control of muscle mechanical power output, wing kinematics and unsteady aerodynamic mechanisms. Here, I attempted to draw a broad outline on fluid dynamic mechanisms found in flapping insect wings such as leading edge vorticity, rotational circulation and wake capture momentum transfer, as well as on the constraints of flight force control by the neuromuscular system of the fruit fly Drosophila. This system-level perspective on muscle control and aerodynamic mechanisms is thought to be a fundamental bridge in any attempt to link the function and performance of the various flight components with their particular role for wing motion and aerodynamic control in the behaving animal. Eventually, this research might facilitate the development of man-made biomimetic autonomous micro air vehicles using flapping wing motion for propulsion that are currently under construction by engineers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号