首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Contrasts in muscle and myofibers of elite male and female bodybuilders   总被引:2,自引:0,他引:2  
Muscle cross-sectional area (CSA), fiber area, and fiber number were determined from the biceps brachii of eight elite male bodybuilders (MB) and five elite female bodybuilders (FB) who had similar training characteristics. Biceps CSA was obtained from computer tomographic scanning and corrected for noncontractile tissue. Biceps CSA was twofold greater in MB relative to FB and strongly correlated to lean body mass (R = 0.93). Biceps CSA expressed per kilogram lean body mass (LBM) or per centimeter body height (BH) was 35% greater in MB compared with FB. Most of the gender difference in muscle CSA was because of greater absolute mean fiber areas in MB (9,607 microns2) relative to FB (5,386 microns2); however, MB also had a significantly greater population of small type II fibers (less than 2,000 microns2) compared with FB. Type II fiber area/LBM averaged 1.6-fold greater in MB compared with FB; however, type I fiber area/LBM was similar between groups. Biceps CSA was positively correlated to fiber CSA (R = 0.75) and fiber number (R = 0.55). This suggests that adaptations to resistance training may be complex and involve fiber hypertrophy and fiber number (e.g., proliferation). Alternatively, since the muscle characteristics before training are not known, these apparent adaptations might be genetically determined attributes.  相似文献   

2.
The influence of gender on muscular adaptation of the elbow flexors to 24 wk of heavy resistance training was studied in five male bodybuilders (MB) and five female bodybuilders (FB) who were highly competitive. Muscle cross-sectional area (CSA), fiber area, and fiber number were determined from the biceps brachii, and voluntary elbow flexor torque was obtained at velocities of contraction between 0 and 300 degrees/s. Biceps and flexor CSA was 75.8 and 81% greater, respectively, in MB than in FB, but muscle CSA was not significantly altered by the training program in either group. Because estimated fiber number and the volume density of nonmuscle tissue were similar in MB and FB, most of the gender difference in muscle CSA appeared to be due to greater absolute mean fiber areas in MB (10.51 and 10.68 x 10(3) microns 2 pre- and posttraining, respectively) than in FB (5.33 and 5.96 x 10(3) microns 2 pre- and posttraining, respectively). In neither MB nor FB did fiber type achieve further hypertrophy during the 24-wk training program. These data suggest that the extent of any change in muscle mass or muscle fiber characteristics is minimal after a bodybuilder of either gender has attained a high degree of muscle mass and a highly competitive status.  相似文献   

3.
Maximal isokinetic knee extensor strength was measured as torque in 17 young (mean age +/- SD, 21 +/- 3 years) and 16 elderly (68 +/- 5 years) women at 30 degrees (0.52 rad) before full extension, at angular velocities from 0 to 5.24 rad s-1, in 7 increments of 0.87 rad s-1. The elderly women were significantly weaker than the young women at all angular velocities. The rate of loss of absolute torque with increasing velocity was similar for both age groups, but when torque was standardised as a percentage of the individual's maximum, the elderly group showed a significantly greater rate of loss than the younger group. Quick-release from an isometric effort did not increase the recorded torques at 4.36 rad s-1 compared with the free-running method in either age group. The age differences are compatible with lower ratio of type II to type I fibre are in the older group.  相似文献   

4.
Eight untrained women (F), 13 untrained men (M), and 11 male bodybuilders (BB) did maximal elbow flexions on an isokinetic dynamometer at velocities of 30, 120, 180, 240, and 300 degrees/s, from which impact torque (IT), peak torque (PT), and work (W) were measured. Biceps and total flexor cross-sectional area (CSA) were measured by computerized tomographic scanning. Muscle fiber area, fiber composition, and collagen volume density were determined from single needle biopsies of biceps brachii. Biceps fiber number was estimated as the ratio of biceps CSA (corrected for connective tissue) to mean fiber area. PT and W decreased at higher velocities in M and BB but not in F; consequently, the correlation between CSA and PT and W was lower at 300 degrees/s (r = 0.58, 0.60) than 30 degrees/s (r = 0.80, 0.79). The ratio of PT to flexor CSA was similar in all groups at 30 degrees/s, whereas F had greater ratios than M and BB at the remaining velocities. F had greater W/CSA ratios than M and BB at all velocities. IT increased at higher velocities in all groups; the increase was greater in F and M than in BB. In contrast to PT and W, the correlation between IT and CSA was greater at 300 degrees/s (r = 0.67) than 30 degrees/s (r = 0.58), and there were no differences among groups in the IT/CSA ratios. Flexor CSA correlated negatively with the ratio of IT, PT, and W to CSA. Muscle fiber composition failed to correlate with any measure of strength. M and BB had greater biceps area, fiber number, and fiber area than F.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The effect of an increased angle of excursion and isometric pre-activation on isokinetic torques of knee extensors was investigated in five male subjects, mean age 35.0 years, SD 9.6. Peak torque and isoangular torque at 0.52 rad from full knee extension (FKE) were measured when contractions were carried out at 3.14, 4.19 and 5.24 rad.s-1 starting: 1) from a standard knee angle (SA) of 1.57 rad from FKE, 2) from the same starting angle as SA, plus an isometric preload (P) equivalent to 25% of isometric maximal voluntary contraction and 3) from an increased angle of knee flexion (IA), 2.09 rad from FKE plus P. Surface integrated electromyograms (iEMG) of the vastus lateralis muscle in SA and IA + P were also recorded. The IA + P had the effect of increasing peak torque, as compared to SA, on average by 12.0%, SD 7.5% (P less than 0.001) at 3.14 rad.s-1, 19.5%, SD 5.5% (P less than 0.001) at 4.19 rad.s-1, 21.6%, SD 10.7% (P less than 0.001) at 5.24 rad.s-1 and of increasing mean iEMG by 15.7%, SD 7.0% (P less than 0.001) at 5.24 rad.s-1. The IA + P also had the effect of increasing the angle from FKE at which peak torque occurred: from means of 0.80 rad, SD 0.11 to 1.00 rad, SD 0.07 at 3.14 rad.s-1, from 0.65 rad, SD 0.11 to 0.92 rad, SD 0.09 at 4.19 rad.s-1 and from 0.60 rad, SD 0.11 to 0.88 rad, SD 0.11 at 5.24 rad.s-1 (P less than 0.0001).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Day-to-day variability and single-measurement reliability of selected isokinetic knee extension-flexion strength and endurance indices were assessed in 10 adult men and 8 adult women. On three occasions separated by at least 5 days, the subjects completed 4 reciprocal maximal voluntary contractions (MVC) at different angular velocities (1.05 rad.s-1 and 3.14 rad.s-1). The men also completed a muscular endurance test consisting of 30 reciprocal, MVC at 3.14 rad.s-1. Coefficient of variation, intra-class correlation coefficient and standard error of single-measurement scores support the continued use of gravity corrected peak torque (PT) and average peak torque (APT) as indices of isokinetic leg strength. Similarly, gravity corrected APT and total work should be the recommended indices of isokinetic leg muscular endurance in men. The results suggest that these isokinetic indices must be assessed using multiple day-to-day trial protocols adequately to describe performance capacity. Composite indices such as the ratio of Knee flexion to extension PT and fatigue measurements offer considerably reduced reliability and a greater potential for misinterpretation. The reliability of knee extension indices generally exceeds that of flexion indices. Similar variability and reproducibility of responses were observed between men and women and between reciprocal contractions performed at angular velocities of 1.05 rad.s-1 and 3.14 rad.s-1.  相似文献   

7.
Forty men were tested with a computerized dynamometer for concentric and eccentric torques during arm flexion and extension at 0.52, 1.57, and 2.09 rad.s-1. Based on the summed concentric and eccentric torque scores, subjects were placed into a high strength (HS) or low strength (LS) group. The eccentric and concentric segments of the torque-velocity curves (TVCs) were generated using peak torque and constant-angle torque (CAT) at 1.57 and 2.36 rad. Angle of peak torque was also recorded. Compared to LS, HS had significantly greater estimated lean body mass (+10.2 kg) and approximately 25% greater average torque output. Reliability of the peak torque scores on 2 days in 20 subjects was r greater than or equal to 0.85. The difference between observed torques and the mathematically computed criterion torque scores averaged 1% for three validation loads that ranged from 11.4 to 90.4 kg. Statistical analysis revealed that torque output in LS plateaued at low concentric velocities and was also flattened with increasing eccentric velocities. Conversely, torque output for HS increased with decreasing concentric velocities and increased with increasing eccentric velocities. The method of plotting the TVCs for peak or CAT did not influence the pattern of TVC. Eccentric flexion peak torque occurred at a significantly shorter muscle length (1.88 rad) than concentric torque (2.12 rad). This difference was also present for extension; it was 1.88 rad for eccentric and 2.03 rad for concentric torque.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Specificity of velocity in strength training   总被引:1,自引:0,他引:1  
Twenty-one male volunteers (ages 23-25 years) were tested pre- and post training for maximal knee extension power at five specific speeds (1.05, 2.09, 3.14, 4.19, and 5.24 rad X s-1) with an isokinetic dynamometer. Subjects were assigned randomly to one of three experimental groups; group S, training at 1.05 rad X s-1 (n = 8), group I, training at 3.14 rad X s-1 (n = 8) or group F, training at 5.24 rad X s-1 (n = 5). Subjects trained the knee extensors by performing 10 maximal voluntary efforts in group S, 30 in group I and 50 in group F six times a week for 8 weeks. Though group S showed significant increases in power at all test speeds, the percent increment decreased with test speed from 24.8% at 1.05 rad X s-1 to 8.6% at 5.24 rad X s-1. Group I showed almost similar increment in power (18.5-22.4 at all test speeds except at 2.09 rad X s-1 (15.4%). On the other hand, group F enhanced power only at faster test speeds (23.9% at 4.19 rad X s-1 and 22.8% at 5.24 rad X s-1).  相似文献   

9.
Isokinetic strength of ankle plantarflexion (APF), knee extension (KE) and elbow extension (EE) was measured in male weight-trainers (6 power-lifters and 7 bodybuilders) and 25 untrained men of similar age and height. The weight-trainers exceeded control subjects by 21%, 25% and 73% in APF, KE and EE strength respectively. A similar pattern was obtained for limb girth, in which the weight-trainers exceeded control subjects by 6%, 13%, and 31% in calf, thigh and arm girth, respectively. Strength was similarly enhanced in the weight-trainers at the lower and higher velocities (APF 0.10, 0.63 rad X s-1, KE and EE 0.52, 3.14 rad X s-1) tested, and accounted for the positive correlation (r = 0.84) observed between low and high velocity strength. The powerlifters differed significantly from the bodybuilders only in their greater low velocity APF strength. The relatively greater enhancement of upper versus lower limb strength and muscle mass in the weight-trainers was considered in respect to training habits, trainability of different muscle groups and the state of training of muscle groups in untrained men.  相似文献   

10.
The aim of this study was to assess the effects in humans of early (2 weeks) and delayed (6 weeks) isokinetic strength training in the recovery of muscle strength following an arthroscopic partial meniscectomy. The peak torque developed in the quadriceps and hamstrings and the torque developed at a knee angle of 1.05 rad were evaluated in 16 subjects, pre-operatively (pre-op), and 2, 6, and 10 weeks post-operatively (post-op), on an isokinetic device at four different velocities (1.05, 2.09, 3.14, and 4.19 rad.s-1). The fatigue characteristics of the muscles were evaluated by having the subject perform 15 maximal contractions at 3.14 rad.s-1. Training was done on the same device (three times a week for 1-2 months), beginning either 2 or 6 weeks post-op. A repeated measures analysis of variance demonstrated a time effect but no differences between groups and no interactions. Torques developed by the knee flexors and extensors were significantly smaller 2 weeks post-op than pre-op, at all velocities tested. Torques developed in the quadriceps recovered to their pre-op values by 6 weeks, and further gained significantly in strength from 6 to 10 weeks. Quadriceps torques remained weaker than the contralateral side at 10 weeks. Hamstrings torques were either higher or similar to pre-op values by 6 weeks, and demonstrated increases from 6 to 10 weeks post-op at 1.05 and 4.19 rad.s-1 only. Total work and average power developed by the quadriceps and hamstrings during the fatigue protocol changed with time in a similar manner to torque.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Incompatibility of endurance- and strength-training modes of exercise   总被引:2,自引:0,他引:2  
Twenty-two male and female subjects trained for 7 wk for endurance (group E), for strength (group IS), or for both strength and endurance (group C) to evaluate the effect of concurrent performance of both modes of training on the in vivo force-velocity relationship of human muscle and on aerobic power. Endurance training consisted of five 5-min sessions three times a week on cycle ergometer with a work load that approached the subject's peak cycle-ergometer O2 uptake (peak CE VO2). Strength training consisted of two 30-s sets of maximal knee extensions per day performed on an isokinetic dynamometer three times a week at a velocity of 4.19 rad X s-1. Group C performed the same training as groups IS and E, alternating days of strength and endurance training. Subjects (groups C and IS) were tested pre- and posttraining for maximal knee-extension torque at a specific joint angle (0.52 rad below horizontal) for seven specific angular velocities (0, 0.84, 1.68, 2.81, 3.35, 4.19, and 5.03 rad X s-1). Groups C and E were tested for peak CE VO2 pretraining, at 14-day intervals, and posttraining. Group IS showed significant increases in angle-specific maximal torque at velocities up to and including the training speed (4.19 rad X s-1). Group C showed increases (P less than 0.05) at velocities of 0, 0.84, and 1.68 rad X s-1 only. Peak CE VO2, when expressed in relative or absolute terms, increased (P less than 0.05) approximately 18% for both groups E and C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Technical limitations of some isokinetic dynamometers have called into question the validity of some data on human muscle mechanics. The Biodex dynamometer has been shown to minimize the impact artefact while permitting automatic gravity correction. This dynamometer was used to study quadriceps muscle torque and power generation in elite power (n = 6) and elite endurance (n = 7) athletes over 12 randomly assigned isokinetic velocities from 30 degrees.s-1 to 300 degrees.s-1. The angle at peak torque varied as a negative, linear function of angular velocity, with the average angle across test velocities being 59.5 degrees (SD 10.2 degrees). Power athletes developed greater peak torque at each angular velocity (P less than 0.05) and experienced a 39.7% decrement in torque over the velocity range tested. Endurance athletes encountered a 38.8% decline in peak torque. Torques measured at 60 degrees of knee flexion followed a similar trend in both groups; however the greatest torques were recorded at 60 degrees.s-1 rather than at 30 degrees.s-1. Leg extensor muscle power increased monotonically with angular velocity in both power (r2 = 0.728) and endurance athletes (r2 = 0.839); however these curves diverged significantly so that the power athletes produced progressively more power with each velocity increment. These inter group differences probably reflected a combination of natural selection and training adaptation.  相似文献   

13.
The influence of elbow joint angle on elbow flexor isometric evoked twitch contractile properties was assessed in 15 young women (F), 18 young men (M) and 11 male bodybuilders (BB). Measurements were made at elbow joint angles of 1.31, 1.57, 1.83, 2.09, 2.36, 2.62 and 2.88 rad (3.14 rad =180° =full extension). The largest peak twitch torque values [mean (SE) N · m] in F [3.77 (0.20)], M [10.38 (0.68)] and BB [11.38 (1.05)] occurred at 2.88 rad. Peak torque was progressively smaller at smaller joint angles, but the decline from 2.88 to 1.31 rad was greater in M (68%) and BB (76%) than F (59%). Thus, the magnitude of intergroup differences in peak twitch torque (PT) was joint angle dependent. Twitch time to peak torque (TPT) was influenced in a complex way by joint angle in the three groups; BB had the lowest values at small joint angles but the highest values at the largest angles. Half-relaxation time (HRT) generally increased from the smallest to largest joint angles in a pattern that did not differ significantly among the three groups. Maximum rates of twitch torque development and relaxation showed the same pattern of results as PT; indicating that these time-related measures were more sensitive to joint angle effects on PT than on TPT or HRT. The results of this study indicate that careful consideration should be given to the selection of joint angles in the measurement of evoked twitch contractile properties for the purpose of making group comparisons or investigating the effects of interventions such as training.  相似文献   

14.
Twenty young men trained the right knee extensors and flexors on an isokinetic dynamometer three times weekly over a 10-week period. During each session, 10 men in the slow training group completed three sets of 8 maximal contractions at a rate of 1.05 rad s-1, whereas the other 10, the fast group, completed three sets of 20 contractions at a rate of 4.19 rad s-1. Subjects wer pre- and post-tested for peak torque and power on an isokinetic dynamometer at 1.05, 3.14, and 4.19 rad s-1. Proportions of muscle fibre-types and fibre cross-sectional areas were determined from biopsy specimens taken before and after training from the right vastus lateralis. When testing was conducted at 1.05 rad s-1, the slow group improved (P less than 0.05) peak torque by 24.5 N m (8.5%), but no change was noted for the fast group. Power increased (P less than 0.05) by 32.7 W (13.6%) in the slow group and 5.5 W (2.5%) in the fast. At 3.14 rad s-1, both groups increased (P less than 0.05) peak torque and power. At 4.19 rad s-1, the fast group increased (P less than 0.05) peak torque by 30.0 N m (19.7%), whereas no training effect was observed in the slow group. There was no significant change in power in either group at 4.19 rad s-1. No significant changes were observed over the 10-week training period in percentages of type I, IIa and IIb fibres, but both groups showed significant increases (P less than 0.05) in type I and IIa fibre areas.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Contraction work (CW) and peak torque (PT) of maximum isokinetic plantar flexions were measured in clinically healthy subjects randomly chosen from the official census list of Ume?, Sweden, in three groups: 40-44, 50-54 and 60-64 years of age, with similar proportions of men and women. Maximum isokinetic plantar-flexions were performed at angular velocities of 30, 60, 120 and 180 degrees X s-1. Body-weight, height and crural circumference were measured. Subjects rated their levels of leisure and occupational activities. To establish formulae to predict CW and PT, stepwise regression procedures were applied. The predictive powers (r2) of the formulae which incorporated age, sex and crural circumference, were higher for PT (30 degrees X s-1: 0.82, 60 degrees X s-1: 0.79, 120 degrees X s-1: 0.75, 180 degrees X s-1: 0.56) than for CW (30 degrees s-1: 0.63, 60 degrees s-1: 0.63, 120 degrees s-1: 0.60, 180 degrees s-1: 0.52). Thus the part of the variance explained decreased with increasing angular velocity, but more than 50% was still explained at 180 degrees s-1. The results indicate that the mechanical output of the plantar flexors is predictable.  相似文献   

16.
The present study examined the effects of training status (endurance exercise or body building) on nitrogen balance, body composition, and urea excretion during periods of habitual and altered protein intakes. Experiments were performed on six elite bodybuilders, six elite endurance athletes, and six sedentary controls during a 10-day period of normal protein intake followed by a 10-day period of altered protein intake. The nitrogen balance data revealed that bodybuilders required 1.12 times and endurance athletes required 1.67 times more daily protein than sedentary controls. Lean body mass (density) was maintained in bodybuilders consuming 1.05 g protein.kg-1.day-1. Endurance athletes excreted more total daily urea than either bodybuilders or controls. We conclude that bodybuilders during habitual training require a daily protein intake only slightly greater than that for sedentary individuals in the maintenance of lean body mass and that endurance athletes require daily protein intakes greater than either bodybuilders or sedentary individuals to meet the needs of protein catabolism during exercise.  相似文献   

17.
This study assessed maximum eccentric (ECC) and concentric (CON) torque of quadriceps (QUAD) and hamstring (HAM) muscle groups in healthy females (n = 13) and males (n = 27). Peak torques (PT) of bilateral muscle actions were recorded at constant angular velocities of 0.52, 1.57 and 2.61 rad.s-1. The QUADCON and HAMCON PT decreased (p less than 0.05) with increasing angular velocity. The QUADECC and HAMECC PT increased (p less than 0.05) in females, whereas QUADECC PT decreased (p less than 0.05) and HAMECC PT showed no change in males. In general, ECC PT was higher (p less than 0.05) than CON PT and QUAD PT was higher (p less than 0.05) than HAM PT, for any given angular velocity. Males displayed higher (p less than 0.05) PT than females but when PT were adjusted for body mass the sex differences in QUADCON and HAMCON were reduced (p less than 0.05), whereas the differences in QUADECC and HAMECC were abolished. The CON and ECC PT were, on average, 60% and 41% greater, respectively, in males than in females. The corresponding differences, when adjusted for body mass, were 23% and 8%. ECC:CON PT for QUAD were higher (p less than 0.05) in females than in males. CON and ECC HAM:QUAD PT ratio increased (p less than 0.05), as a function of velocity. This study suggests, that bilateral ECC PT is higher than CON PT and CON HAM:QUAD PT ratio is higher than ECC HAM:QUAD PT ratio.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Selected biochemical and physiological properties of skeletal muscle were studied in light of performance capabilities in 24 elite female track athletes. The feasibility of quantifying end point histochemistry and relating oxidative staining density (reduced nicotinomide adenine dinucleotide diaphorase: NADH-D) to whole body maximal oxygen consumption (VO2 max) was also investigated, while muscle fiber types, classified according to alkaline APTase stains, were studied and related to muscle oxidative capacity (succinate dehydrogenase: SDH), VO2 max and "in vivo" torque-velocity properties. Muscle biopsies were taken from the vastus lateralis of each subject and maximal knee extensor torques were recorded at 30 degrees from full extension at four selected velocities. While results confirm earlier reports on skeletal muscle properties and performance it was concluded that end point histochemistry could be reliably quantified and that an "oxidative" stain such as NADH-D correlates extremely well with VO2 max (r = 0.86, p less than 0.001) whereas correlations between % slow twitch fibres (Alkaline ATPase stain) and VO2 max were lower (r = 0.44, p less than 0.05). Additionally, as knee extension velocity increased from 0-1.7 rad x s-1 angle specific extensor torque production did not decline as observed in vitro and pentathletes displayed significantly larger torques at all velocities when compared to the other athletes. These data confirm that while myofibrillar ATPase staining correlates with force-velocity properties of muscle, VO2 max is better correlated with quantified oxidative staining.  相似文献   

19.
Four male subjects aged 23-34 years were studied during 60 days of unilateral strength training and 40 days of detraining. Training was carried out four times a week and consisted of six series of ten maximal isokinetic knee extensions at an angular velocity of 2.09 rad.s-1. At the start and at every 20th day of training and detraining, isometric maximal voluntary contraction (MVC), integrated electromyographic activity (iEMG) and quadriceps muscle cross-sectional area (CSA) assessed at seven fractions of femur length (Lf), by nuclear magnetic resonance imaging, were measured on both trained (T) and untrained (UT) legs. Isokinetic torques at 30 degrees before full knee extension were measured before and at the end of training at: 0, 1.05, 2.09, 3.14, 4.19, 5.24 rad.s-1. After 60 days T leg CSA had increased by 8.5% +/- 1.4% (mean +/- SEM, n = 4, p less than 0.001), iEMG by 42.4% +/- 16.5% (p less than 0.01) and MVC by 20.8% +/- 5.4% (p less than 0.01). Changes during detraining had a similar time course to those of training. No changes in UT leg CSA were observed while iEMG and MVC increased by 24.8% +/- 10% (N.S.) and 8.7% +/- 4.3% (N.S.), respectively. The increase in quadriceps muscle CSA was maximal at 2/10 Lf (12.0% +/- 1.5%, p less than 0.01) and minimal, proximally to the knee, at 8/10 Lf (3.5% +/- 1.2%, N.S.). Preferential hypertrophy of the vastus medialis and intermedius muscles compared to those of the rectus femoris and lateralis muscles was observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Knowledge of the strength, endurance and coordination of the shoulder muscles during dynamic contractions in healthy women would contribute to the understanding of symptoms in that part of the body in patients with myalgia. Twenty clinically healthy women performed single maximal forward shoulder flexions at four different angular velocities (0.57-3.14 rad.s-1). The same subjects also took part in two endurance tests (at angular velocities of 0.57 and 2.09 rad.s-1, respectively) consisting of 150 repeated maximal shoulder flexions. Electromyographic activity (EMG) was registered from four shoulder flexors using surface electrodes. Work was used as the mechanical variable. During the endurance tests subjects rated their perception of fatigue in the shoulder muscles. Work and the amplitude of the EMG signals decreaesd with angular velocity. The mean power frequency of the EMG was constant in the span of angular velocities investigated. During the endurance tests, work and the mean power frequency decreased during the initial 40-60 contractions followed by stable levels. The relative work level was higher at 2.09 than at 0.57 rad.s-1. Greater relative increases of the signal amplitudes of EMG occurred at 2.09 than at 0.57 rad.s-1. The EMG activity between the flexions (during the supposed passive extension) was higher at 2.09 than at 0.57 rad.s-1. Such a high activity was associated with a low mechanical performance at 2.09 rad.s-1. It is suggested that the initial sharp decreases in work and in mean power frequency reflect the fatiguing of the fast twitch motor units. Dynamic work consisting of continuous activity could predispose to muscle complaints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号