首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The assembly and budding of human immunodeficiency virus type 1 (HIV-1) at the plasma membrane are directed by the viral core protein Pr55(gag). We have analyzed whether Pr55(gag) has intrinsic affinity for sphingolipid- and cholesterol-enriched raft microdomains at the plasma membrane. Pr55(gag) has previously been reported to associate with Triton X-100-resistant rafts, since both intracellular membranes and virus-like Pr55(gag) particles (VLPs) yield buoyant Pr55(gag) complexes upon Triton X-100 extraction at cold temperatures, a phenotype that is usually considered to indicate association of a protein with rafts. However, we show here that the buoyant density of Triton X-100-treated Pr55(gag) complexes cannot be taken as a proof for raft association of Pr55(gag), since lipid analyses of Triton X-100-treated VLPs demonstrated that the detergent readily solubilizes the bulk of membrane lipids from Pr55(gag). However, Pr55(gag) might nevertheless be a raft-associated protein, since confocal fluorescence microscopy indicated that coalescence of GM1-positive rafts at the cell surface led to copatching of membrane-bound Pr55(gag). Furthermore, extraction of intracellular membranes or VLPs with Brij98 yielded buoyant Pr55(gag) complexes of low density. Lipid analyses of Brij98-treated VLPs suggested that a large fraction of the envelope cholesterol and phospholipids was resistant to Brij98. Collectively, these results suggest that Pr55(gag) localizes to membrane microdomains that are largely resistant to Brij98 but sensitive to Triton X-100, and these membrane domains provide the platform for assembly and budding of Pr55(gag) VLPs.  相似文献   

2.
Kim KB  Kim SI  Choo HJ  Kim JH  Ko YG 《Proteomics》2004,4(11):3527-3535
Different proteins are found in lipid rafts depending on the isolation method. For example, insulin receptor was predominantly found in lipid raft fractions prepared from HepG2 cells with Brij 35, but were not present in lipid rafts isolated with Triton X-100. In order to assess the effect of detergent type and temperature on raft isolation, raft proteins from HepG2 cells were analyzed by two-dimensional (2-D) electrophoresis. More raft protein spots appeared when rafts were isolated by Brij 35 than by Triton X-100. In addition, more raft proteins were found when isolated at 37 degrees C than at 4 degrees C, indicating that lipid rafts are much more stable at physiological temperature (37 degrees C) in the presence of detergents. Indeed, lipid-modified proteins, such as Src and Lyn, were found in raft fractions even when detergent-resistant rafts were isolated at room or physiological temperature. The 2-D gel profile of raft proteins isolated with detergent-free (high-pH/carbonate) method was considerably similar to that of detergent-resistant raft proteins but contained a greater number of distinct protein spots. Whereas many detergent-resistant raft proteins disappeared upon cellular exposure to methyl-beta-cyclodextrin, high pH/carbonate-resistant raft proteins did not, suggesting that many of proteins isolated by high pH/carbonate could be contaminants. Considering these data, we conclude that liquid-ordered state of detergent-resistant lipid rafts is not destroyed at physiological temperature.  相似文献   

3.
Sequential proteolytic processing of ErbB-4 occurs in response to ligand addition. Here, we assess the localization of cleavable and non-cleavable ErbB-4 isoforms to membrane microdomains using three methodologies: (1) Triton X-100-insolubility, (2) Brij98-insolubility, and (3) detergent-free density gradient centrifugation. Whereas ErbB-4 translocated to a Triton X-100-insoluble fraction upon treatment of T47D cells with heregulin, it constitutively associated with a Brij98-insoluble fraction and a lipid raft fraction isolated using detergent-free methodology. Comparison of cleavable and non-cleavable isoforms of ErbB-4 revealed that both ErbB-4 isoforms are constitutively localized to either a Triton X-100-soluble or Brij98-insoluble fraction. In contrast, addition of heregulin resulted in translocation of the cleavable isoform to a detergent-free lipid raft. Tumor necrosis factor-alpha converting enzyme (TACE), the ectodomain secretase for ErbB-4, was present predominantly in its mature active form in most microdomains analyzed. These data suggest the assembly of ErbB-4 ectodomain cleavage apparatus in a membrane microdomain.  相似文献   

4.
Lipid rafts, defined as cholesterol- and sphingolipid-rich domains, provide specialized lipid environments understood to regulate the organization and function of many plasma membrane proteins. Growing evidence of their existence, protein cargo, and regulation is based largely on the study of isolated lipid rafts; however, the consistency and validity of common isolation methods is controversial. Here, we provide a detailed and direct comparison of the lipid and protein composition of plasma membrane "rafts" prepared from human macrophages by different methods, including several detergent-based isolations and a detergent-free method. We find that detergent-based and detergent-free methods can generate raft fractions with similar lipid contents and a biophysical structure close to that previously found on living cells, even in cells not expressing caveolin-1, such as primary human macrophages. However, important differences between isolation methods are demonstrated. Triton X-100-resistant rafts are less sensitive to cholesterol or sphingomyelin depletion than those prepared by detergent-free methods. Moreover, we show that detergent-based methods can scramble membrane lipids during the isolation process, reorganizing lipids previously in sonication-derived nonraft domains to generate new detergent-resistant rafts. The role of rafts in regulating the biological activities of macrophage plasma membrane proteins may require careful reevaluation using multiple isolation procedures, analyses of lipids, and microscopic techniques.  相似文献   

5.
A commonly-used method for analysing raft membrane domains is based on their resistance to extraction by non-ionic detergents at 4 degrees C. However, the selectivity of different detergents in defining raft membrane domains has been questioned. We have compared the lipid composition of detergent-resistant membranes (DRMs) obtained after Triton X-100 or Lubrol WX extraction in MDCK cells in order to understand the differential effect of these detergents on membranes and their selectivity in solubilizing or not proteins. Both Lubrol and Triton DRMs were enriched with cholesterol over the lysate, thus exhibiting characteristics consistent with the properties of membrane rafts. However, the two DRM fractions differed considerably in the ratio between lipids of the inner and outer membrane leaflets. Lubrol DRMs were especially enriched with phosphatidylethanolamine, including polyunsaturated species with long fatty acyl chains. Lubrol and Triton DRMs also differed in the amount of raft transmembrane proteins and raft proteins anchored to the cytoplasmic leaflet. Our results suggest that the inner side of rafts is enriched with phosphatidylethanolamine and cholesterol, and is more solubilized by Triton X-100 than by Lubrol WX.  相似文献   

6.
A commonly-used method for analysing raft membrane domains is based on their resistance to extraction by non-ionic detergents at 4 °C. However, the selectivity of different detergents in defining raft membrane domains has been questioned. We have compared the lipid composition of detergent-resistant membranes (DRMs) obtained after Triton X-100 or Lubrol WX extraction in MDCK cells in order to understand the differential effect of these detergents on membranes and their selectivity in solubilizing or not proteins. Both Lubrol and Triton DRMs were enriched with cholesterol over the lysate, thus exhibiting characteristics consistent with the properties of membrane rafts. However, the two DRM fractions differed considerably in the ratio between lipids of the inner and outer membrane leaflets. Lubrol DRMs were especially enriched with phosphatidylethanolamine, including polyunsaturated species with long fatty acyl chains. Lubrol and Triton DRMs also differed in the amount of raft transmembrane proteins and raft proteins anchored to the cytoplasmic leaflet. Our results suggest that the inner side of rafts is enriched with phosphatidylethanolamine and cholesterol, and is more solubilized by Triton X-100 than by Lubrol WX.  相似文献   

7.
The microdomain localization of the GABA(A) receptor in rat cerebellar granule cells was studied by subcellular fractionation and fluorescence- and immunogold electron microscopy. The receptor resided in lipid rafts, prepared at 37 degrees C by extraction with the nonionic detergent Brij 98, but the raft fraction, defined by the marker ganglioside GM(1) in the floating fractions following density gradient centrifugation, was heterogeneous in density and protein composition. Thus, another major raft-associated membrane protein, the Na(+), K(+)-ATPase, was found in discrete rafts of lower density, reflecting clustering of the two proteins in separate membrane microdomains. Both proteins were observed in patchy "hot spots" at the cell surface as well as in isolated lipid rafts. Their insolubility in Brij 98 was only marginally affected by methyl-beta-cyclodextrin. In contrast, both the GABA(A) receptor and Na(+), K(+)-ATPase were largely soluble in ice cold Triton X-100. This indicates that Brij 98 extraction defines an unusual type of cholesterol-independent lipid rafts that harbour membrane proteins also associated with underlying scaffolding/cytoskeletal proteins such as gephyrin (GABA(A) receptor) and ankyrin G (Na(+), K(+)-ATPase). By providing an ordered membrane microenvironment, lipid rafts may contribute to the clustering of the GABA(A) receptor and the Na(+), K(+)-ATPase at distinct functional locations on the cell surface.  相似文献   

8.
The constitutive/inducible association of the T cell receptor (TCR) with isolated detergent-resistant, lipid raft-derived membranes has been studied in Jurkat T lymphocytes. Membranes resistant to 1% Triton X-100 contained virtually no CD3epsilon, part of the TCR complex, irrespective of cell stimulation. On the other hand, membranes resistant either to a lower Triton X-100 concentration (i.e. 0.2%) or to the less hydrophobic detergent Brij 58 (1%) contained (i) a low CD3epsilon amount (approximate 2.7% of total) in resting cells and (ii) a several times higher amount of the TCR component, after T cell stimulation with either antigen-presenting cells or with phytohemagglutinin. It appeared that CD3/TCR was constitutively associated with and recruited to a raft-derived membrane subset because (i) all three membrane preparations contained a similar amount of the raft marker tyrosine kinase Lck but no detectable amounts of the conventional membrane markers, CD45 phosphatase and transferrin receptor; (ii) a larger amount of particulate membranes were resistant to solubilization with 0.2% Triton X-100 and Brij 58 than to solubilization with 1% Triton X-100; and (iii) higher cholesterol levels were present in membranes resistant to either the lower Triton X-100 concentration or to Brij 58, as compared with those resistant to 1% Triton X-100. The recruitment of CD3 to the raft-derived membrane subset appeared (i) to occur independently of cell signaling events, such as protein-tyrosine phosphorylation and Ca(2+) mobilization/influx, and (ii) to be associated with clustering of plasma membrane rafts induced by multiple cross-linking of either TCR or the raft component, ganglioside GM(1). We suggest that during T cell stimulation a lateral reorganization of rafts into polarized larger domains can determine the recruitment of TCR into these domains, which favors a polarization of the signaling cascade.  相似文献   

9.
Membrane microdomains enriched in cholesterol, sphingolipids (rafts), and specific proteins are involved in important physiological functions. However their structure, size and stability are still controversial. Given that detergent-resistant membranes (DRMs) are in the liquid-ordered state and are rich in raft-like components, they might correspond to rafts at least to some extent. Here we monitor the lateral order of biological membranes by characterizing DRMs from erythrocytes obtained with Brij-98, Brij-58, and TX-100 at 4?°C and 37?°C. All DRMs were enriched in cholesterol and contained the raft markers flotillin-2 and stomatin. However, sphingomyelin (SM) was only found to be enriched in TX-100-DRMs – a detergent that preferentially solubilizes the membrane inner leaflet – while Band 3 was present solely in Brij-DRMs. Electron paramagnetic resonance spectra showed that the acyl chain packing of Brij-DRMs was lower than TX-100-DRMs, providing evidence of their diverse lipid composition. Fatty acid analysis revealed that the SM fraction of the DRMs was enriched in lignoceric acid, which should specifically contribute to the resistance of SM to detergents. These results indicate that lipids from the outer leaflet, particularly SM, are essential for the formation of the liquid-ordered phase of DRMs. At last, the differential solubilization process induced by Brij-98 and TX-100 was monitored using giant unilamellar vesicles. This study suggests that Brij and TX-100-DRMs reflect different degrees of lateral order of the membrane microdomains. Additionally, Brij DRMs are composed by both inner and outer leaflet components, making them more physiologically relevant than TX-100-DRMs to the studies of membrane rafts.  相似文献   

10.
11.
This study reports the isolation and characterization of a Triton X-100-resistant membrane fraction from homogenates of rod outer segment (ROS) disk membranes purified free of the surrounding plasma membrane. A portion of the ROS disk membrane was found to be resistant to Triton X-100 extraction at 4 degrees C. This detergent-resistant fraction was isolated as a low buoyant density band on sucrose density gradients and exhibited an increase in light scattering detected at 600 nm. Biochemical analysis of the Triton X-100-resistant fraction showed it to be enriched in cholesterol and sphingomyelin relative to phospholipid and in phospholipid relative to protein compared with the soluble fraction. The Triton X-100-resistant membranes described herein did not arise simply from partial solubilization of the ROS disk membranes because detergent-treated low buoyant density fractions isolated from homogenates with octyl glucopyranoside had cholesterol and sphingomyelin content indistinguishable from that of solubilized ROS disk homogenates. Analysis of proteins associated with the Triton X-100-resistant fraction showed it to be enriched in the rim-specific protein ROM-1 and caveolin; surprisingly, the fusion protein peripherin/rds (where rds is retinal degeneration slow), also localized to the disk rim, was entirely absent from the membrane raft domain. The lipid profiles of the Triton X-100-resistant membranes were virtually identical in preparations homogenized in either the light or dark. Slightly more ROM-1 was recovered from samples prepared in the light (23%) than from samples prepared in the dark (13%), but peripherin/rds could not be detected in either preparation. When the Triton X-100-resistant membranes were treated with methyl-beta-cyclodextran to deplete membrane cholesterol, the resultant membranes contained slightly lower levels of ROM-1, specifically in the dimeric form. Cholesterol depletion also resulted in the collapse of the large caveolin complex to monomeric caveolae. The results presented herein characterize a pool of ROM-1, a photoreceptor tetraspanin protein, that may play a regulatory role in peripherin/rds-dependent fusion.  相似文献   

12.
Detergent-resistant membranes (DRM), an experimental model used to study lipid rafts, are typically extracted from cells by means of detergent treatment and subsequent ultracentrifugation in density gradients, Triton X-100 being the detergent of choice in most of the works. Since lipid rafts are membrane microdomains rich in cholesterol, depletion of this component causes solubilization of DRM with detergent. In previous works from our group, the lack of effect of cholesterol depletion on DRM solubilization with Triton X-100 was detected in isolated rat brain synaptosomes. In consequence, the aim of the present work is to explore reasons for this observation, analyzing the possible role of the actin cytoskeleton, as well as the use of an alternative detergent, Brij 98, to overcome the insensitivity to Triton X-100 of cholesterol-depleted DRM. Brij 98 yields Brij-DRM that are highly dependent on cholesterol, since marker proteins (Flotillin-1 and Thy-1), as well as actin, appear solubilized after MCD treatment. Pretreatment with Latrunculin A results in a significant increase in Flotillin-1, Thy-1 and actin solubilization by Triton X-100 after cholesterol depletion. Studies with transmission electron microscopy show that combined treatment with MCD and Latrunculin A leads to a significant increase in solubilization of DRM with Triton X-100. Thus, Triton-DRM resistance to cholesterol depletion can be explained, at least partially, thanks to the scaffolding action of the actin cytoskeleton, without discarding differential effects of Brij 98 and Triton X-100 on specific membrane components. In conclusion, the detergent of choice is important when events that depend on the actin cytoskeleton are going to be studied.  相似文献   

13.
Platelet interactions with collagen are orchestrated by the presence or the migration of platelet receptor(s) for collagen into lipid rafts, which are specialized lipid microdomains from the platelet plasma membrane enriched in signalling proteins. Electron microscopy shows that in resting platelets, TIIICBP, a receptor specific for type III collagen, is present on the platelet membrane and associated with the open canalicular system, and redistributes to the platelet membrane upon platelet activation. After platelet lysis by 1% Triton X-100 and the separation of lipid rafts on a discontinuous sucrose gradient, TIIICBP is recovered in lipid raft-containing fractions and Triton X-100 insoluble fractions enriched in cytoskeleton proteins. Platelet aggregation, induced by type III collagen, was inhibited after disruption of the lipid rafts by cholesterol depletion, whereas platelet adhesion under static conditions did not require lipid raft integrity. These results indicate that TIIICBP, a platelet receptor involved in platelet interaction with type III collagen, is localized within platelet lipid rafts where it could interact with other platelet receptors for collagen (GP VI and α2β1 integrin) for efficient platelet activation. Pascal Maurice and Ludovic Waeckel have contributed equally to this work.  相似文献   

14.
Lipid rafts (glycosphingolipid/cholesterol-enriched membrane microdomains) have been isolated as low temperature, detergent-resistant membranes from many cell types, but despite their presumed importance as lateral sorting and signaling platforms, fundamental questions persist concerning raft function and even existence in vivo. The nonionic detergent Brij 98 was used to isolate lipid rafts from microvillar membrane vesicles of intestinal brush borders at physiological temperature to compare with rafts, obtained by "conventional" extraction using Triton X-100 at low temperature. Microvillar rafts prepared by the two protocols were morphologically different but had essentially similar profiles of protein- and lipid components, showing that raft microdomains do exist at 37 degrees C and are not "low temperature artifacts." We also employed a novel method of sequential detergent extraction at increasing temperature to define a fraction of highly detergent-resistant "superrafts." These were enriched in galectin-4, a beta-galactoside-recognizing lectin residing on the extracellular side of the membrane. Superrafts also harbored the glycosylphosphatidylinositol-linked alkaline phosphatase and the transmembrane aminopeptidase N, whereas the peripheral lipid raft protein annexin 2 was essentially absent. In conclusion, in the microvillar membrane, galectin-4, functions as a core raft stabilizer/organizer for other, more loosely raft-associated proteins. The superraft analysis might be applicable to other membrane microdomain systems.  相似文献   

15.
Chen X  Morris R  Lawrence MJ  Quinn PJ 《Biochimie》2007,89(2):192-196
The action of detergents in the isolation of detergent-resistant membrane fractions from rat brain is reported. Triton X-100 treatment of whole rat brain homogenate at 4 degrees C produced detergent-resistant membranes with a density of 1.07g/ml compared with Brij96 where the density of the membrane was only 1.05g/ml. The DRM fractions isolated using Triton X-100 are considerably heavier than those isolated from homogenates treated with Brij96. The major polar lipid composition of DRMs derived from Brij96 treated homogenates have a higher proportion of aminophospholipids compared with choline phospholipids than Triton X-100 derived DRMs; this may indicate that DRMs from Brij96 treated homogenates are more closely related to the parent membrane in lipid composition. Solubilization by Triton X-100 at higher temperatures resulted in the appearance of a second detergent-resistant membrane fraction distinctly lighter in density than the membrane recovered at density 1.07g/ml. Analysis of phospholipid composition of the brain homogenate during detergent treatment for up to 30min at 37 degrees C showed a decreasing proportion of sphingomyelin. Treatment of homogenates at 37 degrees C appears to activate phospholipases/sphingomyelinases that may alter the lipid content of isolated DRMs. The presence of K+/Mg2+ with Brij96 treatment results in DRM fractions with significantly thicker bilayers and of larger vesicle diameter than DRMs isolated from either Triton X-100 or Brij96 treated homogenates in the absence of cations.  相似文献   

16.
Neuregulin-1 proteins and their receptors, which are members of the ErbB subfamily of receptor tyrosine kinases, play essential roles in the development of the nervous system and heart. Most neuregulin-1 isoforms are synthesized as transmembrane proproteins that are proteolytically processed to yield an N-terminal fragment containing the bioactive EGF-like domain. In this study we investigated whether neuregulins are found in lipid rafts, membrane microdomains hypothesized to have important roles in signal transduction, protein trafficking, and proteolytic processing. We found that 45% of a 140-kDa neuregulin protein in rat brain synaptosomal plasma membrane fractions was insoluble in 1% Triton X-100. Flotation gradient analysis demonstrated the presence of the brain 140 kDa neuregulin protein in low-density fractions enriched in PSD-95, a known lipid raft protein. In transfected cells expressing the neuregulin I-beta 1a or the III-beta 1a isoform, most of the neuregulin proprotein was insoluble in 1% Triton X-100, and neuregulin proproteins and C-terminal fragments were detected in lipid raft fractions. In contrast, the III-beta 1a N-terminal fragment was detected only in the detergent-soluble fraction. These results suggest that localization of neuregulins to lipid rafts may play a role in neuregulin signaling within the nervous system.  相似文献   

17.
Detergent-resistant membrane raft fractions have been prepared from human, goat, and sheep erythrocyte ghosts using Triton X-100. The structure and thermotropic phase behaviour of the fractions have been examined by freeze-fracture electron microscopy and synchrotron X-ray diffraction methods. The raft fractions are found to consist of vesicles and multilamellar structures indicating considerable rearrangement of the original ghost membrane. Few membrane-associated particles typical of freeze-fracture replicas of intact erythrocyte membranes are observed in the fracture planes. Synchrotron X-ray diffraction studies during heating and cooling scans showed that multilamellar structures formed by stacks of raft membranes from all three species have d-spacings of about 6.5 nm. These structures can be distinguished from peaks corresponding to d-spacings of about 5.5 nm, which were assigned to scattering from single bilayer vesicles on the basis of the temperature dependence of their d-spacings compared with the multilamellar arrangements. The spacings obtained from multilamellar stacks and vesicular suspensions of raft membranes were, on average, more than 0.5 nm greater than corresponding arrangements of erythrocyte ghost membranes from which they were derived. The trypsinization of human erythrocyte ghosts results in a small decrease in lamellar d-spacing, but rafts prepared from trypsinized ghosts exhibit an additional lamellar repeat 0.4 nm less than a lamellar repeat coinciding with rafts prepared from untreated ghosts. The trypsinization of sheep erythrocyte ghosts results in the phase separation of two lamellar repeat structures (d=6.00; 5.77 nm), but rafts from trypsinized ghosts produce a diffraction band almost identical to rafts from untreated ghosts. An examination of the structure and thermotropic phase behaviour of the dispersions of total polar lipid extracts of sheep detergent-resistant membrane preparations showed that a reversible phase separation of an inverted hexagonal structure from coexisting lamellar phase takes place upon heating above about 30 degrees C. Non-lamellar phases are not observed in erythrocytes or detergent-resistant membrane preparations heated up to 55 degrees C, suggesting that the lamellar arrangement is imposed on these membrane lipids by interaction with non-lipid components of rafts and/or that the topology of lipids in the erythrocyte membrane survives detergent treatment.  相似文献   

18.
In this study we present data supporting that most CD38 is pre-assembled in a subset of Brij 98-resistant raft vesicles, which were stable at 37 degrees C, and have relatively high levels of Lck and the CD3-zeta subunit of T cell antigen receptor-CD3 complex in contrast with a Brij 98-soluble pool, where CD38 is associated with CD3-zeta, and Lck is not detected. Our data further indicate that following CD38 engagement, LAT and Lck are tyrosine phosphorylated exclusively in Brij 98-resistant rafts, and some key signaling components translocate into rafts (i.e. Sos and p85-phosphatidylinositol 3-kinase). Moreover, N-Ras results activated within rafts immediately upon CD38 ligation, whereas activated Erk was mainly found in soluble fractions with delayed kinetics respective to Ras activation. Furthermore, full phosphorylation of CD3-zeta and CD3-epsilon only occurs in rafts, whereas partial CD3-zeta tyrosine phosphorylation occurs exclusively in the soluble pool, which correlated with increased levels of c-Cbl tyrosine phosphorylation in the non-raft fractions. Taken together, these results suggest that, unlike the non-raft pool, CD38 in rafts is able to initiate and propagate several activating signaling pathways, possibly by facilitating critical associations within other raft subsets, for example, LAT rafts via its capacity to interact with Lck and CD3-zeta. Overall, these findings provide the first evidence that CD38 operates in two functionally distinct microdomains of the plasma membrane.  相似文献   

19.
1. Insolubility of membrane constituents in nonionic detergents such as Triton X-100 has been a widely used biochemical criterion to indicate their localization in membrane domains. However, concerns on the possibility of membrane perturbation in the presence of detergents have led to the development of detergent-free approaches. 2. We have explored the organization of the serotonin1A receptor, an important G-protein coupled receptor, from bovine hippocampus and CHO cells using a detergent-free approach in order to address the points of agreement with our previous results using Triton X-100. 3. A significant fraction of the serotonin1A receptor has been found to be localized in a heavy density fraction obtained using a detergent-free approach to isolate membrane domains. In addition, we have characterized the membrane fractions isolated in terms of their lipid composition and membrane physical properties. 4. The results obtained on the membrane localization of the serotonin1A receptor from the present experiments using a detergent-free approach correlate well with our earlier findings obtained using a detergent-based method (Kalipatnapu, S., and Chattopadhyay, A., FEBS Lett. 576:455–460, 2004). These results provide important information on the membrane organization of the hippocampal serotonin1A receptor and are relevant in view of the concerns on the use of detergent in determination of membrane organization of constituent proteins and lipids.  相似文献   

20.
The serotonin transporter (SERT) is an integral membrane protein responsible for the clearance of serotonin from the synaptic cleft following the release of the neurotransmitter. SERT plays a prominent role in the regulation of serotoninergic neurotransmission and is a molecular target for multiple antidepressants as well as substances of abuse. Here we show that SERT associates with lipid rafts in both heterologous expression systems and rat brain and that the inclusion of the transporter into lipid microdomains is critical for serotonin uptake activity. SERT is present in a subpopulation of lipid rafts, which is soluble in Triton X-100 but insoluble in other non-ionic detergents such as Brij 58. Disaggregation of lipid rafts upon depletion of cellular cholesterol results in a decrease of serotonin transport capacity (V(max)), due to the reduction of turnover number of serotonin transport. Our data suggest that the association of SERT with lipid rafts may represent a mechanism for regulating the transporter activity and, consequently, serotoninergic signaling in the central nervous system, through the modulation of the cholesterol content in the cell membrane. Furthermore, SERT-containing rafts are detected in both intracellular and cell surface fractions, suggesting that raft association may be important for trafficking and targeting of SERT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号