首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C Gamba-Vitalo  M P DiGiovanna  A C Sartorelli 《Blood cells》1991,17(1):193-205; discussion 206-8
To evaluate the efficacy of recombinant murine granulocyte-macrophage colony-stimulating factor (rGM-CSF) in attenuating the myelosuppression associated with chemotherapy, the effects of 100 and 300 ng rGM-CSF, administered twice daily by intraperitoneal injection for 6 consecutive days to mice 24 hours after a dose of 200 mg/kg cyclophosphamide, were measured. Six days after the initial injection of rGM-CSF, a significant increase occurred in the absolute myeloid count compared to that of vehicle-treated animals. The difference was most pronounced on day 7, attaining levels of 327% and 428% of the control; these increases slowly declined to that of the control level by day 19. No significant effect was produced by rGM-CSF on the packed red cell volume or on the platelet count. Furthermore, the administration of rGM-CSF did not alter bone marrow cellularity or increase the number of marrow-derived hematopoietic stem cells. In contrast, a significant splenomegaly occurred, starting on day 6 and continuing until day 17. This was characterized by a pronounced increase in splenic-derived granulocyte (CFU-G), granulocyte-macrophage (CFU-GM), macrophage (CFU-M), megakaryocyte (CFU-MK), and erythroid (BFU-E, CFU-E) stem cells. The increases occurred between days 6 and 9 following the initial administration of rGM-CSF. These findings indicated that the administration of rGM-CSF to cyclophosphamide-treated animals causes an absolute increase in circulating myeloid cells and that these increases are derived from the spleen. The use of recombinant hematopoietic growth factors may permit the administration of more intensive chemotherapy through amelioration of chemically induced leukopenia.  相似文献   

2.
3.
Short-lived peripheral blood eosinophils are recruited to the lungs of asthmatics after allergen challenge, where they become long-lived effector cells central to disease pathophysiology. GM-CSF is an important cytokine which promotes eosinophil differentiation, function, and survival after transit into the lung. In human eosinophils, GM-CSF production is controlled by regulated mRNA stability mediated by the 3' untranslated region, AU-rich elements (ARE). We identified human Y box-binding factor 1 (YB-1) as a GM-CSF mRNA ARE-specific binding protein that is capable of enhancing GM-CSF-dependent survival of eosinophils. Using a transfection system that mimics GM-CSF metabolism in eosinophils, we have shown that transduced YB-1 stabilized GM-CSF mRNA in an ARE-dependent mechanism, causing increased GM-CSF production and enhanced in vitro survival. RNA EMSAs indicate that YB-1 interacts with the GM-CSF mRNA through its 3' untranslated region ARE. In addition, endogenous GM-CSF mRNA coimmunoprecipitates with endogenous YB-1 protein in activated eosinophils but not resting cells. Thus, we propose a model whereby activation of eosinophils leads to YB-1 binding to and stabilization of GM-CSF mRNA, ultimately resulting in GM-CSF release and prolonged eosinophil survival.  相似文献   

4.
5.
The cytokines interleukin-8 (IL-8) and granulocyte-macrophage colony-stimulating factor (GM-CSF) enhanced the extracellular release of arachidonate metabolites from ionophore-stimulated neutrophils by 145 +/- 10% (mean +/- S.E.M., n = 13) and 182 +/- 11% (n = 16), respectively. To determine whether enhanced leukotriene production mediates the effects of these cytokines on neutrophil activity, two different specific arachidonate 5-lipoxygenase (5-LO) inhibitors, piriprost and MK-886, were used to inhibit leukotriene synthesis. Neither inhibitor affected the upregulation of CD11b beta(2)-integrin expression or priming of superoxide generation stimulated by IL-8 and GM-CSF. It is concluded that leukotrienes do not mediate either the direct or priming effects of these cytokines and that these classes of anti-inflammatory drugs are therefore unlikely to inhibit the effects of IL-8 and GM-CSF on neutrophil activation.  相似文献   

6.
The study was aimed at evaluating the radioprotective effectiveness of beta-estradiol following its prophylactic administration in conditions of acute irradiation. Evaluation of the radioprotective efficiency was performed by studying the 30-day survival rate, life expectancy, the structure of irradiated mice death, the bone marrow hematopoiesis using the method of exogenous colony formation. The prophylactic use of beta-estradiol at doses of 20 and 40 mg/kg 5 days before irradiation has been established to protect the exposed mice against radiation death induced by X-rays at doses LD50-90/30, thus increasing their survival rate by 17-58%, and to favor the reduced expression of post radiation disorders of bone marrow hematopoiesis.  相似文献   

7.
Peritoneal and pleural cells from mice transgenic for GM-CSF were studied with regard to their phenotype and functional capacity, and compared with cells from normal littermates. Transgenic mice showed markedly elevated peritoneal and pleural cell counts compared with littermates, and a significantly higher proportion of cells in the transgenic populations were macrophage in phenotype. Transgenic macrophages were larger than the littermate cells, showing abundant foamy cytoplasm and enhanced spreading on plastic. Analysis by flow cytometry showed a more than sixfold increased expression of the macrophage activation markers MAC-2 and MAC-3, but not other markers, on transgenic macrophages. Superoxide production was measured in whole cell populations, both in their basal state and in response to particulate (zymosan) and soluble (PMA) stimuli. Both basal and stimulated superoxide production were markedly elevated in transgenic mice of 12 wk of age, with the largest differences seen in response to PMA. In younger mice, however, only PMA-stimulated superoxide production was significantly greater in transgenic macrophages than in littermate cells and levels of superoxide were generally lower than those seen in 12-wk-old mice. These findings suggest that the enhanced functional capacity of transgenic cells is a maturation-dependent event. In contrast to these findings, drug-dependent cytotoxicity assays performed on cells from 12-wk-old mice revealed no significant differences in killing capacity between the two mouse strains. Taken together these data indicate a selective rather than uniform functional up-regulation in transgenic macrophages compared with their littermates, with a time scale suggestive of a maturational rather than activation process. These findings may provide an indication of the functional macrophage phenotype resulting from long term exposure to GM-CSF in vivo, and help to explain the macrophage-associated pathology seen in GM-CSF-transgenic mice.  相似文献   

8.
Human granulocyte-macrophage colony-stimulating factor (GM-CSF) is a cytokine derived from activated T cells, endothelial cells, fibroblasts, and macrophages. It stimulates myeloid and erythroid progenitors to form colonies in semisolid medium in vitro, as well as enhancing multiple differentiated functions of mature neutrophils, macrophages, and eosinophils. We have examined the binding of human GM-CSF to a variety of responsive human cells and cell lines. The most mature myelomonocytic cells, specifically human neutrophils, macrophages, and eosinophils, express the highest numbers of a single class of high affinity receptors (Kd approximately 37 pM, 293-1000 sites/cell). HL-60 and KG-1 cells exhibit an increase in specific binding at high concentrations of GM-CSF; computer analysis of the data is nonetheless consistent with a single class of high affinity binding sites with a Kd approximately 43 pM and 20-450 sites/cell. Dimethyl sulfoxide induces a 3-10-fold increase in high affinity receptors expressed in HL-60 cells, coincident with terminal neutrophilic differentiation. Finally, binding of 125I-GM-CSF to fresh peripheral blood cells from six patients with chronic myelogenous leukemia was analyzed. In three of six cases, binding was similar to the nonsaturable binding observed with HL-60 and KG-1 cells. GM-CSF binding was low, or in some cases, undetectable on myeloblasts obtained from eight patients with acute myelogenous leukemia. The observed affinities of the receptor for GM-CSF are consistent with all known biological activities. Affinity labeling of both normal neutrophils and dimethyl sulfoxide-induced HL-60 cells with unglycosylated 125I-GM-CSF yielded a band of 98 kDa, implying a molecular weight of approximately 84,000 for the human GM-CSF receptor.  相似文献   

9.
The purpose of this study was to investigate effects of the treatment prior to irradiation with granulocyte colony-stimulating factor (G-CSF) on hematopoiesis in B10CBAF1 mice exposed to a sublethal dose of 6.5 Gy of 60Co gamma radiation. G-CSF was administered in a 4-day regimen (3 microg/day); irradiation followed 3 h after the last injection of G-CSF. Such a treatment was found to stimulate granulopoiesis, as shown by increased counts of granulocyte-macrophage progenitor cells (GM-CFC) and of granulocytic cells in the femoral marrow and spleen at the time of irradiation. However, postirradiation counts of GM-CFC and granulocytic cells in the marrow of mice pretreated with G-CSF were reduced up to day 18 after irradiation. Interestingly, the D0 values for marrow GM-CFC determined 1 h after in vivo irradiation were 1.98 Gy for controls and 2.47 Gy for mice pretreated with G-CSF, indicating a decreased radiosensitivity of these cells after drug treatment. The inhibitory effects of the pretreatment with G-CSF on the postirradiation granulopoiesis could be attributed to the phenomenon of "rebound quiescence" which can occur after cessation of the treatment with growth factors. Postirradiation recovery of erythropoiesis in the spleen of mice pretreated with G-CSF exhibited a dramatic increase and compensated for the decreased erythropoiesis in the marrow at the time of irradiation. This complexity of the hematopoietic response should be taken into account when administering G-CSF in preirradiation regimens.  相似文献   

10.
To study the structure-function relationship of the human granulocyte-macrophage colony-stimulating factor (GM-CSF), genes were constructed that encode its three deletion mutants: D1, a mutant with the deletion of six amino acid residues (37-42) some of which are a part of a beta-structural region; D2, a mutant with the deletion of the unstructured six-aa sequence of a loop (45-50); and D3, a mutant with the deletion of 14 aa residues (37-50) corresponding to the A-B loop and encoded by the second exon of the gmcsf gene. The expression products of these genes in E. coli were accumulated in a fraction of insoluble proteins. The secondary structures of the mutant proteins were similar to that of the full-size GM-CSF, but the biological activity of the deletion mutants was 130 times lower than that of the GM-CSF: they stimulated the proliferation of the TF-1 cell line at 3 ng/ml concentration. The resulting proteins displayed antagonistic properties toward the full-size GM-CSF, with the inhibition degree of its colony-stimulating activity being 27%. A decrease in the mutant activity in the row D2 > D1 > D3 implies the importance of the conserved hydrophobic residues involved in the formation of the beta-structure for the formation of the GM-CSF functional conformation.  相似文献   

11.
Granulocyte-macrophage colony-stimulating factor (GM-CSF) has emerged as an important regulation for hematopoietic cell development and function. Within the myeloid lineages, GM-CSF serves as a growth and developmental factor for intermediate-stage progenitors between early, interleukin 3-responsive and late granulocyte colony-stimulating factor-responsive precursors. GM-CSF also serves as an activator of circulating effector cells. The ability of GM-CSF to induce monocyte expression of tumor necrosis factor, interleukin 1 and other factors, further ties this hormone into a network of cytokines that interact to regulate many hematologic and immunologic responses. The availability of large quantities of recombinant GM-CSF now provides the opportunity and challenge not only for unraveling the mechanisms regulating hematopoiesis, but also for developing new therapies for enhancement of host defense against infection that were not previously possible.  相似文献   

12.
Human granulocyte-macrophage colony-stimulating factor (hGM-CSF), also known as sargramostim or molgramostin, is a cytokine that functions as a hematopoietic cell growth factor. Here we report a near complete assignment for the backbone and side chain resonances for the mature polypeptide.  相似文献   

13.
Granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulates production of neutrophils in bone marrow and may decrease the incidence of infection during neutropenia. We evaluated the protective role of recombinant GM-CSF against Pseudomonas aeruginosa challenge in neutropenic mice. CD-1 mice treated with cyclophosphamide on days 1 and 2 of the experiment were given GM-CSF (1, 2, or 4 micrograms/day) starting at day 4 of the experiment according to the following protocol: 1) 1 microgram of GM-CSF 2 hr and 24 hr after challenge; 2) 1 microgram 24 hr before challenge, 2 hr and 24 hr after challenge; 3) 2 micrograms injected 24 hr before and 2 hr after challenge; 4) 2 micrograms given 24 hr before and 2 micrograms given 2 hr and 24 hr after challenge; 5) 4 micrograms administered 2 hr and 24 hr after challenge; and 6) saline and bovine albumin controls. The number of blood neutrophils by days 4 and 5 was similar for GM-CSF-treated and untreated animals. Survival was significantly greater in animals given 2 micrograms of GM-CSF at 24 hr before and at 2 hr and 24 hr after challenge with Pseudomonas. Neutrophils and splenic macrophages obtained from GM-CSF-treated mice (2 micrograms/animal) produced significantly greater amounts of O2- (204 +/- 36 nmoles/10(5) cells) than controls (21 +/- 10 nmoles/10(5) cells). Additionally, neutrophils and macrophages from GM-CSF-treated mice killed significantly more bacteria (P. aeruginosa) in vitro and had a greater number of C3b and Fc receptors (78 +/- 12% and 89 +/- 8%) than did cells obtained from control animals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Purpose: We investigated granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-12 (IL-12) infused into the injection site of irradiated tumor vaccine (TV) as therapy for gliomas. Methods: Rats with subcutaneous RT-2 gliomas were treated with irradiated TV and/or subcutaneous infusion of GM-CSF and/or IL-12 via osmotic minipump 5 days after tumor-cell inoculation. Cytotoxic T lymphocyte (CTL) and natural killer (NK) cell activity were analyzed to investigate immune responses. Rats with intracerebral gliomas were treated with irradiated TV and infused GM-CSF/IL-12 3 days after tumor-cell inoculation. Tumor growth rates and animal survival were followed. Survivors were re-challenged with wild-type RT-2 cells subcutaneously or intracerebrally to study long-term anti-tumor immunity. Results: Rats with subcutaneous gliomas treated with GM-CSF and IL-12 or TV plus GM-CSF or IL-12 did not have increased survival rate (P>0.2), but did have prolonged survival time (P<0.05); in contrast, rats treated with TV plus GM-CSF/IL-12 had increased survival rate (P<0.05) and prolonged survival time (P<0.05) compared with controls. These treatment strategies showed enhanced CTL and NK cell activities. Rats with intra-cerebral gliomas treated with TV plus GM-CSF/IL-12 did not have increased survival rate (P=0.11), but did have prolonged survival time (P<0.0001). Survivors in each group were re-challenged with wild-type RT-2 cells, and all had long-term survival. Conclusions: Irradiated TV plus continuous localized infusion of GM-CSF/IL-12 may induce a tumor-specific anti-tumor immune response on established subcutaneous or intra-cerebral gliomas, and such a treatment strategy deserves consideration as adjuvant treatment for glioma.  相似文献   

15.
Levels of serum granulocyte colony-stimulating factor (G-CSF) and granulocyte-macrophage colony stimulating factor (GM-CSF) in patients with various leukocyte disorders were estimated by enzyme linked immunosorbent assay (ELISA). Some cases of acute myelogenous leukemia and aplastic anemia showed elevated serum levels of G-CSF and/or GM-CSF, whereas almost all of 23 healthy controls showed G-CSF and GM-CSF levels lower than 100 pg/ml. High levels of both types of CSF were noted in patients with granulocytosis due to infection. These levels became lower after resolution of the infection. Daily changes in serum CSF levels were also examined in a patient with autoimmune neutropenia, and it was found that the peripheral neutrophilic granulocyte count changed almost in parallel with the serum G-CSF level but not with GM-CSF, following the pattern with a delay of about 4–5 h, suggesting the possibility that G-CSF mainly regulates peripheral neutrophil circulation.  相似文献   

16.
Mouse plasmacytoma FLOPC21 was adapted to culture in the presence of a mouse Th cell supernatant. A stable factor-dependent cell line was derived from this culture and the factor responsible for its growth was identified as granulocyte-macrophage colony-stimulating factor.  相似文献   

17.
Reversal of eosinophilic inflammation has been an elusive therapeutic goal in the management of asthma pathogenesis. In this regard, GM-CSF is a primary candidate cytokine regulating eosinophil activation and survival in the lung; however, its molecular mechanism of propagation and maintenance of stimulated eosinophil activation is not well understood. In this study, we elucidate those late interactions occurring between the GM-CSF receptor and activated eosinophil signaling molecules. Using coimmunoprecipitation with GM-CSF-stimulated eosinophils, we have identified that the GM-CSF receptor beta-chain (GMRbeta) interacted with ICAM-1 and Shp2 phosphatase, as well as Slp76 and ADAP adaptor proteins. Separate experiments using affinity binding with a tyrosine-phosphorylated peptide containing an ITIM (ICAM-1 residues 480-488) showed binding to Shp2 phosphatase and GMRbeta. However, the interaction of GMRbeta with the phosphorylated ICAM-1-derived peptide was observed only with stimulated eosinophil lysates, suggesting that the interaction of GMRbeta with ICAM-1 required phosphorylated Shp2 and/or phosphorylated GMRbeta. Importantly, we found that inhibition of ICAM-1 in activated eosinophils blocked GM-CSF-induced expression of c-fos, c-myc, IL-8, and TNF-alpha. Moreover, inhibition of ICAM-1 expression with either antisense oligonucleotide or an ICAM-1-blocking Ab effectively inhibited ERK activation and eosinophil survival. We concluded that the interaction between ICAM-1 and the GM-CSF receptor was essential for GM-CSF-induced eosinophil activation and survival. Taken together, these results provide novel mechanistic insights defining the interaction between ICAM-1 and the GM-CSF receptor and highlight the importance of targeting ICAM-1 and GM-CSF/IL-5/IL-3 receptor systems as a therapeutic strategy to counter eosinophilia in asthma.  相似文献   

18.
When murine T lymphocyte clones were cultured with purified recombinant IL 2, a dose-dependent increase in the production of granulocyte-macrophage colony-stimulating factor (GM-CSF) was observed. Whereas these clones produced both GM-CSF and multi-lineage CSF (multi-CSF) when cultured with concanavalin A, IL 2 induced the production of GM-CSF in the virtual absence of detectable multi-CSF. In addition, IL 2 synergistically enhanced the production of both GM-CSF and multi-CSF by some antigen- or Con-A-stimulated clones. Like Con-A-induced CSF production, GM-CSF production in the presence of IL 2 required protein synthesis but could occur in the absence of proliferation by the clone. Analysis of dose-response curves for stimulation of CSF production by Con A in the presence and absence of IL 2 suggested that Con A and IL 2 activated GM-CSF synthesis by different mechanisms. These results indicate that the coordinate production of two factors by a single T cell clone stimulated with Con A can be dissociated when the clone is stimulated with IL 2.  相似文献   

19.
We investigated the capacity of recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) to enhance the function of neutrophils. Neutrophil function was measured in terms of N-formyl-methionyl-leucyl-phenylalanine (fMLP)-induced luminol-dependent chemiluminescence (LDCL). LDCL of fMLP-stimulated neutrophils was enhanced up to 4.5 fold following preincubation with rhGM-CSF. This enhancement depended on the length of preincubation, reaching an optimal level at 120 min. The dose-response relationship for fMLP-induced LDCL of neutrophils preincubated with rhGM-CSF revealed that half-maximum enhancement was achieved at an approximately 20-fold higher concentration than that of colony-forming units in culture-derived colony formation. These results suggest that differences in dose dependency may be explained by differences in the distribution of receptor(s) for GM-CSF. This may also enable GM-CSF to affect the hematopoietic system, which contains cells at various levels of differentiation, thus mediating the host-defense mechanism.  相似文献   

20.
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a hematopoietic growth factor that stimulates myeloid cell proliferation and maturation and enhances the function of terminally differentiated effector cells. Phase I and II clinical trials have demonstrated mild to moderate toxicities at doses of less than 30 micrograms/kg/day. These studies suggest a potential role for this growth factor to stimulate myelopoiesis in patients with aplastic anemia, myelodysplastic syndromes, AIDS, chemotherapy-induced myelosuppression, chronic neutropenia, and following bone marrow transplantation. The potential clinical uses of GM-CSF will depend on results of studies designed to optimize its therapeutic efficacy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号