首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper concentrates on the system that controls the femur-tibia joint in the legs of the stick insect, Carausius morosus. Earlier investigations have shown that this joint is subject to a mixture of proportional and differential control whereby the differential part plays a prominent role. Experiments presented here suggest another interpretation: single legs of a stick insect were systematically perturbed using devices of different compliance and compensatory forces and movements monitored. When the compliance is high (soft spring), forces are generated that return the leg close to its original position. When the compliance is low (stiff spring), larger forces are generated but sustained changes in position occur that are proportional to the force that is applied. Selective ablation of leg sense organs showed that the leg did not maintain its position after elimination of afferents of the femoral chordotonal organ. Ablation of leg campaniform sensilla had no effect. These data support the idea that different control strategies are used, depending upon substrate compliance. In particular, what we and other authors have called a differential controller, is now considered as an integral controller that intelligently gives up when the correlation between motor output and movement of the leg is low.We would like to dedicate this article to Prof. Dr. Ulrich Bässler. Starting in the 1960s, his seminal work stimulated a long series of fruitful studies that, even today, reveal exciting insights into motor control.  相似文献   

2.
Abstract:  After comparing the persistence of four marking techniques, a mark–release–resight study was performed to characterize mid-season movement of the Colorado potato beetle [ Leptinotarsa decemlineata (Say); Col., Chrysomelidae] simultaneously in a fallow and in a wheat field. Isolated patches of potatoes were installed in a random spatial arrangement on both fields similarly. Overwintered beetles were individually marked and released. Beetles showed limited inter-patch movement activity (15.9% of recovery events) with an overall mean daily dispersal of 0.309 m (0.0–7 m). There was a significant difference in the insects' movement distance between the fallow and wheat field but there was no difference between the movement distances of males and females. The distance between the patches varied between 1 and 7.81 m, and inter-patch movement was infrequent (15.9%). Results suggest that surrounding fields by wheat rather than fallow grounds should be studied as a possible strategy to reduce the movement of overwintered beetles between potato fields.  相似文献   

3.
Leg movements of stick insects (Carausius morosus) making turns towards visual targets are examined in detail, and a dynamic model of this behaviour is proposed. Initial results suggest that front legs shape most of the body trajectory, while the middle and hind legs just follow external forces (Rosano H, Webb B, in The control of turning in real and simulated stick insects, vol. 4095, pp 145–156, 2006). However, some limitations of this explanation and dissimilarities in the turning behaviour of the insect and the model were found. A second set of behavioural experiments was made by blocking front tarsi to further investigate the active role of the other legs for the control of turning. The results indicate that it is necessary to have different roles for each pair of legs to replicate insect behaviour. We demonstrate that the rear legs actively rotate the body while the middle legs move sideways tangentially to the hind inner leg. Furthermore, we show that on average the middle inner and hind outer leg contribute to turning while the middle outer leg and hind inner leg oppose body rotation. These behavioural results are incorporated into a 3D dynamic robot simulation. We show that the simulation can now replicate more precisely the turns made by the stick insect. This work was supported by CONACYT México and the European Commission under project FP6-2003-IST2-004690 SPARK.  相似文献   

4.
5.
To detect and avoid collisions, animals need to perceive and control the distance and the speed with which they are moving relative to obstacles. This is especially challenging for swimming and flying animals that must control movement in a dynamic fluid without reference from physical contact to the ground. Flying animals primarily rely on optic flow to control flight speed and distance to obstacles. Here, we investigate whether swimming animals use similar strategies for self-motion control to flying animals by directly comparing the trajectories of zebrafish (Danio rerio) and bumblebees (Bombus terrestris) moving through the same experimental tunnel. While moving through the tunnel, black and white patterns produced (i) strong horizontal optic flow cues on both walls, (ii) weak horizontal optic flow cues on both walls and (iii) strong optic flow cues on one wall and weak optic flow cues on the other. We find that the mean speed of zebrafish does not depend on the amount of optic flow perceived from the walls. We further show that zebrafish, unlike bumblebees, move closer to the wall that provides the strongest visual feedback. This unexpected preference for strong optic flow cues may reflect an adaptation for self-motion control in water or in environments where visibility is limited.  相似文献   

6.
In theory, carbon is highly mobile in aquatic systems. Recent evidence from carbon stable isotopes of crabs (Parasesarma erythrodactyla and Australoplax tridentata), however, shows that in subtropical Australian waters, measurable carbon movement between adjacent mangrove and saltmarsh habitats is limited to no more than a few metres. We tested whether the pattern in crab δ13C values across mangrove and saltmarsh habitats was explained by crab movement, or the movement of particulate organic matter. We estimated crab movement in a mark–recapture program using an array of pitfall traps on 13 transects (a total of 65 traps) covering an area of 600 m2 across the interface of these two habitats. Over a 19-day period, the majority of crabs (91% for P. erythrodactyla, 93% for A. tridentata) moved <2 m from the place of initial capture. Crab movement cannot, therefore, explain the patterns in δ13C values of crabs. δ13C values of detritus collected at 2-m intervals across the same habitat interface fitted a sigmoidal curve of a similar form to that fitting the δ13C values of crabs. δ13C values of detritus were 2–4‰ more depleted in saltmarsh (−18.5±0.6‰), and 4–7‰ more depleted in mangroves (−25.9±0.1‰) than δ13C values of crabs recorded previously in each habitat. Assimilation by crabs of very small detrital fragments or microphytobenthos, more enriched in 13C, may explain the disparity in δ13C values. Nevertheless, the pattern in δ13C values of detritus suggests that crabs obtain their carbon from up to several metres away, but without themselves foraging more then a metre or so from their burrow. Such detailed measurements of carbon movement in estuaries provide a spatially explicit understanding of the functioning of food webs in saltmarsh and mangrove habitats.  相似文献   

7.
8.
Natal homing is a hallmark of the life history of salmonid fishes, but the spatial scale of homing within local, naturally reproducing salmon populations is still poorly understood. Accurate homing (paired with restricted movement) should lead to the existence of fine-scale genetic structuring due to the spatial clustering of related individuals on spawning grounds. Thus, we explored the spatial resolution of natal homing using genetic associations among individual Chinook salmon (Oncorhynchus tshawytscha) in an interconnected stream network. We also investigated the relationship between genetic patterns and two factors hypothesized to influence natal homing and localized movements at finer scales in this species, localized patterns in the distribution of spawning gravels and sex. Spatial autocorrelation analyses showed that spawning locations in both sub-basins of our study site were spatially clumped, but the upper sub-basin generally had a larger spatial extent and continuity of redd locations than the lower sub-basin, where the distribution of redds and associated habitat conditions were more patchy. Male genotypes were not autocorrelated at any spatial scale in either sub-basin. Female genotypes showed significant spatial autocorrelation and genetic patterns for females varied in the direction predicted between the two sub-basins, with much stronger autocorrelation in the sub-basin with less continuity in spawning gravels. The patterns observed here support predictions about differential constraints and breeding tactics between the two sexes and the potential for fine-scale habitat structure to influence the precision of natal homing and localized movements of individual Chinook salmon on their breeding grounds.  相似文献   

9.
We use a modeling approach to examine ideas derived from physiological network analyses, pertaining to the switch of a motor control network between two opposite control modes. We studied the femur–tibia joint control system of the insect leg, and its switch between resistance reflex in posture control and “active reaction” in walking, both elicited by the same sensory input. The femur–tibia network was modeled by fitting the responses of model neurons to those obtained in animals. The strengths of 16 interneuronal pathways that integrate sensory input were then assigned three different values and varied independently, generating a database of more than 43 million network variants. We demonstrate that the same neural network can produce the two different behaviors, depending on the combinatorial code of interneuronal pathways. That is, a switch between behaviors, such as standing to walking, can be brought about by altering the strengths of selected sensory integration pathways. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Abstract Behaviour of nocturnal insects is routinely observed under red light, but it is unclear how the behaviour under red light compares to behaviour in complete darkness, or under a source of white light. Here, we measure movement behaviour of the nocturnal carabid beetle Pterostichus melanarius Illiger (Coleoptera: Carabidae) using camera recording under a near‐infrared (nir), red or white radiation source. Red light significantly reduced movement speed in females similar to the effect of white light and different from nir. Also movement activity and pause length were affected by radiation source, with a significant difference between nir and white light, and with intermediate values in red light. The results presented here indicate that P. melanarius has different movement behaviour under the three radiation sources and suggest that nir rather than red radiation is most appropriate for measuring behaviour in total darkness. However, in the field total darkness is rare both because of natural light sources such as the moon and stars but increasingly also because of ecological light pollution, and therefore red light may still be of use for observing ecologically and practically relevant natural night‐time behaviour.  相似文献   

11.
Abstract. Peristomatal transpiration is defined as the relative high local rate of cuticular water loss from external and internal surfaces around the stomatal pore and its decisive role in the control of stomatal movement is re-emphasized. As the resistance towards changes in air humidity is low in the pore surroundings, the state of turgor is particularly unsteady there. Due to the inherent instability the guard cell 'senses' fluctuations in the supply-demand relationship of water and is thus the control unit proper. The environmental variables (supply and demand) are cross-correlated within the subsidiary cell and the information is transmitted to the guard cell through the water potential gradient between the two cells. A conceptual segregation of a 'humidity response' by 'passive' stomatal movements is rejected.
As ions always accumulate at the most distant point of the liquid path and as this point varies with pore width according to the prevailing water potential gradients, it is felt that the water stream is causing the characteristic pattern of ion distribution within the epidermis. Passive import of ions is attributed to local concentration gradients which are steepened by continuous supply and by water uptake into the guard cell in response to starch hydrolysis. A mechanistic model supplements the discussion.  相似文献   

12.
Rotations of the eye are generated by the torques that the eye muscles apply to the eye. The relationship between eye orientation and the direction of the torques generated by the extraocular muscles is therefore central to any understanding of the control of three-dimensional eye movements of any type. We review the geometrical properties that dictate the relationship between muscle pulling direction and 3D eye orientation. We then show how this relation can be used to test the validity of oculomotor control hypotheses. We test the common modeling assumption that the extraocular muscle pairs can be treated as single bidirectional muscles. Finally, we investigate the consequences of assuming fixed muscle pulley locations when modeling the control of eye movements.  相似文献   

13.
Summary Recent confirmations of the presence of myosin in angiosperm pollen tubes indicate that an energy-transducing actomyosin system is involved in the motility system of the vegetative cells. Myosin has been localised by immunofluorescence on the surfaces of vegetative nuclei and generative cells. It has been shown to be associated with individual amyloplasts in grass pollen, and there are indications that it is present on other particulate bodies in the cytoplasm. The organelles in the leading part of the tube move along separate traffic lanes of acropetal and basipetal polarity, known from electron microscopy and phalloidin labelling to contain numbers of fibrils containing aggregates of actin microfilaments; in older segments the movement can be related to single, uniformly polarised, fibrils. Circulatory flow is maintained at the proximal end by the looping of the fibrils in the grain or at callose plugs. Such loops do not occur at the apex, where entering organelles undergo random movement before becoming associated with basipetal streams. Vegetative nuclei and generative cells interact with several fibrils, and it is suggested that they are held in the leading part of the protoplast in unstable equilibrium between acropetal and basipetal forces. Constantly changing form, especially of the vegetative nucleus, is one consequence of these varying stresses. Possible analogies with the intracellular motility system of the giant cells of the Characeae are noted, and it is suggested that lipid globuli and other nonorganellar bodies may be transported in the pollen tube by association with myosin-bearing membranes similar to those involved in endoplasm movement in the characean cells.  相似文献   

14.
15.
The electromyographic basis of inaccurate performance was investigated in two rapid precision-grip skills controlled by concentric and eccentric muscle contractions respectively. Surface electromyograms, recorded from the first dorsal interosseous (DI), adductor pollicis (AP) and abductor pollicis brevis, were utilised to identify changes in the timing and intensity of muscle activation which may be responsible for inaccurate performance. The results showed that when fast precision-grip skills were controlled by concentric DI and AP muscle contraction, variations in the intensity of muscle contraction were responsible for inaccurate performance. However, when these skills were controlled by eccentric DI and AP muscle contractions, inaccurate performance resulted from variations in the timing of muscle activation. It was concluded that the nature of the deficiency in the patterns of muscle activation resulting in inaccurate performance was dependent upon the type of muscle contraction used in the skill.  相似文献   

16.
芽胞杆菌防治烟草病虫害的研究进展   总被引:1,自引:0,他引:1  
烟草病虫害严重影响烟草产业的可持续发展,更为安全的生物防治方法已成为烟草病虫害防治研究的热点领域。芽胞杆菌属(Bacillus)是一类比较理想的生防微生物,在植病生物防治领域显示出了广阔的应用前景。本文论述了芽胞杆菌属细菌的生物学特性及其在烟草黑胫病、赤星病、青枯病、炭疽病、根黑腐病、花叶病、白粉病、烟草斜纹夜蛾和甲虫等烟草病虫害防治中的应用。  相似文献   

17.
This review of literature describes the cellular and molecular biology of orthodontic tooth movement, including various theories and effect of chemical mediators on tooth movement. The better understanding of the tooth movement mechanism will inspire the clinicians to design and implement effective appliances that will result in maximum benefits and minimum tissue damage to the patients. This paper also emphasizes the applied aspect of different medication and hormones, during orthodontic treatment, on the signaling molecules which produce bone remodeling.  相似文献   

18.
1 Using a stochastic simulation model, we explored the effects of agroecosystem diversity on herbivore densities. 2 Using parameters that included reproduction, colonization, and local movement rates, we simulated an insect herbivore population colonizing rows of plants in an agricultural setting. 3 Plant rows were comprised of either principal crop, intercrop, or trap crop. Herbivore parameters varied for different plant types. 4 Percent crop cover and movement rates were varied, and ensuing herbivore densities on crop rows were recorded. 5 In trap cropping schemes, both percent crop cover and movement rates were critical in determining herbivore densities. Intercropping schemes were governed primarily by colonization rates. 6 These results suggest that trap cropping schemes merit more attention than intercropping systems in the design and analysis of mixed cropping systems.  相似文献   

19.
20.
Survival, infectivity, and movement of three insect parasitic nematodes (Steinernema feltiae All strain, S. bibionis SN strain, and Heterorhabditis heliothidis NC strain) in poultry manure were tested under laboratory conditions. The majority (70-100%) of the nematodes died within 18 hours after exposure to the manure. Nematodes exposed to manure slurry for 6 hours killed at least 95% of the house fly larvae, Musca domestica, but nematodes exposed for 12 hours achieved less than 40% larval mortality. The majority (90-97%) of the three nematode species applied to the manure remained on the surface. Poor survival and limited movement of nematodes in poultry manure appear to make them unlikely candidates for biocontrol of filth flies in this habitat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号