首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
This article provides characterization of the electrical response to odorants in the Drosophila antenna and provides physiological evidence that a second organ, the maxillary palp, also has olfactory function in Drosophila. The acj6 mutation, previously isolated by virtue of defective olfactory behavior, affects olfactory physiology in the maxillary palp as well as in the antenna. Interestingly, abnormal chemosensory jump 6 (acj6) reduces response in the maxillary palp to all odorants tested except benzaldehyde (odor of almond), as if response to benzaldehyde is mediated through a different type of odorant pathway from the other odorants. In other experiments, different parts of the antenna are shown to differ with respect to odorant sensitivity. Evidence is also provided that antennal response to odorants varies with age, and that odorants differ in their age dependence.  相似文献   

3.
This article provides characterization of the electrical response to odorants in the Drosophila antenna and provides physiological evidence that a second organ, the maxillary palp, also has olfactory function in Drosophila. The acj6 mutation, previously isolated by virtue of defective olfactory behavior, affects olfactory physiology in the maxillary palp as well as in the antenna. Interestingly, abnormal chemosensory jump 6 (acj6) reduces response in the maxillary palp to all odorants tested except benzaldehyde (odor of almond), as if response to benzaldehyde is mediated through a different type of odorant pathway from the other odorants. In other experiments, different parts of the antenna are shown to differ with respect to odorant sensitivity. Evidence is also provided that antennal response to odorants varies with age, and that odorants differ in their age dependence. © 1992 John Wiley & Sons, Inc.  相似文献   

4.
5.
6.
Odors elicit spatio-temporal patterns of activity in the olfactory bulb of vertebrates and the antennal lobe of insects. There have been several reports of changes in these patterns following olfactory learning. These studies pose a conundrum: how can an animal learn to efficiently respond to a particular odor with an adequate response, if its primary representation already changes during this process? In this study, we offer a possible solution for this problem. We measured odor-evoked calcium responses in a subpopulation of uniglomerular AL output neurons in honeybees. We show that their responses to odors are remarkably resistant to plasticity following a variety of appetitive olfactory learning paradigms. There was no significant difference in the changes of odor-evoked activity between single and multiple trial forward or backward conditioning, differential conditioning, or unrewarded successive odor stimulation. In a behavioral learning experiment we show that these neurons are necessary for conditioned odor responses. We conclude that these uniglomerular projection neurons are necessary for reliable odor coding and are not modified by learning in this paradigm. The role that other projection neurons play in olfactory learning remains to be investigated.  相似文献   

7.
The mechanism by which the individual odor signals are translated into the perception of smell in the brain is unknown. The signal processing occurs in the olfactory system which has three major components: olfactory neuroepithelium, olfactory bulb, and olfactory cortex. The neuroepithelial layer is composed of ciliated sensory neurons interspersed among supportive cells. The sensory neurons are the sites of odor transduction, a process that converts the odor signal into an electrical signal. The electrical signal is subsequently received by the neurons of the olfactory bulb, which process the signal and then relay it to the olfactory cortex in the brain. Apart from information about certain biochemical steps of odor transduction, there is almost no knowledge about the means by which the olfactory bulb and cortical neurons process this information. Through biochemical, functional, and immunohistochemical approaches, this study shows the presence of a Ca(2+)-modulated membrane guanylate cyclase (mGC) transduction system in the bulb portion of the olfactory system. The mGC is ROS-GC1. This is coexpressed with its specific modulator, guanylate cyclase activating protein type 1 (GCAP1), in the mitral cells. Thus, a new facet of the Ca(2+)-modulated GCAP1--ROS-GC1 signaling system, which, until now, was believed to be unique to phototransduction, has been revealed. The findings suggest a novel role for this system in the polarization and depolarization phenomena of mitral cells and also contradict the existing belief that no mGC besides GC-D exists in the olfactory neurons.  相似文献   

8.
Pheromone-source orientation behavior can be modified by coexisting plant volatiles. Some host plant volatiles enhance the pheromonal responses of olfactory receptor neurons and increase the sensitivity of orientation behavior in the Lepidoptera species. Although many electrophysiological studies have focused on the pheromonal response of olfactory interneurons, the response to the mixture of pheromone and plant odor is not yet known. Using the silkmoth, Bombyx mori, we investigated the physiology of interneurons in the antennal lobe (AL), the primary olfactory center in the insect brain, in response to a mixture of the primary pheromone component bombykol and cis-3-hexen-1-ol, a mulberry leaf volatile. Application of the mixture enhanced the pheromonal responses of projection neurons innervating the macroglomerular complex in the AL. In contrast, the mixture of pheromone and cis-3-hexen-1-ol had little influence on the responses of projection neurons innervating the ordinary glomeruli whereas other plant odors dynamically modified the response. Together this suggests moths can process plant odor information under conditions of simultaneous exposure to sex pheromone.  相似文献   

9.
Odor quality is thought to be encoded by the activation of partially overlapping subsets of glomeruli in the olfactory bulb (odor maps). Mouse genetic studies have demonstrated that olfactory sensory neurons (OSNs) expressing a particular olfactory receptor target their axons to a few individual glomeruli in the bulb. While the specific targeting of OSN axons provides a molecular underpinning for the odor maps, much remains to be understood about the relationship between the functional and molecular maps. In this article, we ask the question whether intensive training of mice in a go/no-go operant conditioning odor discrimination task affects odor maps measured by determining c-fos up-regulation in periglomerular cells. Data analysis is performed using a newly developed suite of computational tools designed to systematically map functional and molecular features of glomeruli in the adult mouse olfactory bulb. This suite provides the necessary tools to process high-resolution digital images, map labeled glomeruli, visualize odor maps, and facilitate statistical analysis of patterns of identified glomeruli in the olfactory bulb. The software generates odor maps (density plots) based on glomerular activity, density, or area. We find that training up-regulates the number of glomeruli that become c-fos positive after stimulation with ethyl acetate.  相似文献   

10.
The discrimination of complex sensory stimuli in a noisy environment is an immense computational task. Sensory systems often encode stimulus features in a spatiotemporal fashion through the complex firing patterns of individual neurons. To identify these temporal features, we have developed an analysis that allows the comparison of statistically significant features of spike trains localized over multiple scales of time-frequency resolution. Our approach provides an original way to utilize the discrete wavelet transform to process instantaneous rate functions derived from spike trains, and select relevant wavelet coefficients through statistical analysis. Our method uncovered localized features within olfactory projection neuron (PN) responses in the moth antennal lobe coding for the presence of an odor mixture and the concentration of single component odorants, but not for compound identities. We found that odor mixtures evoked earlier responses in biphasic response type PNs compared to single components, which led to differences in the instantaneous firing rate functions with their signal power spread across multiple frequency bands (ranging from 0 to 45.71 Hz) during a time window immediately preceding behavioral response latencies observed in insects. Odor concentrations were coded in excited response type PNs both in low frequency band differences (2.86 to 5.71 Hz) during the stimulus and in the odor trace after stimulus offset in low (0 to 2.86 Hz) and high (22.86 to 45.71 Hz) frequency bands. These high frequency differences in both types of PNs could have particular relevance for recruiting cellular activity in higher brain centers such as mushroom body Kenyon cells. In contrast, neurons in the specialized pheromone-responsive area of the moth antennal lobe exhibited few stimulus-dependent differences in temporal response features. These results provide interesting insights on early insect olfactory processing and introduce a novel comparative approach for spike train analysis applicable to a variety of neuronal data sets.  相似文献   

11.
Mammalian odorant receptors form a large, diverse group of G protein-coupled receptors that determine the sensitivity and response profile of olfactory receptor neurons. But little is known if odorant receptors control basal and also stimulus-induced cellular properties of olfactory receptor neurons other than ligand specificity. This study demonstrates that different odorant receptors have varying degrees of basal activity, which drives concomitant receptor current fluctuations and basal action potential firing. This basal activity can be suppressed by odorants functioning as inverse agonists. Furthermore, odorant-stimulated olfactory receptor neurons expressing different odorant receptors can have strikingly different response patterns in the later phases of prolonged stimulation. Thus, the influence of odorant receptor choice on response characteristics is much more complex than previously thought, which has important consequences on odor coding and odor information transfer to the brain.  相似文献   

12.
In mammals, odorants induce various behavioral responses that are critical to the survival of the individual and species. Binding signals of odorants to odorant receptors (ORs) expressed in the olfactory epithelia are converted to an odor map, a pattern of activated glomeruli, in the olfactory bulb (OB). This topographic map is used to identify odorants for memory-based learned decisions. In the embryo, a coarse olfactory map is generated in the OB by a combination of dorsal-ventral and anterior-posterior targeting of olfactory sensory neurons (OSNs), using specific sets of axon-guidance molecules. During the process of OSN projection, odor signals are sorted into distinct odor qualities in separate functional domains in the OB. Odor information is then conveyed by the projection neurons, mitral/tufted cells, to various regions in the olfactory cortex, particularly to the amygdala for innate olfactory decisions. Although the basic architecture of hard-wired circuits is generated by a genetic program, innate olfactory responses are modified by neonatal odor experience in an activity-dependent manner. Stimulus-driven OR activity promotes post-synaptic events and dendrite selection in the responding glomeruli making them larger. As a result, enhanced odor inputs in neonates establish imprinted olfactory memory that induces attractive responses in adults, even when the odor quality is innately aversive. In this paper, I will provide an overview of the recent progress made in the olfactory circuit formation in mice.  相似文献   

13.
The distribution of c-Fos-immunopositive neurons was examined in the mitral/tufted and granular cell layers in the medium part of the main olfactory bulbs of 18-day-old rats after they had been trained for propionic acid vapour-guided search for dam in the Y-maze. On the next day these pups exhibited a strong preference for the propionic acid odor as compared to the control pups trained for this task without the odor cue and odor-familiarized pups exposed to propionic acid as a novel neutral stimulus. Exposure to propionic acid produced a moderate activation of c-Fos expression, mainly in the granular layer of the dorsomedial part of the bulb. Training in the Y-maze devoid of odor cues resulted in diffuse increase in the number of c-Fos-positive neurons both in the mitral and granular cell layers in all parts of the olfactory bulb. Maze training with the odor cue produced activation of c-Fos expression (which significantly exceeded the non-odor Y-maze group) in the dorsomedial olfactory bulb. These data suggest that associative olfactory conditioning results in activation of c-Fos expression that combines the effect of diffuse motivational excitation and specific olfactory input to the neurons which process odor cues.  相似文献   

14.
Translation of sensory input into behavioral output via an olfactory system   总被引:1,自引:0,他引:1  
Kreher SA  Mathew D  Kim J  Carlson JR 《Neuron》2008,59(1):110-124
We investigate the logic by which sensory input is translated into behavioral output. First we provide a functional analysis of the entire odor receptor repertoire of an olfactory system. We construct tuning curves for the 21 functional odor receptors of the Drosophila larva and show that they sharpen at lower odor doses. We construct a 21-dimensional odor space from the responses of the receptors and find that the distance between two odors correlates with the extent to which one odor masks the other. Mutational analysis shows that different receptors mediate the responses to different concentrations of an odorant. The summed response of the entire receptor repertoire correlates with the strength of the behavioral response. The activity of a small number of receptors is a surprisingly powerful predictor of behavior. Odors that inhibit more receptors are more likely to be repellents. Odor space is largely conserved between two dissimilar olfactory systems.  相似文献   

15.
Namiki S  Kanzaki R 《Bio Systems》2011,103(3):348-354
We investigated a population activity of central olfactory neurons after the termination of odor input. Olfactory response of projection neurons in the moth primary olfactory center was characterized using in vivo intracellular recording and staining techniques. The population activity changed rapidly to the different states after the stimulus offset. The response after stimulus offset represents information regarding odor identity. We analyzed the spatial distribution of offset-activated glomeruli in a virtual neuronal population that was reconstructed using accumulated individual recordings obtained from different specimens. The offset-activated glomeruli tended to be widely distributed, whereas the onset-activated glomeruli were relatively clustered. These results suggest the importance of lateral interaction in shaping the offset olfactory response.  相似文献   

16.
Behavioral responses to odors rely first upon their accurate detection by peripheral sensory organs followed by subsequent processing within the brain’s olfactory system and higher centers. These processes allow the animal to form a unified impression of the odor environment and recognize combinations of odorants as single entities. To investigate how interactions between peripheral and central olfactory pathways shape odor perception, we transplanted antennal imaginal discs between larval males of two species of moth Heliothis virescens and Heliothis subflexa that utilize distinct pheromone blends. During metamorphic development olfactory receptor neurons originating from transplanted discs formed connections with host brain neurons within olfactory glomeruli of the adult antennal lobe. The normal antennal receptor repertoire exhibited by males of each species reflects the differences in the pheromone blends that these species employ. Behavioral assays of adult transplant males revealed high response levels to two odor blends that were dissimilar from those that attract normal males of either species. Neurophysiological analyses of peripheral receptor neurons and central olfactory neurons revealed that these behavioral responses were a result of: 1. the specificity of H. virescens donor olfactory receptor neurons for odorants unique to the donor pheromone blend and, 2. central odor recognition by the H. subflexa host brain, which typically requires peripheral receptor input across 3 distinct odor channels in order to elicit behavioral responses.  相似文献   

17.
This video demonstrates a technique to establish the presence of a normally functioning olfactory system in a mouse. The test helps determine whether the mouse can discriminate between non-social odors and social odors, whether the mouse habituates to a repeatedly presented odor, and whether the mouse demonstrates dishabituation when presented with a novel odor. Since many social behavior tests measure the experimental animal’s response to a familiar or novel mouse, false positives can be avoided by establishing that the animals can detect and discriminate between social odors. There are similar considerations in learning tests such as fear conditioning that use odor to create a novel environment or olfactory cues as an associative stimulus. Deficits in the olfactory system would impair the ability to distinguish between contexts and to form an association with an olfactory cue during fear conditioning. In the odor habitation/dishabituation test, the mouse is repeatedly presented with several odors. Each odor is presented three times for two minutes. The investigator records the sniffing time directed towards the odor as the measurement of olfactory responsiveness. A typical mouse shows a decrease in response to the odor over repeated presentations (habituation). The experimenter then presents a novel odor that elicits increased sniffing towards the new odor (dishabituation). After repeated presentation of the novel odor the animal again shows habituation. This protocol involves the presentation of water, two or more non-social odors, and two social odors. In addition to reducing experimental confounds, this test can provide information on the function of the olfactory systems of new knockout, knock-in, and conditional knockout mouse lines.  相似文献   

18.
19.
Prolonged odor exposure causes a specific, reversible adaptation of olfactory responses. A genetic screen for negative regulators of olfaction uncovered mutations in the cGMP-dependent protein kinase EGL-4 that disrupt olfactory adaptation in C. elegans. G protein-coupled olfactory receptors within the AWC olfactory neuron signal through cGMP and a cGMP-gated channel. The cGMP-dependent kinase functions in AWC neurons during odor exposure to direct adaptation to AWC-sensed odors, suggesting that adaptation is a cell intrinsic process initiated by cGMP. A predicted phosphorylation site on the beta subunit of the cGMP-gated channel is required for adaptation after short odor exposure, suggesting that phosphorylation of signaling molecules generates adaptation at early time points. A predicted nuclear localization signal within EGL-4 is required for adaptation after longer odor exposure, suggesting that nuclear translocation of EGL-4 triggers late forms of adaptation.  相似文献   

20.
Yu D  Keene AC  Srivatsan A  Waddell S  Davis RL 《Cell》2005,123(5):945-957
Formation of normal olfactory memory requires the expression of the wild-type amnesiac gene in the dorsal paired medial (DPM) neurons. Imaging the activity in the processes of DPM neurons revealed that the neurons respond when the fly is stimulated with electric shock or with any odor that was tested. Pairing odor and electric-shock stimulation increases odor-evoked calcium signals and synaptic release from DPM neurons. These memory traces form in only one of the two branches of the DPM neuron process. Moreover, trace formation requires the expression of the wild-type amnesiac gene in the DPM neurons. The cellular memory traces first appear at 30 min after conditioning and persist for at least 1 hr, a time window during which DPM neuron synaptic transmission is required for normal memory. DPM neurons are therefore "odor generalists" and form a delayed, branch-specific, and amnesiac-dependent memory trace that may guide behavior after acquisition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号