首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hypoxia presents pro-apoptotic and anti-apoptotic biphasic effects that appear to be dependent upon cell types and conditions around cells. The substantial reports demonstrated that commonly used hypoxia-mimetic agents cobalt chloride (CoCl2) and desferrioxamine (DFO) could also induce apoptosis in many different kinds of cells, but the mechanism was poorly understood. In this work, we compare the apoptosis-inducing effects of these two hypoxia-mimetic agents with acute myeloid leukemic cell lines NB4 and U937 as in vitro models. The results show that both of them induce these leukemic cells to undergo apoptosis with a loss of mitochondrial transmembrane potentials (ΔΨ m), the activation of caspase-3/8 and the cleavage of anti-apoptotic protein Mcl-1, together with the accumulation of hypoxia-inducible factor-1 alpha (HIF-1α) protein, a critical regulator for the cellular response to hypoxia. Metavanadate and sodium nitroprusside significantly abrogate DFO rather than CoCl2-induced mitochondrial Δ Ψ m collapse, caspase-3/8 activation, Mcl-1 cleavage and apoptosis, but they fail to influence DFO and CoCl2-induced HIF-1α protein accumulation. Moreover, inducible expression of HIF-1α gene dose not alter DFO and CoCl2-induced apoptosis in U937 cells. In conclusion, these results propose that although both DFO and CoCl2-induced leukemic cell apoptosis by mitochondrial pathway-dependent and HIF-1α-independent mechanisms, DFO and CoCl2-induced apoptosis involves different initiating signal pathways that remain to be investigated.  相似文献   

2.
3.
4.
Terminal differentiation is often coupled with irreversible loss of proliferative potential. The CCAAT enhancer binding protein alpha (C/EBPalpha) preferentially accumulates in postmitotic, differentiated 3T3-L1 adipocytes but declines during tumor necrosis factor alpha (TNFalpha)-induced dedifferentiation. We have discovered that this decline in C/EBPalpha correlates with an increased mitotic growth potential. In order to further investigate the antimitotic activity of C/EBPalpha, we introduced antisense C/EBPalpha RNA into 3T3-L1 cells to block endogenous C/EBPalpha expression. When treated according to the standard differentiation protocol, stable cells lines harboring antisense C/EBPalpha RNA did not differentiate into fat-laden adipocytes, consistent with previous findings (Lin F, Lane MD, Genes Dev 1992;6:533-544). We found that these undifferentiated cells expressing antisense-C/EBPalpha can reenter the cell cycle after mitogenic stimulation at a time in development when parental 3T3-L1 cells cannot. Moreover, the expression profiles of the growth-arrest-associated genes gas1 and gas2 revealed that the antisense C/EBPalpha-expressing cells withdrew from the cell cycle after the period of clonal expansion but failed to progress to the state of least proliferative potential characteristic of terminally differentiated adipocytes.  相似文献   

5.
Han YH  Xia L  Song LP  Zheng Y  Chen WL  Zhang L  Huang Y  Chen GQ  Wang LS 《Proteomics》2006,6(11):3262-3274
We reported recently that moderate hypoxia and hypoxia-mimetic agents could induce growth arrest and differentiation of leukemic cells via the mediation of hypoxia-inducible factor 1 alpha (HIF-1alpha), but the exact molecular mechanisms remain largely unknown. In this study, human acute promonocytic leukemic U937 cells were incubated under 2% O2 or in 50 microM of the hypoxia mimetic agent cobalt chloride (CoCl2) and normal oxygen for 24 h, and their protein expression profiles were compared by 2-DE coupled with MALDI-TOF/TOF MS/MS. We identified 62 and 16 proteins that were significantly deregulated by hypoxia and CoCl2 treatment, respectively. These proteins were mainly involved in metabolism, gene expression regulation, signal transduction, cell proliferation, differentiation and apoptosis. As an example, N-myc downstream regulated gene 1 (NDRG1), a putative differentiation-related gene, was up-regulated in both 2% O2- and CoCl2-treated U937 cells. Moreover, enforced HIF-1alpha expression also elevated NDRG1 mRNA and protein in U937 cells. These data will provide some clues for understanding mechanisms by which leukemic cells response to hypoxia.  相似文献   

6.
Choi EY  Lee S  Oh HM  Kim YD  Choi EJ  Kim SH  Kim SW  Choi SC  Jun CD 《Life sciences》2007,80(5):436-445
We have shown that the bacterial iron chelator, deferoxamine (DFO), triggers inflammatory signals, including the production of CXC chemokine IL-8, in human intestinal epithelial cells (IECs) by activating ERK1/2 and p38 kinase pathways. In the present study, we show that PKCdelta, one of the novel protein kinase C (PKC) isoforms, involves in signal transduction pathways leading to DFO-induced IL-8 production. Pretreatment of human intestinal epithelial HT-29 cells with rottlerin showed remarkable inhibition of DFO-induced IL-8 production. In contrast, other PKC inhibitors such as G?6976, G?6983, GF109203X, and staurosporine revealed less or no inhibitory effects on DFO-induced IL-8 production, suggesting a potential role of PKCdelta. Accordingly, DFO caused phosphorylation of PKCdelta in the Thr505 and Ser643 residues in HT-29 cells. Transfection of dominant-negative PKCdelta vector inhibited DFO-induced PKCdelta phosphorylation as well as IL-8 promoter activity. In addition, suppression of endogenous PKCdelta by siRNA significantly reduced DFO-induced IL-8 production. Collectively, these results suggest that PKCdelta plays a pivotal role in signaling pathways leading to iron chelator-induced IL-8 production in human IECs.  相似文献   

7.
8.
Competition for cellular iron (Fe) is a vital component of the interaction between host and pathogen. Most bacteria have an obligate requirement for Fe to sustain infection, growth, and survival in host. To obtain iron required for growth, many bacteria secrete iron chelators (siderophores). This study was undertaken to test whether a bacterial siderophore, deferoxamine (DFO), could trigger inflammatory signals in human intestinal epithelial cells as a single stimulus. Incubation of human intestinal epithelial HT-29 cells with DFO increased the expression of IL-8 mRNA, as well as the release of IL-8 protein. The signal transduction study revealed that both p38 and extracellular signal-regulated kinase-1/2 were significantly activated in response to DFO. Accordingly, the selective inhibitors for both kinases, either alone or in combination, completely abolished DFO-induced IL-8 secretion, indicating an importance of mitogen-activated protein kinases pathway. These proinflammatory effects of DFO were, in large part, mediated by activation of Na(+)/H(+) exchangers, because selective blockade of Na(+)/H(+) exchangers prevented the DFO-induced IL-8 production. Interestingly, however, DFO neither induced NF-kappaB activation by itself nor affected IL-1beta- or TNF-alpha-mediated NF-kappaB activation, suggesting a NF-kappaB-independent mechanism in DFO-induced IL-8 production. Global gene expression profiling revealed that DFO significantly up-regulates inflammation-related genes including proinflammatory genes, and that many of those genes are down-modulated by the selective mitogen-activated protein kinase inhibitors. Collectively, these results demonstrate that, in addition to bacterial products or cell wall components, direct chelation of host Fe by infected bacteria may also contribute to the evocation of host inflammatory responses.  相似文献   

9.
10.
CCAAT/enhancer-binding protein (C/EBP) alpha is a critical regulator for early myeloid differentiation. Although C/EBPalpha has been shown to convert B cells into myeloid lineage, precise roles of C/EBPalpha in various hematopoietic progenitors and stem cells still remain obscure. To examine the consequence of C/EBPalpha activation in various progenitors and to address the underlying mechanism of lineage conversion in detail, we established transgenic mice expressing a conditional form of C/EBPalpha. Using these mice, we show that megakaryocyte/erythroid progenitors (MEPs) and common lymphoid progenitors (CLPs) could be redirected to functional macrophages in vitro by a short-term activation of C/EBPalpha, and the conversion occurred clonally through biphenotypic intermediate cells. Moreover, in vivo activation of C/EBPalpha in mice led to the increase of mature granulocytes and myeloid progenitors with a concomitant decrease of hematopoietic stem cells and nonmyeloid progenitors. Our study reveals that C/EBPalpha can activate the latent myeloid differentiation program of MEP and CLP and shows that its global activation affects multilineage homeostasis in vivo.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号