首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have isolated and sequenced the minor species of tRNA(Ile) from Saccharomyces cerevisiae. This tRNA contains two unusual pseudouridines (psi s) in the first and third positions of the anticodon. As shown earlier by others, this tRNA derives from two genes having an identical 60 nt intron. We used in vitro procedures to study the structural requirements for the conversion of the anticodon uridines to psi 34 and psi 36. We show here that psi 34/psi 36 modifications require the presence of the pre-tRNA(Ile) intron but are not dependent upon the particular base at any single position of the anticodon. The conversion of U34 to psi 34 occurs independently from psi 36 synthesis and vice versa. However, psi 34 is not formed when the middle and the third anticodon bases of pre-tRNA(Ile) are both substituted to yield ochre anticodon UUA. This ochre pre-tRNA(Ile) mutant has the central anticodon uridine modified to psi 35 as is the case for S.cerevisiae SUP6 tyrosine-inserting ochre suppressor tRNA. In contrast, neither the first nor the third anticodon pseudouridine is formed, when the ochre (UUA) anticodon in the pre-tRNA(Tyr) is substituted with the isoleucine UAU anticodon. A synthetic mini-substrate consisting of the anticodon stem and loop and the wild-type intron of pre-tRNA(Ile) is sufficient to fully modify the anticodon U34 and U36 into psi s. This is the first example of the tRNA intron sequence, rather than the whole tRNA or pre-tRNA domain, being the main determinant of nucleoside modification.  相似文献   

2.
Oligonucleotide-directed mutagenesis was used to generate amber, ochre and opal suppressors from cloned Arabidopsis and Nicotiana tRNA(Tyr) genes. The nonsense suppressor tRNA(Tyr) genes were efficiently transcribed in HeLa and yeast nuclear extracts, however, intron excision from all mutant pre-tRNAs(Tyr) was severely impaired in the homologous wheat germ extract as well as in the yeast in vitro splicing system. The change of one nucleotide in the anticodon of suppressor pre-tRNAs leads to a distortion of the potential intron-anticodon interaction. In order to demonstrate that this caused the reduced splicing efficiency, we created a point mutation in the intron of Arabidopsis tRNA(Tyr) which affected the interaction with the wild-type anticodon. As expected, the resulting pre-tRNA was also inefficiently spliced. Another mutation in the intron, which restored the base-pairing between the amber anticodon and the intron of pre-tRNA(Tyr), resulted in an excellent substrate for wheat germ splicing endonuclease. This type of amber suppressor tRNA(Tyr) gene which yields high levels of mature tRNA(Tyr) should be useful for studying suppression in higher plants.  相似文献   

3.
All eukaryotic cytoplasmic tRNAs(Tyr) contain pseudouridine in the centre of the anticodon (psi 35). Recently, it has been shown that the formation of psi 35 is dependent on the presence of introns in tRNA(Tyr) genes. Furthermore, we have investigated the structural and sequence requirements for the biosynthesis of psi 35. A number of mutant genes were constructed by oligonucleotide-directed mutagenesis of a cloned Arabidopsis tRNA(Tyr) gene. Nucleotide exchanges were produced in the first and third positions of the anticodon and at positions adjacent to the anticodon. Moreover, insertion and deletion mutations were made in the anticodon stem and in the intron. The mutant genes were transcribed in HeLa cell extract and the pre-tRNAs(Tyr) were used for studying psi 35 biosynthesis in HeLa cell and wheat germ extracts. We have made the following observations about the specificity of plant and vertebrate psi 35 syntheses: (i) insertion or deletion of one base pair in the anticodon stem does not influence the efficiency and accuracy of the psi 35 synthase; (ii) the presence of U35 in a stable double-stranded region prevents its modification to psi 35; and (iii) the consensus sequence U33N34U35A36Pu37 in the anticodon loop is an absolute requirement for psi 35 synthesis. Thus, psi 35 synthases recognize both tRNA tertiary structure and specific sequences surrounding the nucleotide to be modified.  相似文献   

4.
5.
6.
7.
8.
9.
It has been proposed that yeast and Xenopus splicing endonucleases initially recognize features in the mature tRNA domain common to all tRNA species and that the sequence and structure of the intron are only minor determinants of splice-site selection. In accordance with this postulation, we show that yeast endonuclease splices heterologous pre-tRNA(Tyr) species from vertebrates and plants which differ in their mature domains and intron secondary structures. In contrast, wheat germ splicing endonuclease displays a pronounced preference for homologous pre-tRNA species; an extensive study of heterologous substrates revealed that neither yeast pre-tRNA species specific for leucine, serine, phenylalanine and tyrosine nor human and Xenopus pre-tRNA(Tyr) species were spliced. In order to identify the elements essential for pre-tRNA splicing in plants, we constructed chimeric genes coding for tRNA precursors with a plant intron secondary structure and with mature tRNA(Tyr) domains from yeast and Xenopus, respectively. The chimeric pre-tRNA comprising the mature tRNA(Tyr) domain from Xenopus was spliced efficiently in wheat germ extract, whereas the chimeric construct containing the mature tRNA(Tyr) domain from yeast was not spliced at all. These data indicate that intron secondary structure contributes to the specificity of plant splicing endonuclease and that unique features of the mature tRNA domain play a dominant role in enzyme-substrate recognition. We further investigated the influence of specific nucleotides in the mature domain on splicing by generating a number of mutated pre-tRNA species. Our results suggest that nucleotides located in the D stem, i.e. in the center of the pre-tRNA molecule, are recognition points for plant splicing endonuclease.  相似文献   

10.
11.
12.
The intron-containing proline tRNAUGG genes in Saccharomyces cerevisiae can mutate to suppress +1 frameshift mutations in proline codons via a G to U base substitution mutation at position 39. The mutation alters the 3' splice junction and disrupts the bottom base-pair of the anticodon stem which presumably allows the tRNA to read a four-base codon. In order to understand the mechanism of suppression and to study the splicing of suppressor pre-tRNA, we determined the sequences of the mature wild-type and mutant suppressor gene products in vivo and analyzed splicing of the corresponding pre-tRNAs in vitro. We show that a novel tRNA isolated from suppressor strains is the product of frameshift suppressor genes. Sequence analysis indicated that suppressor pre-tRNA is spliced at the same sites as wild-type pre-tRNA. The tRNA therefore contains a four-base anticodon stem and nine-base anticodon loop. Analysis of suppressor pre-tRNA in vitro revealed that endonuclease cleavage at the 3' splice junction occurred with reduced efficiency compared to wild-type. In addition, reduced accumulation of mature suppressor tRNA was observed in a combined cleavage and ligation reaction. These results suggest that cleavage at the 3' splice junction is inefficient but not abolished. The novel tRNA from suppressor strains was shown to be the functional agent of suppression by deleting the intron from a suppressor gene. The tRNA produced in vivo from this gene is identical to that of the product of an intron+ gene, indicating that the intron is not required for proper base modification. The product of the intron- gene is a more efficient suppressor than the product of an intron+ gene. One interpretation of this result is that inefficient splicing in vivo may be limiting the steady-state level of mature suppressor tRNA.  相似文献   

13.
Levengood JD  Roy H  Ishitani R  Söll D  Nureki O  Ibba M 《Biochemistry》2007,46(39):11033-11038
Aminoacyl-tRNA synthetases are normally found in one of two mutually exclusive structural classes, the only known exception being lysyl-tRNA synthetase which exists in both classes I (LysRS1) and II (LysRS2). Differences in tRNA acceptor stem recognition between LysRS1 and LysRS2 do not drastically impact cellular aminoacylation levels, focusing attention on the mechanism of tRNA anticodon recognition by LysRS1. On the basis of structure-based sequence alignments, seven tRNALys anticodon variants and seven LysRS1 anticodon binding site variants were selected for analysis of the Pyrococcus horikoshii LysRS1-tRNALys docking model. LysRS1 specifically recognized the bases at positions 35 and 36, but not that at position 34. Aromatic residues form stacking interactions with U34 and U35, and aminoacylation kinetics also identified direct interactions between Arg502 and both U35 and U36. Tyr491 was also found to interact with U36, and the Y491E variant exhibited significant improvement compared to the wild type in aminoacylation of a tRNALysUUG mutant. Refinement of the LysRS1-tRNALys docking model based upon these data suggested that anticodon recognition by LysRS1 relies on considerably fewer interactions than that by LysRS2, providing a structural basis for the more significant role of the anticodon in tRNA recognition by the class II enzyme. To date, only glutamyl-tRNA synthetase (GluRS) has been found to contain an alpha-helix cage anticodon binding domain homologous to that of LysRS1, and these data now suggest that specificity for the anticodon of tRNALys could have been acquired through relatively few changes to the corresponding domain of an ancestral GluRS enzyme.  相似文献   

14.
15.
16.
17.
In Bacillus subtilis, four codons, CCU, CCC, CCA, and CCG, are used for proline. There exists, however, only one proline-specific tRNA having the anticodon mo(5)UGG. Here, we found that this tRNA(Pro)(mo(5)UGG) can read not only the codons CCA, CCG and CCU but also CCC, using an in vitro assay system. This means that the first nucleoside of its anticodon, 5-methoxyuridine (mo(5)U), recognizes A, G, U and C. On the other hand, it was reported that mo(5)U at the first position of the anticodon of tRNA(Val)(mo(5)UAC) can recognize A, G, and U but not C. A comparison of the structure of the anticodon stem and loop of tRNA(Pro)(mo(5)UGG) with those of other tRNAs containing mo(5)U at the first positions of the anticodons suggests that a modification of nucleoside 32 to pseudouridine (Psi) enables tRNA(Pro)(mo(5)UGG) to read the CCC codon.  相似文献   

18.
19.
20.
N Stange  H Beier 《The EMBO journal》1987,6(9):2811-2818
An intron-containing tobacco tRNA(Tyr) precursor synthesized in a HeLa cell nuclear extract has been used to develop a cell-free processing and splicing system from wheat germ. Removal of 5' and 3' flanking sequences, accurate excision of the intervening sequence, ligation of the resulting tRNA halves, addition of the 3'-terminal CCA sequence and modification of seven nucleosides were achieved in appropriate wheat germ S23 and S100 extracts. The maturation of pre-tRNA(Tyr) in these extracts resembles the pathway observed in vivo for tRNA biosynthesis in Xenopus oocytes and yeast in that processing of the flanks precedes intron excision. Most of the modified nucleosides (m2(2) G, psi 35, psi 55, m7G and m1A) are introduced into the intron-containing pre-tRNA with mature ends, whereas two others (m1G and psi 39) are only found in the mature tRNA(Tyr). Processing and splicing proceed very efficiently in the wheat germ extracts, leading to complete maturation of 5' and 3' ends followed by about 65% conversion to mature tRNA(Tyr) under our standard conditions. The activity of the wheat germ endonuclease is stimulated 3-fold by the non-ionic detergent Triton X-100. All previous attempts to demonstrate the presence of a splicing endonuclease in wheat germ had failed (Gegenheimer et al., 1983). Hence, this is the first cell-free plant extract which supports pre-tRNA processing and splicing in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号