首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photosystem II (PSII) is a primary target for light‐induced damage in photosynthetic protein complexes. To avoid photoinhibition, chloroplasts have evolved a repair cycle with efficient degradation of the PSII reaction center protein, D1, by the proteases FtsH and Deg. Earlier reports have described that phosphorylated D1 is a poor substrate for proteolysis, suggesting a mechanistic role for protein phosphorylation in PSII quality control, but its precise role remains elusive. STN8, a protein kinase, plays a central role in this phosphorylation process. To elucidate the relationship between phosphorylation of D1 and the protease function we assessed in this study the involvement of STN8, using Arabidopsis thaliana mutants lacking FtsH2 [yellow variegated2 (var2)] and Deg5/Deg8 (deg5 deg8). In support of our presumption we found that phosphorylation of D1 increased more in var2. Furthermore, the coexistence of var2 and stn8 was shown to recover the delay in degradation of D1, resulting in mitigation of the high vulnerability to photoinhibition of var2. Partial D1 cleavage fragments that depended on Deg proteases tended to increase, with concomitant accumulation of reactive oxygen species in the mutants lacking STN8. We inferred that the accelerated degradation of D1 in var2 stn8 presents a tradeoff in that it improved the repair of PSII but simultaneously enhanced oxidative stress. Together, these results suggest that PSII core phosphorylation prevents undesirable cleavage of D1 by Deg proteases, which causes cytotoxicity, thereby balancing efficient linear electron flow and photo‐oxidative damage. We propose that PSII core phosphorylation contributes to fine‐tuned degradation of D1.  相似文献   

2.
R Kettunen  E Tyystjrvi    E M Aro 《Plant physiology》1996,111(4):1183-1190
Photoinhibition-induced degradation of the D1 protein of the photosystem II reaction center was studied in intact pumpkin (Cucurbita pepo L.) leaves. Photoinhibition was observed to cause the cleavage of the D1 protein at two distinct sites. The main cleavage generated an 18-kD N-terminal and a 20-kD C-terminal degradation fragment of the D1 protein. this cleavage site was mapped to be located clearly N terminally of the DE loop. The other, less-frequent cleavage occurred at the DE loop and produced the well-documented 23-kD, N-terminal D1 degradation product. Furthermore, the 23-kD, N-terminal D1 fragment appears to be phosphorylated and can be detected only under severe photoinhibition in vivo. Comparison of the D1 degradation pattern after in vivo photoinhibition to that after in vitro acceptor-side and donor-side photoinhibition, performed with isolated photosystem II core particles, gives indirect evidence in support of donor-side photoinhibition in intact leaves.  相似文献   

3.
Deg1 is a Ser protease peripherally attached to the lumenal side of the thylakoid membrane. Its physiological function is unknown, but its localization makes it a suitable candidate for participation in photoinhibition repair by degradation of the photosystem II reaction center protein D1. We transformed Arabidopsis thaliana with an RNA interference construct and obtained plants with reduced levels of Deg1. These plants were smaller than wild-type plants, flowered earlier, were more sensitive to photoinhibition, and accumulated more of the D1 protein, probably in an inactive form. Two C-terminal degradation products of the D1 protein, of 16 and 5.2 kD, accumulated at lower levels compared with the wild type. Moreover, addition of recombinant Deg1 to inside-out thylakoid membranes isolated from the mutant could induce the formation of the 5.2-kD D1 C-terminal fragment, whereas the unrelated proteases trypsin and thermolysin could not. Immunoblot analysis revealed that mutants containing less Deg1 also contain less FtsH protease, and FtsH mutants contain less Deg1. These results suggest that Deg1 cooperates with the stroma-exposed proteases FtsH and Deg2 in degrading D1 protein during repair from photoinhibition by cleaving lumen-exposed regions of the protein. In addition, they suggest that accumulation of Deg1 and FtsH proteases may be coordinated.  相似文献   

4.
Kato Y  Sun X  Zhang L  Sakamoto W 《Plant physiology》2012,159(4):1428-1439
Light energy constantly damages photosynthetic apparatuses, ultimately causing impaired growth. Particularly, the sessile nature of higher plants has allowed chloroplasts to develop unique mechanisms to alleviate the irreversible inactivation of photosynthesis. Photosystem II (PSII) is known as a primary target of photodamage. Photosynthetic organisms have evolved the so-called PSII repair cycle, in which a reaction center protein, D1, is degraded rapidly in a specific manner. Two proteases that perform processive or endopeptidic degradation, FtsH and Deg, respectively, participate in this cycle. To examine the cooperative D1 degradation by these proteases, we engaged Arabidopsis (Arabidopsis thaliana) mutants lacking FtsH2 (yellow variegated2 [var2]) and Deg5/Deg8 (deg5 deg8) in detecting D1 cleaved fragments. We detected several D1 fragments only under the var2 background, using amino-terminal or carboxyl-terminal specific antibodies of D1. The appearance of these D1 fragments was inhibited by a serine protease inhibitor and by deg5 deg8 mutations. Given the localization of Deg5/Deg8 on the luminal side of thylakoid membranes, we inferred that Deg5/Deg8 cleaves D1 at its luminal loop connecting the transmembrane helices C and D and that the cleaved products of D1 are the substrate for FtsH. These D1 fragments detected in var2 were associated with the PSII monomer, dimer, and partial disassembly complex but not with PSII supercomplexes. It is particularly interesting that another processive protease, Clp, was up-regulated and appeared to be recruited from stroma to the thylakoid membrane in var2, suggesting compensation for FtsH deficiency. Together, our data demonstrate in vivo cooperative degradation of D1, in which Deg cleavage assists FtsH processive degradation under photoinhibitory conditions.  相似文献   

5.
When plants, algae, and cyanobacteria are exposed to excessive light, especially in combination with other environmental stress conditions such as extreme temperatures, their photosynthetic performance declines. A major cause of this photoinhibition is the light-induced irreversible photodamage to the photosystem II (PSII) complex responsible for photosynthetic oxygen evolution. A repair cycle operates to selectively replace a damaged D1 subunit within PSII with a newly synthesized copy followed by the light-driven reactivation of the complex. Net loss of PSII activity occurs (photoinhibition) when the rate of damage exceeds the rate of repair. The identities of the chaperones and proteases involved in the replacement of D1 in vivo remain uncertain. Here, we show that one of the four members of the FtsH family of proteases (cyanobase designation slr0228) found in the cyanobacterium Synechocystis sp PCC 6803 is important for the repair of PSII and is vital for preventing chronic photoinhibition. Therefore, the ftsH gene family is not functionally redundant with respect to the repair of PSII in this organism. Our data also indicate that FtsH binds directly to PSII, is involved in the early steps of D1 degradation, and is not restricted to the removal of D1 fragments. These results, together with the recent analysis of ftsH mutants of Arabidopsis, highlight the critical role played by FtsH proteases in the removal of damaged D1 from the membrane and the maintenance of PSII activity in vivo.  相似文献   

6.
The FtsH2 protease, encoded by the slr0228 gene, plays a key role in the selective degradation of photodamaged D1 protein during the repair of Photosystem II (PSII) in the cyanobacterium Synechocystis sp. PCC 6803. To test whether additional proteases might be involved in D1 degradation during high rates of photodamage, we have studied the synthesis and degradation of the D1 protein in ΔPsbO and ΔPsbV mutants, in which the CaMn4 cluster catalyzing oxygen evolution is less stable, and in the D1 processing mutants, D1-S345P and ΔCtpA, which are unable to assemble a functional cluster. All four mutants exhibited a dramatically increased rate of D1 degradation in high light compared to the wild-type. Additional inactivation of the ftsH2 gene slowed the rate of D1 degradation dramatically and increased the level of PSII complexes. We conclude that FtsH2 plays a major role in the degradation of both precursor and mature forms of D1 following donor-side photoinhibition. However, this conclusion concerned only D1 assembled into larger complexes containing at least D2 and CP47. In the ΔpsbEFLJ deletion mutant blocked at an early stage in PSII assembly, unassembled D1 protein was efficiently degraded in the absence of FtsH2 pointing to the involvement of other protease(s). Significantly, the ΔPsbO mutant displayed unusually low levels of cellular chlorophyll at extremely low-light intensities. The possibilities that PSII repair may limit the availability of chlorophyll for the biogenesis of other chlorophyll-binding proteins and that PsbO might have a regulatory role in PSII repair are discussed.  相似文献   

7.
Two distinct peroxisomal targeting signals (PTSs), the C-terminal PTS1 and the N-terminal PTS2, are defined. Processing of the PTS2 on protein import is conserved in higher eukaryotes. Recently, candidates for the responsible processing protease were identified from plants (DEG15) and mammals (TYSND1). We demonstrate that plants lacking DEG15 show an expressed phenotype potentially linked to reduced beta-oxidation, indicating the impact of protein processing on peroxisomal functions in higher eukaryotes. Mutational analysis of Arabidopsis (Arabidopsis thaliana) DEG15 revealed that conserved histidine, aspartic acid, and serine residues are essential for the proteolytic activity of this enzyme in vitro. This indicates that DEG15 and related enzymes are trypsin-like serine endopeptidases. Deletion of a plant-specific stretch present in the protease domain diminished, but did not abolish, the proteolytic activity of DEG15 against the PTS2-containing glyoxysomal malate dehydrogenase. Fluorescence microscopy showed that a DEG15-green fluorescent protein fusion construct is targeted to peroxisomes in planta. In vivo studies with isolated homozygous deg15 knockout mutants and complemented mutant lines suggest that this enzyme mediates general processing of PTS2-containing proteins.  相似文献   

8.
Members of the DegP/HtrA (or Deg) family of proteases are found widely in nature and play an important role in the proteolysis of misfolded and damaged proteins. As yet, their physiological role in oxygenic photosynthetic organisms is unclear, although it has been widely speculated that they participate in the degradation of the photodamaged D1 subunit in the photosystem two complex (PSII) repair cycle, which is needed to maintain PSII activity in both cyanobacteria and chloroplasts. We have examined the role of the three Deg proteases found in the cyanobacterium Synechocystis sp. PCC 6803 through analysis of double and triple insertion mutants. We have discovered that these proteases show overlap in function and are involved in a number of key physiological responses ranging from protection against light and heat stresses to phototaxis. In previous work, we concluded that the Deg proteases played either a direct or an indirect role in PSII repair in a glucose-tolerant version of Synechocystis 6803 (Silva, P., Choi, Y. J., Hassan, H. A., and Nixon, P. J. (2002) Philos. Trans. R. Soc. Lond. B Biol. Sci. 357, 1461-1467). In this work, we have now been able to demonstrate unambiguously, using a triple deg mutant created in the wild type strain of Synechocystis 6803, that the Deg proteases are not obligatory for PSII repair and D1 degradation. We therefore conclude that although the Deg proteases are needed for photoprotection of Synechocystis sp. PCC 6803, they do not play an essential role in D1 turnover and PSII repair in vivo.  相似文献   

9.
The relationship between the susceptibility of photosystem II (PSII) to photoinhibition in vivo and the rate of degradation of the D1 protein of the PSII reaction center heterodimer was investigated in leaves from pea plants (Pisum sativum L. cv Greenfeast) grown under widely contrasting irradiances. There was an inverse linear relationship between the extent of photoinhibition and chlorophyll (Chl) a/b ratios, with low-light leaves being more susceptible to high light. In the presence of the chloroplast-encoded protein synthesis inhibitor lincomycin, the differential sensitivity of the various light-acclimated pea leaves to photoinhibition was largely removed, demonstrating the importance of D1 protein turnover as the most crucial mechanism to protect against photoinhibition. In the differently light-acclimated pea leaves, the rate of D1 protein degradation (measured from [35S]methionine pulse-chase experiments) increased with increasing incident light intensities only if the light was not high enough to cause photoinhibition in vivo. Under moderate illumination, the rate constant for D1 protein degradation corresponded to the rate constant for photoinhibition in the presence of lincomycin, demonstrating a balance between photodamage to D1 protein and subsequent recovery, via D1 protein degradation, de novo synthesis of precursor D1 protein, and reassembly of functional PSII. In marked contrast, in light sufficiently high to cause photoinhibition in vivo, the rate of D1 protein degradation no longer increased concomitantly with increasing photoinhibition, suggesting that the rate of D1 protein degradation is playing a regulatory role. The extent of thylakoid stacking, indicated by the Chl a/b ratios of the differently light-acclimated pea leaves, was linearly related to the half-life of the D1 protein in strong light. We conclude that photoinhibition in vivo occurs under conditions in which the rate of D1 protein degradation can no longer be enhanced to rapidly remove irreversibly damaged D1 protein. We suggest that low-light pea leaves, with more stacked membranes and less stroma-exposed thylakoids, are more susceptible to photoinhibition in vivo mainly due to their slower rate of D1 protein degradation under sustained high light and their slower repair cycle of the photodamaged PSII centers.  相似文献   

10.
11.
Adam Z 《Biochimie》2000,82(6-7):647-654
A wide range of proteolytic processes in the chloroplast are well recognized. These include processing of precursor proteins, removal of oxidatively damaged proteins, degradation of proteins missing their prosthetic groups or their partner subunit in a protein complex, and adjustment of the quantity of certain chloroplast proteins in response to changing environmental conditions. To date, several chloroplast proteases have been identified and cloned. The chloroplast processing enzyme is responsible for removing the transit peptides of newly imported proteins. The thylakoid processing peptidase removes the thylakoid-transfer domain from proteins translocated into the thylakoid lumen. Within the lumen, Tsp removes the carboxy-terminal tail of the precursor of the PSII D1 protein. In contrast to these processing peptidases which perform a single endo-proteolytic cut, processive proteases that can completely degrade substrate proteins also exist in chloroplasts. The serine ATP-dependent Clp protease, composed of the proteolytic subunit ClpP and the regulatory subunit ClpC, is located in the stroma, and is involved in the degradation of abnormal soluble and membrane-bound proteins. The ATP-dependent metalloprotease FtsH is bound to the thylakoid membrane, facing the stroma. It degrades unassembled proteins and is involved in the degradation of the D1 protein of PSII following photoinhibition. DegP is a serine protease bound to the lumenal side of the thylakoid membrane that might be involved in the chloroplast response to heat. All these peptidases and proteases are homologues of known bacterial enzymes. Since ATP-dependent bacterial proteases and their mitochondrial homologues are also involved in the regulation of gene expression, via their determining the levels of key regulatory proteins, chloroplast proteases are expected to play a similar role.  相似文献   

12.
Several mutant strains of Synechocystis sp. PCC 6803 with large deletions in the D-E loop of the photosystem II (PSII) reaction center polypeptide D1 were subjected to high light to investigate the role of this hydrophilic loop in the photoinhibition cascade of PSII. The tolerance of PSII to photoinhibition in the autotrophic mutant ΔR225-F239 (PD), when oxygen evolution was monitored with 2,6-dichloro-p-benzoquinone and the equal susceptibility compared with control when monitored with bicarbonate, suggested an inactivation of the QB-binding niche as the first event in the photoinhibition cascade in vivo. This step in PD was largely reversible at low light without the need for protein synthesis. Only the next event, inactivation of QA reduction, was irreversible and gave a signal for D1 polypeptide degradation. The heterotrophic deletion mutants ΔG240-V249 and ΔR225-V249 had severely modified QB pockets, yet exhibited high rates of 2,6-dichloro-p-benzoquinone-mediated oxygen evolution and less tolerance to photoinhibition than PD. Moreover, the protein-synthesis-dependent recovery of PSII from photoinhibition was impaired in the ΔG240-V249 and ΔR225-V249 mutants because of the effects of the mutations on the expression of the psbA-2 gene. No specific sequences in the D-E loop were found to be essential for high rates of D1 polypeptide degradation.  相似文献   

13.
The selective replacement of photodamaged D1 protein within the multisubunit photosystem II (PSII) complex is an important photoprotective mechanism in chloroplasts and cyanobacteria. FtsH proteases are involved at an early stage of D1 degradation, but it remains unclear how the damaged D1 subunit is recognized, degraded, and replaced. To test the role of the N-terminal region of D1 in PSII biogenesis and repair, we have constructed mutants of the cyanobacterium Synechocystis sp PCC 6803 that are truncated at the exposed N terminus. Removal of 5 or 10 residues blocked D1 synthesis, as assessed in radiolabeling experiments, whereas removal of 20 residues restored the ability to assemble oxygen-evolving dimeric PSII complexes but inhibited PSII repair at the level of D1 degradation. Overall, our results identify an important physiological role for the exposed N-terminal tail of D1 at an early step in selective D1 degradation. This finding has important implications for the recognition of damaged D1 and its synchronized replacement by a newly synthesized subunit.  相似文献   

14.
The D1 protein, a key protein subunit of Photosystem II complex (PSII), is synthesised as a precursor (pD1) with a carboxyl-terminal extension. In the cyanobacterium Synechocystis sp. PCC 6803, this extension consists of 16 amino acid residues and it is cleaved by a specific protease in two putative steps with the final cleavage after the residue Ala344. In order to define the importance of the extension for the functioning of PSII, we constructed and characterized several site-directed mutants of Synechocystis that differ in the length and amino acid sequence of this extension. The mutant lacking the entire C-terminal extension exhibited slightly increased sensitivity to photoinhibition. Analysis of the PSII assembly in the mutant by the blue-native electrophoresis in combination with radioactive labelling revealed an increased level of the unassembled D1 protein in this strain. Replacement of the amino acid residue Asn359 by His or Asp also led to the higher vulnerability to photoinhibition of both mutants. In the Asn359His mutant, this vulnerability was accompanied by an increased level of the PSII core lacking CP43 indicating limitation of the repair cycle in the CP43 reassembly step.  相似文献   

15.
Light is the ultimate source of energy for photosynthesis; however, excessive light leads to photooxidative damage and hence reduced photosynthetic efficiency, especially when combined with other abiotic stresses. Although the photosystem II (PSII) reaction center D1 protein is the primary target of photooxidative damage, other PSII core proteins are also damaged and degraded. However, it is still largely unknown whether degradation of D1 and other PSII proteins involves previously uncharacterized proteases. Here, we show that Deg7 is peripherally associated with the stromal side of the thylakoid membranes and that Deg7 interacts directly with PSII. Our results show that Deg7 is involved in the primary cleavage of photodamaged D1, D2, CP47, and CP43 and that this activity is essential for its function in PSII repair. The double mutants deg5 deg7 and deg8 deg7 showed no obvious phenotypic differences under normal growth conditions, but additive effects were observed under high light. These results suggest that Deg proteases on both the stromal and luminal sides of the thylakoid membranes are important for the efficient PSII repair in Arabidopsis (Arabidopsis thaliana).Chloroplasts of higher plants carry out one of the most important biochemical reactions: the capture of light energy and its conversion into chemical energy. Although light is the ultimate source of energy for photosynthesis, it can also be harmful to plants. Light-induced loss of photosynthetic efficiency, which is generally termed as photoinhibition, limits plant growth and lowers productivity, especially when combined with other abiotic stresses.The main target of photoinhibition is PSII, which catalyzes the light-dependent water oxidation concomitantly with oxygen production (for review, see Prasil et al., 1992; Aro et al., 1993; Adir et al., 2003). In higher plants, PSII consists of more than 20 subunits, including the reaction center D1 and D2 proteins, cytochrome (Cyt) b559, the light-harvesting chlorophyll a-binding proteins CP47 and CP43, the oxygen-evolving 33-kD protein (PsbO), and several low molecular mass proteins (Nelson and Yocum, 2006). The PSII reaction center D1 protein has been identified among PSII proteins as the primary target of light-induced damage (Kyle et al., 1984; Mattoo et al., 1984; Ohad et al., 1984; Adir et al., 1990), but several studies have shown that the D2, CP47, and CP43 proteins are degraded under photoinhibitory conditions (Schuster et al., 1988; Yamamoto and Akasaka, 1995; Jansen et al., 1999; Adir et al., 2003). Moreover, several small PSII subunits, such as PsbH, PsbW, and Cyt b559, were also found to be frequently replaced within PSII (Hagman et al., 1997; Ortega et al., 1999; Bergantino et al., 2003). Evidence for the involvement of two families of proteases, FtsH and Deg, in the degradation of the D1 protein in thylakoids of higher plants has been recently described (Lindahl et al., 1996, 2000; Bailey et al., 2002; Sakamoto et al., 2003; Silva et al., 2003; Kapri-Pardes et al., 2007; Sun et al., 2007a, 2007b). However, it is still largely unknown whether degradation of D1 and other PSII proteins involves previously uncharacterized proteases.DegP (or HtrA) proteases were initially identified based on the fact that they are required for the survival of Escherichia coli at high temperatures and for the degradation of abnormal periplasmic proteins (Lipinska et al., 1988; Strauch and Beckwith, 1988). DegP is an ATP-independent Ser endopeptidase, and it contains a trypsin-like protease domain at the N terminus, followed by two PDZ domains (Gottesman, 1996; Pallen and Wren, 1997; Clausen et al., 2002). PDZ domains appear to be important for complex assembly and substrate binding through three or four residues in the C terminus of their target proteins (Doyle et al., 1996; Harris and Lim, 2001). DegP switches between chaperone and protease functions in a temperature-dependent manner. The chaperone function dominates at low temperatures, and DegP becomes proteolytically active at elevated temperatures (Spiess et al., 1999). Crystal structures of different members of the DegP protein family (Krojer et al., 2002; Li et al., 2002; Kim et al., 2003; Wilken et al., 2004) have revealed the structure-function relationship of these PDZ-containing proteases. Trimeric DegP is the functional unit, and the hexameric DegP is formed via the staggered association of trimers (Clausen et al., 2002; Kim and Kim, 2005). At normal growth temperatures, the active site of the protease is located within the chamber of hexameric DegP, which is not accessible to the substrates. However, at high temperatures, conformational changes induce the activation of the protease function (Krojer et al., 2002). Recent studies have shed light on the substrate binding-induced formation of larger oligomeric complexes of DegP (Jiang et al., 2008; Krojer et al., 2008).In Arabidopsis (Arabidopsis thaliana), 16 genes coding for DegP-like proteases have been identified, and at least seven gene products are predicted to be located in chloroplasts (Kieselbach and Funk, 2003; Huesgen et al., 2005; Adam et al., 2006; Sakamoto, 2006; Kato and Sakamoto, 2009). Based on proteomic data, four Deg proteases have been shown to be localized to the chloroplast (Peltier et al., 2002; Schubert et al., 2002) and functionally characterized. Deg1, Deg5, and Deg8 are located in thylakoid lumen, and Deg2 is peripherally associated with the stromal side of thylakoid membranes (Itzhaki et al., 1998; Haußühl et al., 2001; Sun et al., 2007a). Recombinant DegP1, now renamed Deg1, has been shown to be proteolytically active toward thylakoid lumen proteins such as plastocyanin and PsbO of PSII in vitro (Chassin et al., 2002). A 5.2-kD C-terminal fragment of the D1 protein was detected in vitro after incubation of recombinant Deg1 with inside-out thylakoid membranes. In transgenic plants with reduced levels of Deg1, fewer of its 16- and 5.2-kD degradation products were observed (Kapri-Pardes et al., 2007). Deg5 and Deg8 form a dodecameric complex in the thylakoid lumen, and recombinant Deg8 is able to degrade the photodamaged D1 protein of PSII in an in vitro assay (Sun et al., 2007a). The 16-kD N-terminal degradation fragment of the D1 protein was detected in wild-type plants but not in a deg5 deg8 double mutant after high-light treatment. The deg5 deg8 double mutant showed increased sensitivity to high light and high temperature in terms of growth and PSII activity compared with the single mutants deg5 and deg8, suggesting that Deg5 and Deg8 have overlapping functions in the primary cleavage of the CD loop of the D1 protein (Sun et al., 2007a, 2007b). In vitro analysis has demonstrated that recombinant stroma-localized Deg2 was also shown to be involved in the primary cleavage of the DE loop of the D1 protein (Haußühl et al., 2001). However, analysis of a mutant lacking Deg2 suggested that Deg2 may not be involved in D1 degradation in vivo (Huesgen et al., 2006).Here, we have expressed and purified a recombinant DegP protease, His-Deg7. In vitro experiments showed that His-Deg7 is proteolytically active toward the PSII proteins D1, D2, CP43, and CP47. In vivo analyses of a deg7 mutant revealed that the mutant is more sensitive to high light stress than the wild-type plants. We demonstrated that Deg7 is a chloroplast stroma protein associated with the thylakoid membranes and that it interacts with PSII, which suggests that it can cleave the stroma-exposed region of substrate proteins. Our results also provide evidence that Deg7 is important for maintaining PSII function.  相似文献   

16.
The extrinsic photosystem II (PSII) protein of 33 kDa (PsbO), which stabilizes the water-oxidizing complex, is represented in Arabidopsis thaliana (Arabidopsis) by two isoforms. Two T-DNA insertion mutant lines deficient in either the PsbO1 or the PsbO2 protein were retarded in growth in comparison with the wild type, while differing from each other phenotypically. Both PsbO proteins were able to support the oxygen evolution activity of PSII, although PsbO2 was less efficient than PsbO1 under photoinhibitory conditions. Prolonged high light stress led to reduced growth and fitness of the mutant lacking PsbO2 as compared with the wild type and the mutant lacking PsbO1. During a short period of treatment of detached leaves or isolated thylakoids at high light levels, inactivation of PSII electron transport in the PsbO2-deficient mutant was slowed down, and the subsequent degradation of the D1 protein was totally inhibited. The steady-state levels of in vivo phosphorylation of the PSII reaction centre proteins D1 and D2 were specifically reduced in the mutant containing only PsbO2, in comparison with the mutant containing only PsbO1 or with wild-type plants. Phosphorylation of PSII proteins in vitro proceeded similarly in thylakoid membranes from both mutants and wild-type plants. However, dephosphorylation of the D1 protein occurred much faster in the thylakoids containing only PsbO2. We conclude that the function of PsbO1 in Arabidopsis is mostly in support of PSII activity, whereas the interaction of PsbO2 with PSII regulates the turnover of the D1 protein, increasing its accessibility to the phosphatases and proteases involved in its degradation.  相似文献   

17.
Degradation of periplasmic proteins (Deg)/high temperature requirement A (HtrA) proteases are ATP-independent serine endopeptidases found in almost every organism. Database searches revealed that 16 Deg paralogues are encoded by the genome of Arabidopsis thaliana, six of which were experimentally shown to be located in chloroplasts, one in peroxisomes, one in mitochondria and one in the nucleus. Two more Deg proteases are predicted to reside in chloroplasts, five in mitochondria (one of them with a dual chloroplastidial/mitochondrial localization) and the subcellular location of one protein is uncertain. This review summarizes the current knowledge on the role of Deg proteases in maintaining protein homeostasis and protein processing in various subcompartments of the plant cell. The chloroplast Deg proteases are the best examined so far, especially with respect to their role in the degradation of photodamaged photosynthetic proteins and in biogenesis of photosystem II (PSII). A combined action of thylakoid lumen and stroma Deg proteases in the primary cleavage of photodamaged D1 protein from PSII reaction centre is discussed on the basis of a recently resolved crystal structure of plant Deg1. The peroxisomal Deg protease is a processing enzyme responsible for the cleavage of N-terminal peroxisomal targeting signals (PTSs). A. thaliana mutants lacking this enzyme show reduced peroxisomal β-oxidation, indicating for the first time the impact of protein processing on peroxisomal functions in plants. Much less data is available for mitochondrial and nuclear Deg proteases. Based on the available expression data we hypothesize a role in general protein quality control and during acquired heat resistance.  相似文献   

18.
Chen H  Zhang D  Guo J  Wu H  Jin M  Lu Q  Lu C  Zhang L 《Plant molecular biology》2006,61(4-5):567-575
Psb27 has been identified as a lumenal protein associated with photosystem II (PSII). To gain insight into the function of Psb27, we isolated a mutant Arabidopsis plant with a loss of psb27 function. The quantity of PSII complexes and electron transfer within PSII remained largely unaffected in the psb27 mutant. Our results also showed that under high-light-illumination, PSII activity and the content of the PSII reaction center protein D1 decreased more significantly in the psb27 mutant than in wild-type (WT) plant. Treatment of leaves with a chloroplast protein synthesis inhibitor resulted in similar light-induced PSII inactivation levels and D1 protein degradation rates in the WT and psb27 mutant plants. Recovery of PSII activity after photoinhibition was delayed in the psb27 mutant, suggesting that Psb27 is required for efficient recovery of the photodamaged PSII complex. Overall, these results demonstrated that Psb27 in Arabidopsis is not essential for oxygenic photosynthesis and PSII formation. Instead, our results provide evidence for the involvement of this lumenal protein in the recovery process of PSII. Hua Chen and Dongyuan Zhang contribute equally to this work.  相似文献   

19.
Photosystem II (PSII) is prone to irreversible light-induced damage, with the D1 polypeptide a major target. Repair processes operate in the cell to replace a damaged D1 subunit within the complex with a newly synthesized copy. As yet, the molecular details of PSII repair are relatively obscure despite the critical importance of this process for maintaining PSII activity and cell viability. We are using the cyanobacterium Synechocystis sp. PCC 6803 to identify the various proteases and chaperones involved in D1 turnover in vivo. Two families of proteases are being studied: the FtsH family (four members) of Zn(2+)-activated nucleotide-dependent proteases; and the HtrA (or DegP) family (three members) of serine-type proteases. In this paper, we report the results of our studies on a triple mutant in which all three copies of the htrA gene family have been inactivated. Growth of the mutant on agar plates was inhibited at high light intensities, especially in the presence of glucose. Oxygen evolution measurements indicated that, under conditions of high light, the rate of synthesis of functional PSII was less in the mutant than in the wild-type. Immunoblotting experiments conducted on cells blocked in protein synthesis further indicated that degradation of D1 was slowed in the mutant. Overall, our observations indicate that the HtrA family of proteases are involved in the resistance of Synechocystis 6803 to light stress and play a part, either directly or indirectly, in the repair of PSII in vivo.  相似文献   

20.
Photosystem II (PSII) is vulnerable to high light (HL) illumination resulting in photoinhibition. In addition to photoprotection mechanisms, plants have developed an efficient PSII repair mechanism to save themselves from irreversible damage to PSII under abiotic stresses including HL illumination. The phosphorylation/dephosphorylation cycle along with subsequent degradation of photodamaged D1 protein to be replaced by the insertion of a newly synthesized copy of D1 into the PSII complex, is the core function of the PSII repair cycle. The exact mechanism of this process is still under discussion. We describe the recent progress in identifying the kinases, phosphatases and proteases, and in understanding their involvement in the maintenance of thylakoid structure and the quality control of proteins by PSII repair cycle during photoinhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号