首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microtubule bundles cross-linked by tau protein serve a variety of neurological functions including maintaining mechanical integrity of the axon, promoting axonal growth, and facilitating cargo transport. It has been observed that axonal damage in traumatic brain injury leads to bundle disorientation, loss of axonal viability, and cognitive impairment. This study investigates the initial mechanical response of axonal microtubule bundles under uniaxial tension using a discrete bead-spring representation. Mechanisms of failure due to traumatic stretch loading and their impact on the mechanical response and stability are also characterized. This study indicates that cross-linked axonal microtubule bundles in tension display stiffening behavior similar to a power-law relationship from nonaffine network deformations. Stretching of cross-links and microtubule bending were the primary deformation modes at low stresses. Microtubule stretch was negligible up to tensile stresses of ~1 MPa. Bundle failure occurred by failure of cross-links leading to pull-out of microtubules and loss of bundle integrity. This may explain the elongation, undulation, and delayed elasticity of axons following traumatic stretch loading. More extensively cross-linked bundles withstood higher tensile stresses before failing. The bundle mechanical behavior uncovered by these computational techniques should guide future experiments on stretch-injured axons.  相似文献   

2.
Neurons in the mammalian central nervous system (CNS) have a poor capacity for regenerating their axons after injury. In contrast, neurons in the CNS of lower vertebrates and in the peripheral nervous system (PNS) of mammals are endowed with a high posttraumatic capacity to regenerate. The differences in regenerative capacity have been attributed to the different compositions of the respective cellular environments and to different responses to injury the nonneuronal cells display, which range from supportive and permissive to nonsupportive and hostile for regeneration. The same cell type may support or inhibit regeneration, depending on its state of maturity or differentiation. Astrocytes and oligodendrocytes are examples of cells in which such a dichotomy is manifested. In developing and in spontaneously regenerating nerves, these cells support (astrocytes) and permit (oligodendrocytes) growth. However, in nonregenerating adult mammalian nerves, astrocytes form the nonsupportive scar tissue; and the mature oligodendrocytes inhibit axonal growth. Maturation of these cells may be regulated differently during development than after injury. Among the putative regulators are factors derived from astrocytes, resident microglia; or cytokines produced by macrophages. During development, regulation leads to a temporal separation between axonal growth and maturation of the cellular environment, which might not occur spontaneously after injury in a nonregenerating CNS without intervention at the appropriate time. Data suggest that temporal intervention aimed at the glial cells might enhance the poor regenerative capacity of the mammalian CNS. Possible regulation of the nonneuronal cell response to injury via involvement of protooncogenes is proposed.  相似文献   

3.
Computational models are important tools which help researchers understand traumatic brain injury (TBI). A mechanistic multi-scale numerical approach is introduced to quantify diffuse axonal injury (DAI), the most important mechanism of TBI, induced by a mechanical insult at micro-scale regions of the white matter or voxels where fiber orientations are the same. Using the mechanical properties of a single axon with a viscoelastic constitutive relation and its functional failure in terms of electrophysiological impairment, a numerical 2D micro-level lattice method is implemented to directly analyze the percentage of injured axons in a voxel containing a bundle of axons all with the same orientation under biaxial stretches. Reference micro-injury maps are then developed with the input parameters based on the principal strain or stretch values and their direction with respect to axons, which provide the percentage of injured axons in the voxel of interest as the output. The methodology is independent of any statistical analyses of the accident data and medical reports to derive probabilistic injury risk curves for DAI. Avoiding a structurally detailed full finite element head model, this study proposes a micro-mechanical approach which considers the anatomical structure of neural axons in the white matter together with their mechanical properties using a numerical lattice method to analyze the brain’s diffuse axonal injury. This work has the potential to help develop safer prevention tools and more effective diagnosis methods for DAI.  相似文献   

4.
Trying to understand axonal regeneration in the CNS of fish.   总被引:7,自引:0,他引:7  
In contrast to the situation in mammals and birds, neurons in the central nervous system (CNS) of fish--such as the retinal ganglion cells--are capable of regenerating their axons and restoring vision. Special properties of the glial cells and the neurons of the fish visual pathway appear to contribute to the success of axonal regeneration. The fish oligodendrocytes lack the axon growth inhibiting molecules that interfere with axonal extension in mammals. Instead, fish optic nerve oligodendrocytes support--at least in vitro--axonal elongation of fish as well as that of rat retinal axons. Moreover, the fish retinal ganglion cells re-express upon injury a set of growth-associated cell surface molecules and equip the regenerating axons throughout their path and up into their target, the tectum opticum with these molecules. This may indicate that the injured fish ganglion cells reactivate the cellular machinery necessary for axonal regrowth and pathfinding. Furthermore, the target itself provides positional marker molecules even in adult fish. These marker molecules are required to guide the regenerating axons back to their retinotopic home territory within the tectum.  相似文献   

5.
White matter injury mechanisms   总被引:14,自引:0,他引:14  
White matter of the brain and spinal cord is susceptible to anoxia, ischemia, trauma and autoimmune attack. Irreversible injury to this tissue can have serious consequences for the overall function of the CNS through disruption of signal transmission. Like neurons, central myelinated axons are critically dependent on a continuous supply of oxygen and glucose. Injury causes failure of the Na-K-ATPase and accumulation of axoplasmic Na through non-inactivating Na channels, which, together with membrane depolarization, promotes reverse Na-Ca exchange and axonal Ca overload. An equally important source of deleterious Ca originates from intracellular stores, released in part by a mechanism similar to "excitation-contraction coupling" in muscle, involving activation of ryanodine receptors by L-type Ca channels. Excitotoxic mechanisms also play an important role: glutamate released by reversal of Na-dependent glutamate transporters activates AMPA/kainate receptors to cause injury to glia and myelin. Excessive accumulation of cytosolic Ca in turn activates various Ca-dependent enzymes such as calpains, phospholipases and others resulting in irreversible injury. Reoxygenation paradoxically accelerates injury in many axons, and promotes cytoskeletal degradation. Blockers of voltage-gated Na channels represent an attractive therapeutic target because of their ability to simultaneously interfere indirectly with several Ca sourcing pathways. Alternatively, or additionally, AMPA/kainate receptor inhibition has also been shown to be neuroprotective in several white matter injury paradigms. In the clinical setting, optimal protection of the CNS as a whole in common disorders such as stroke, traumatic brain and spinal cord injury, will likely require combination therapy aimed at unique steps in gray and white matter regions, or intervention at common points in the injury cascades.  相似文献   

6.
Studying regeneration in the central nervous system (CNS) is hampered by current histological and imaging techniques because they provide only partial information about axonal and glial reactions. Here we developed a tetrahydrofuran-based clearing procedure that renders fixed and unsectioned adult CNS tissue transparent and fully penetrable for optical imaging. In large spinal cord segments, we imaged fluorescently labeled cells by 'ultramicroscopy' and two-photon microscopy without the need for histological sectioning. We found that more than a year after injury growth-competent axons regenerated abundantly through the injury site. A few growth-incompetent axons could also regenerate when they bypassed the lesion. Moreover, we accurately determined quantitative changes of glial cells after spinal cord injury. Thus, clearing CNS tissue enables an unambiguous evaluation of axon regeneration and glial reactions. Our clearing procedure also renders other organs transparent, which makes this approach useful for a large number of preclinical paradigms.  相似文献   

7.
In contrast to the situation in mammals and birds, neurons in the central nervous system (CNS) of fish—such as the retinal ganglion cells—are capable of regenerating their axons and restoring vision. Special properties of the glial cells and the neurons of the fish visual pathway appear to contribute to the success of axonal regeneration. The fish oligodendrocytes lack the axon growth inhibiting molecules that interfere with axonal extension in mammals. Instead, fish optic nerve oligodendrocytes support—at least in vitro—axonal elongation of fish as well as that of rat retinal axons. Moreover, the fish retinal ganglion cells re-express upon injury a set of growth associated cell surface molecules and equip the regenerating axons throughout their path and up into their target, the tectum opticum with these molecules. This may indicate that the injured fish ganglion cells reactivate the cellular machinery necessary for axonal regrowth and pathfinding. Furthermore, the target itself provides positional marker molecules even in adult fish. These marker molecules are required to guide the regenerating axons back to their retinotopic home territory within the tectum. © 1992 John Wiley & Sons, Inc.  相似文献   

8.
Computational models incorporating anisotropic features of brain tissue have become a valuable tool for studying the occurrence of traumatic brain injury. The tissue deformation in the direction of white matter tracts (axonal strain) was repeatedly shown to be an appropriate mechanical parameter to predict injury. However, when assessing the reliability of axonal strain to predict injury in a population, it is important to consider the predictor sensitivity to the biological inter-subject variability of the human brain. The present study investigated the axonal strain response of 485 white matter subject-specific anisotropic finite element models of the head subjected to the same loading conditions. It was observed that the biological variability affected the orientation of the preferential directions (coefficient of variation of 39.41% for the elevation angle—coefficient of variation of 29.31% for the azimuth angle) and the determination of the mechanical fiber alignment parameter in the model (gray matter volume 55.55–70.75%). The magnitude of the maximum axonal strain showed coefficients of variation of 11.91%. On the contrary, the localization of the maximum axonal strain was consistent: the peak of strain was typically located in a 2 cm3 volume of the brain. For a sport concussive event, the predictor was capable of discerning between non-injurious and concussed populations in several areas of the brain. It was concluded that, despite its sensitivity to biological variability, axonal strain is an appropriate mechanical parameter to predict traumatic brain injury.  相似文献   

9.
This paper proposes a micromechanics algorithm utilising the finite element method (FEM) for the analysis of heterogeneous matter. The characterisation procedure takes the material properties of the constituents, axons and extracellular matrix (ECM) as input data. The material properties of both the axons and the matrix are assumed to have linear viscoelastic behaviour with a perfect bonding between them. The results of the modelling have been validated with experimental data with material white input from brainstem by considering the morphology of brainstem in which most axons are oriented in longitudinal direction in the form of a uniaxial fibrous composite material. The method is then employed to examine the undulations of axons within different subregions of white matter and to study the impact due to axon/matrix volume fractions. For such purposes, different unit cells composed of wavy geometries and with various volume factions have been exposed to the six possible loading scenarios. The results will clearly demonstrate the undulation and axon volume fraction impacts. In this respect, undulation affects the material stiffness heavily in the axon longitudinal direction, whereas the axons' volume fraction has a much greater impact on the mechanical properties of the white matter in general. Also the results show that the created stresses and strains in the axons and matrix under loading will be impacted by undulation change. With increase in undulation the matrix suffers higher stresses when subjected to tension, whereas axons suffer higher stresses in shear. The axons always exhibit higher stresses whereas the matrix exhibits higher strains. The evaluated time-dependent local stress and strain concentrations within a repeating unit cell of the material model are indicative of the mechanical behaviour of the white tissue under different loading scenarios.  相似文献   

10.
Neurological sequelae of mild traumatic brain injury are associated with the damage to white matter myelinated axons. In vitro models of axonal injury suggest that the progression to pathological ruin is initiated by the mechanical damage to tetrodotoxin-sensitive voltage-gated sodium channels that breaches the ion balance through alteration in kinetic properties of these channels. In myelinated axons, sodium channels are concentrated at nodes of Ranvier, making these sites vulnerable to mechanical injury. Nodal damage can also be inflicted by injury-induced partial demyelination of paranode/juxtaparanode compartments that flank the nodes and contain high density of voltage-gated potassium channels. Demyelination-induced potassium deregulation can further aggravate axonal damage; however, the role of paranode/juxtaparanode demyelination in immediate impairment of axonal function, and its contribution to the development of axonal depolarization remain elusive. A biophysically realistic computational model of myelinated axon that incorporates ion exchange mechanisms and nodal/paranodal/juxtaparanodal organization was developed and used to study the impact of injury-induced demyelination on axonal signal transmission. Injured axons showed alterations in signal propagation that were consistent with the experimental findings and with the notion of reduced axonal excitability immediately post trauma. Injury-induced demyelination strongly modulated the rate of axonal depolarization, suggesting that trauma-induced damage to paranode myelin can affect axonal transition to degradation. Results of these studies clarify the contribution of paranode demyelination to immediate post trauma alterations in axonal function and suggest that partial paranode demyelination should be considered as another “injury parameter” that is likely to determine the stability of axonal function.  相似文献   

11.
O'brien  D.  Dockery  P.  McDermott  K.  Fraher  J. P. 《Brain Cell Biology》1998,27(4):247-258
In the developing CNS neighbouring structures are commonly separated by transient barriers termed cordones, some of which coincide with glial elements. Where ventral motoneuron axons cross the spinal white matter as intramedullary bundles to reach the CNS-PNS transitional zone they are surrounded from early development by a glial sleeve resembling a cordone. This becomes better developed with age and, like some cordones, persists into adult life. This could provide a radial conduit which might underlie the capacity of central segments of mature ventral motoneurone axons to regenerate. It may also provide a pathway for glial migration from the central cord to more superficial levels, including the transitional zone, where they help form the CNS-PNS barrier. Axons in the intramedullary bundle and in the surrounding ventral white column mature at different rates. Glial sleeve cells of the intramedullary bundles are apposed to both. Morphometric analysis of the axon-glial relationships of the two populations indicates that glial development proceeds at a different rate in relation to each axon class and that this is influenced by the degree of axonal maturation, which may in turn be related to target contact. Furthermore, early axon glial relationships differ between the two populations. For ventral motoneurone axons these take place in two stages: firstly, glial segregation of axons (resembling that in the PNS) and secondly, oligodendrocytic contact and ensheathment, which leads on to myelination. Axon-glial relationships in the ventral white column begin with the second of these events, as is more typical of early CNS myelination in general.  相似文献   

12.
Computational models are often used as tools to study traumatic brain injury. The fidelity of such models depends on the incorporation of an appropriate level of structural detail, the accurate representation of the material behavior, and the use of an appropriate measure of injury. In this study, an axonal strain injury criterion is used to estimate the probability of diffuse axonal injury (DAI), which accounts for a large percentage of deaths due to brain trauma and is characterized by damage to neural axons in the deep white matter regions of the brain. We present an analytical and computational model that treats the white matter as an anisotropic, hyperelastic material. Diffusion tensor imaging is used to incorporate the structural orientation of the neural axons into the model. It is shown that the degree of injury that is predicted in a computational model of DAI is highly dependent on the incorporation of the axonal orientation information and the inclusion of anisotropy into the constitutive model for white matter.  相似文献   

13.
Reactive gliosis, also known as glial scar formation, is an inflammatory response characterized by the proliferation of microglia and astrocytes as well as astrocytic hypertrophy following injury in the central nervous system (CNS). The glial scar forms a physical and molecular barrier to isolate the injured area from adjacent normal nervous tissue for re-establishing the integrity of the CNS. It prevents the further spread of cellular damage but represents an obstacle to regrowing axons. In this review, we integrated the current findings to elucidate the tightly reciprocal modulation between activated microglia and astrocytes in reactive gliosis and proposed that modification of cellular response to the injury or cellular reprogramming in the glial scar could lead advances in axon regeneration and functional recovery after the CNS injury.  相似文献   

14.
Repair of neural pathways by olfactory ensheathing cells   总被引:1,自引:0,他引:1  
Damage to nerve fibre pathways results in a devastating loss of function, due to the disconnection of nerve fibres from their targets. However, some recovery does occur and this has been correlated with the formation of new (albeit abnormal) connections. The view that an untapped growth potential resides in the adult CNS has led to various attempts to stimulate the repair of disconnectional injuries. A key factor in the failure of axonal regeneration in the CNS after injury is the loss of the aligned glial pathways that nerve fibres require for their elongation. Transplantation of cultured adult olfactory ensheathing cells into lesions is being investigated as a procedure to re-establish glial pathways permissive for the regeneration of severed axons.  相似文献   

15.
The bladder of adult female rats receives ~16,000 axons (i.e., is the target of that many ganglion neurons) of which at least half are sensory. In nerves containing between 40 and 1200 axons cross-sectional area is proportional to number of axons; >99% of axons are unmyelinated. A capsule forms a seal around nerves and ends abruptly where nerves, after branching, contain ~10 axons. A single blood vessel is present in many of the large nerves but never in nerves of <600 axons. The number of glial cells was estimated through the number of their nuclei. There is a glial nucleus profile every 76 axonal profiles. Each glial cell is associated with many axons and collectively covers ~1,000 μm of axonal length. In all nerves a few axonal profiles contain large clusters of vesicles independent of microtubules. The axons do not branch; they alter their relative position along the nerve; they vary in size along their length; none has a circular profile. All the axons are fully wrapped by glial cells and never contact each other. The volume of axons is larger than that of glial cells (55%–45%), while the surface of glial cell is twice as extensive as that of axons; there are ~2.27 m2 of axolemma and ~4.60 m2 of glial cell membrane per gram of nerve. Of the mitochondria of a nerve ~3/4 are in axons and ~1/4 in glial cells.  相似文献   

16.
Mechanical signaling plays an important role in cell physiology and pathology. Many cell types, including neurons and glial cells, respond to the mechanical properties of their environment. Yet, for spinal cord tissue, data on tissue stiffness are sparse. To investigate the regional and direction-dependent mechanical properties of spinal cord tissue at a spatial resolution relevant to individual cells, we conducted atomic force microscopy (AFM) indentation and tensile measurements on acutely isolated mouse spinal cord tissue sectioned along the three major anatomical planes, and correlated local mechanical properties with the underlying cellular structures. Stiffness maps revealed that gray matter is significantly stiffer than white matter irrespective of directionality (transverse, coronal, and sagittal planes) and force direction (compression or tension) (Kg= ∼130 Pa vs. Kw= ∼70 Pa); both matters stiffened with increasing strain. When all data were pooled for each plane, gray matter behaved like an isotropic material under compression; however, subregions of the gray matter were rather heterogeneous and anisotropic. For example, in sagittal sections the dorsal horn was significantly stiffer than the ventral horn. In contrast, white matter behaved transversely isotropic, with the elastic stiffness along the craniocaudal (i.e., longitudinal) axis being lower than perpendicular to it. The stiffness distributions we found under compression strongly correlated with the orientation of axons, the areas of cell nuclei, and cellular in plane proximity. Based on these morphological parameters, we developed a phenomenological model to estimate local mechanical properties of central nervous system (CNS) tissue. Our study may thus ultimately help predicting local tissue stiffness, and hence cell behavior in response to mechanical signaling under physiological and pathological conditions, purely based on histological data.  相似文献   

17.
Bacterial infection is implicated in the selective CNS white matter injury associated with cerebral palsy, a common birth disorder. Exposure to the bacterial endotoxin LPS produced death of white matter glial cells in isolated neonatal rat optic nerve (RON) (a model white matter tract), over a 180-min time course. A delayed intracellular Ca(2+) concentration ([Ca(2+)](i)) rise preceded cell death and both events were prevented by removing extracellular Ca(2+). The cytokines TNF-alpha or IL-1beta, but not IL-6, mimicked the cytotoxic effect of LPS, whereas blocking either TNF-alpha with a neutralizing Ab or IL-1 with recombinant antagonist prevented LPS cytotoxicity. Ultrastructural examination showed wide-scale oligodendroglial cell death in LPS-treated rat optic nerves, with preservation of astrocytes and axons. Fluorescently conjugated LPS revealed LPS binding on microglia and astrocytes in neonatal white and gray matter. Astrocyte binding predominated, and was particularly intense around blood vessels. LPS can therefore bind directly to developing white matter astrocytes and microglia to evoke rapid cell death in neighboring oligodendroglia via a calcium- and cytokine-mediated pathway. In addition to direct toxicity, LPS increased the degree of acute cell death evoked by ischemia in a calcium-dependent manner.  相似文献   

18.
Peripheral nerve injury (PNI), a common injury in both the civilian and military arenas, is usually associated with high healthcare costs and with patients enduring slow recovery times, diminished quality of life, and potential long-term disability. Patients with PNI typically undergo complex interventions but the factors that govern optimal response are not fully characterized. A fundamental understanding of the cellular and tissue-level events in the immediate postoperative period is essential for improving treatment and optimizing repair. Here, we demonstrate a comprehensive imaging approach to evaluate peripheral nerve axonal regeneration in a rodent PNI model using a tissue clearing method to improve depth penetration while preserving neural architecture. Sciatic nerve transaction and end-to-end repair were performed in both wild type and thy-1 GFP rats. The nerves were harvested at time points after repair before undergoing whole mount immunofluorescence staining and tissue clearing. By increasing the optic depth penetration, tissue clearing allowed the visualization and evaluation of Wallerian degeneration and nerve regrowth throughout entire sciatic nerves with subcellular resolution. The tissue clearing protocol did not affect immunofluorescence labeling and no observable decrease in the fluorescence signal was observed. Large-area, high-resolution tissue volumes could be quantified to provide structural and connectivity information not available from current gold-standard approaches for evaluating axonal regeneration following PNI. The results are suggestive of observed behavioral recovery in vivo after neurorrhaphy, providing a method of evaluating axonal regeneration following repair that can serve as an adjunct to current standard outcomes measurements. This study demonstrates that tissue clearing following whole mount immunofluorescence staining enables the complete visualization and quantitative evaluation of axons throughout nerves in a PNI model. The methods developed in this study could advance PNI research allowing both researchers and clinicians to further understand the individual events of axonal degeneration and regeneration on a multifaceted level.  相似文献   

19.
In the adult CNS, antibodies to the NG2 chondroitin sulphate proteoglycan (CSPG) label a large population of glia that have the antigenic phenotype of oligodendrocyte progenitor cells (OPC). However, NG2 expressing glia have the morphological phenotype of astrocytes, not OPC. We propose adult NG2 expressing glia are a distinct mature glial type, which we have called syantocytes or synantoglia after the Greek ‘to contact’, because they specifically contact neurons and axons at synapses and nodes of Ranvier, respectively. Synantocytes are highly complex cells that elaborate multiple branching processes and are an equally significant population in both white and grey matter. We provide evidence that phenotypically distinct synantocytes develop postnatally and that neither postnatal nor adult synantocytes depend on axons for their survival, indicating they respond with markedly different behaviours to the environmental cues and axonal signals that control the differentiation of OPC into oligodendrocytes. The primary response of synantocytes to changes in the CNS environment is a rapid and localised reactive gliosis. Reactive synantocytes interact intimately with astrocytes and macrophages at lesion sites, consistent with them playing a key role in the orchestration of scar formation that protects the underlying neural tissue. It is our hypothesis that synantocytes are specialised to monitor and respond to changes in the integrity of the CNS, by way of their cellular contacts, repertoire of plasmalemmal receptors and the NG2 molecule itself. To paraphrase Del Rio Hortega, we propose that synantocytes are the fifth element in the CNS, in addition to neurons, astrocytes, oligodendrocytes and microglia.  相似文献   

20.
Axon injury and degeneration is a common consequence of diverse neurological conditions including multiple sclerosis, traumatic brain injury and spinal cord injury. The molecular events underlying axon degeneration are poorly understood. We have developed a novel method to enrich for axoplasm from rodent optic nerve and characterised the early events in Wallerian degeneration using an unbiased proteomics screen. Our detergent-free method draws axoplasm into a dehydrated hydrogel of the polymer poly(2-hydroxyethyl methacrylate), which is then recovered using centrifugation. This technique is able to recover axonal proteins and significantly deplete glial contamination as confirmed by immunoblotting. We have used iTRAQ to compare axoplasm-enriched samples from naïve vs injured optic nerves, which has revealed a pronounced modulation of proteins associated with the actin cytoskeleton. To confirm the modulation of the actin cytoskeleton in injured axons we focused on the RhoA pathway. Western blotting revealed an augmentation of RhoA and phosphorylated cofilin in axoplasm-enriched samples from injured optic nerve. To investigate the localisation of these components of the RhoA pathway in injured axons we transected axons of primary hippocampal neurons in vitro. We observed an early modulation of filamentous actin with a concomitant redistribution of phosphorylated cofilin in injured axons. At later time-points, RhoA is found to accumulate in axonal swellings and also colocalises with filamentous actin. The actin cytoskeleton is a known sensor of cell viability across multiple eukaryotes, and our results suggest a similar role for the actin cytoskeleton following axon injury. In agreement with other reports, our data also highlights the role of the RhoA pathway in axon degeneration. These findings highlight a previously unexplored area of axon biology, which may open novel avenues to prevent axon degeneration. Our method for isolating CNS axoplasm also represents a new tool to study axon biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号