首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的研究神经肽Y(NPY)、五羟色胺(5-HT)和胰高血糖素(GLU)免疫阳性细胞在黑斑蛙(Rananigromaculata)视网膜上的组织学定位。方法应用过氧化物酶标记的链霉亲和素(SP法)免疫组织化学技术,并结合生物统计学分析。结果NPY细胞主要分布于内核层和节细胞层。内核层中出现两种阳性细胞,一种出现在第2、3亚层,常为多个细胞聚集;另一种出现在内侧,有突起伸入内网层。节细胞层阳性细胞分布较少,胞体有大小之分。5-HT细胞主要分布于内核层和节细胞层,位于内核层中邻近内网层一侧的阳性细胞有突起延伸入内网层。GLU细胞分布于外核层、内核层内侧以及节细胞层。结果 黑斑蛙视网膜上NPY、5-HT和GLU细胞的分布与其它物种有相似之处,也有其自身特点,符合其晨昏性生活习性。  相似文献   

2.
本文用免疫细胞化学ABC法,研究15—38周龄人胎视网膜神经肽Y免疫反应(NeuropeptideYimmunorective,NPY-IR)神经元(以下称NPY-IR细胞)的发育。结果表明:①胎龄15周视网膜中央部已出现不同类型的NPY-IR细胞:位于黄斑及其周围外核层的为NPY-IR视锥细胞;位于内核层最内一列的为NPY-IR无长突细胞位于节细胞层的可能为NPY-IR移位无长突细胞或节细胞;内核层和节细胞层的NPY-IR细胞的突起均分布在内网层的第1亚层。②胎龄24周后,NPY-IR视锥细胞完全消失。③随着视网膜的发育,内核层和节细胞层的NPY-IR细胞数量增多,突起增粗增长,胞体分布由中央部扩展到周边部,其中内核层NPY-IR细胞的密度呈现从中央部向周边部逐渐降低的分布方式,节细胞层NPY-IR细胞则多数集中分布在视网膜的边缘和黄斑之间,形成较高密度的环状区。  相似文献   

3.
The retina of newborn rats consists of the ganglion cell layer (GCL), the inner plexiform layer (IPL), the inner nuclear layer (INL) containing amacrine cells and the neuroblastic layer (NBL). In retinal explants, the GCL enters cell death after sectioning of the optic nerve, whereas there is almost no cell death in the NBL. When protein synthesis is inhibited with anisomycin, cell death is blocked in the GCL and induced in the NBL. We tested the roles of nitric oxide (NO) on cell death in the retina in vitro. Either L-arginine, the substrate for NO synthase or the NO donor S:-nitroso-acetylpenicillamine (SNAP) blocked cell death induced by anisomycin in the NBL, but had no effect in the GCL. Sepiapterin, a precursor of the nitric oxide synthase (NOS)-cofactor tetrahydrobiopterin also had a protective effect against anisomycin. The use of 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, an inhibitor of soluble form of guanylyl cyclase, showed that anti-apoptotic effect of SNAP is partially mediated by cGMP generated by activation of guanylyl cyclase. NADPH-diaphorase histochemistry stained cells only in the GCL and INL. Thus, the degenerative effect of anisomycin is observed within the NBL, whereas the localization of NOS is restricted to the GCL and INL. The protective effect of both the NO substrate and cofactor upon cell death induced by anisomycin in the NBL, indicates that NO produced by amacrine and ganglion cells is a paracrine modulator of cell death within the retinal tissue.  相似文献   

4.
Using immunocytochemistry, morphometry and electron microscopy, we have investigated the distribution and characteristics of CD15-immunoreactive (IR) neurons in the guinea pig retina. In the present study, two types of amacrine cells, including interplexiform cells in the inner nuclear layer (INL) and some cells in the ganglion cell layer (GCL), were labeled with anti-CD15 antisera. Type 1 amacrine cells had large somata located in the INL, with long and branched processes ramifying mainly in strata 4 and 5 of the inner plexiform layer (IPL). Somata of type 2 cells had smaller diameters, and were also located in the INL. Their processes stratified in stratum 1. The densities of type I and type 2 amacrine cells increased from 152.8+/-36.7/mm2 and 160.6+/-61.7/mm2 in the peripheral retina, to 404.3+/-41.5/mm2 and 552.2+/-72.2/mm2 in the central retina, respectively. Cells in the GCL exhibiting CD15 immunoreactivity were rarely observed. Colocalization experiments, using consecutive semi-thin sections, demonstrated that these CD15-IR amacrine cells exhibited gamma-aminobutyric acid (GABA) immunoreactivity. In addition, the processes of the type 1 cells formed one member of the postsynaptic dyads that are formed in the axon terminals of rod bipolar cells. Most of these processes made reciprocal synapses back to the axon terminals of the rod bipolar cells. Thus, CD15-IR amacrine cells constitute a subpopulation of GABAergic amacrine cells in the guinea pig retina, and the type 1 cells among them provide the inhibitory input to rod bipolar cells.  相似文献   

5.
Immunocytochemical methods with an antiserum against neuronal nitric oxide synthase (NOS) were applied to identify the morphology and synaptic connectivity of NOS-like immunoreactive neurons in the guinea pig retina. In the present study, two types of amacrine cells were labeled with anti-NOS antisera. Type 1 cells had large somata located in the inner nuclear layer (INL) with long, sparsely branched processes ramifying mainly in stratum 3 of the inner plexiform layer (IPL). The somata of type 2 cells (smaller diameters) were located in the INL. Some displaced amacrine cells in the ganglion cell layer were labeled. The soma size of the displaced amacrine cells was similar to that of the type 2 amacrine cells. However, processes originating from type 2 amacrine cells and displaced amacrine cells stratified mainly in strata 1 and 5, respectively. Some cone bipolar cells were weakly NOS-immunoreactive. The synaptic connectivity of NOS-like immunoreactive amacrine cells was identified in the IPL by electron microscopy. NOS-labeled amacrine cell processes received synaptic input from other amacrine cell processes and bipolar cell axon terminals in all strata of the IPL. The most frequent postsynaptic targets of NOS-immunoreactive amacrine cells were other amacrine cell processes. Cone bipolar cells were postsynaptic to NOS-labeled amacrine cells in all strata of the IPL. Labeled amacrine cells synapsing onto ganglion cells were found only in sublamina b. A few synaptic contacts were observed between labeled cell processes. In the outer plexiform layer, dendrites of labeled bipolar cells made basal contact with cone pedicles or formed a synaptic triad opposed to a synaptic ribbon of cone pedicles.  相似文献   

6.
采用免疫组织化学技术研究了在强光照和全黑暗条件下荒漠沙蜥(Phrynocephalus prezewalskic)视网膜内生长相关蛋白GAP-43的表达变化。结果表明,在正常光照条件下,视网膜内GAP-43阳性表达部位主要存在于内网层;强光照条件下,GAP-43免疫染色部位主要出现在内网层、节细胞层和内核层的部分细胞核。在全黑暗条件下,在视纤维层和内网层呈阳性染色;提示视网膜在不同环境条件下GAP-43的不同定位,可能与其在相应的环境下参与不同的视觉功能有关。  相似文献   

7.

Aim

To examine the relationship between retinal ganglion cell loss and changes in the inner nuclear layer (INL) in optic neuritis (ON).

Methods

36 multiple sclerosis (MS) patients with a history of ON and 36 age and sex-matched controls underwent Optical Coherence Tomography. The paramacular retinal nerve fiber layer (RNFL), combined ganglion cell and inner plexiform layers (GCL/IPL) and inner nuclear layer (INL) thickness were measured at 36 points around the fovea. To remove inter-subject variability, the difference in thickness of each layer between the ON and fellow eye of each patient was calculated. A topographic analysis was conducted.

Results

The INL of the ON patients was thicker than the controls (42.9µm versus 39.6µm, p=0.002). ON patients also had a thinner RNFL (27.8µm versus 32.2µm, p<0.001) and GCL/IPL (69.3µm versus 98.1µm, p<0.001). Among the controls, there was no correlation between RNFL and GCL/IPL as well as RNFL and INL, but a positive correlation was seen between GCL/IPL and INL (r=0.65, p<0.001). In the ON group, there was a positive correlation between RNFL and GCL/IPL (r=0.80, p<0.001) but a negative correlation between RNFL and INL (r=-0.61, p<0.001) as well as GCL/IPL and INL (r=-0.44, p=0.007). The negative correlation between GCL/IPL and INL strengthened in the ON group when inter-subject variability was removed (r=-0.75, p<0.001). Microcysts within the INL were present in 5 ON patients, mainly in the superior and infero-nasal paramacular regions. While patients with microcysts lay at the far end of the correlation curve between GCL/IPL and INL (i.e. larger INL and smaller GCL/IPL compared to other patients), their exclusion did not affect the correlation (r= -0.76, p<0.001).

Conclusions

INL enlargement in MS-related ON is associated with the severity of GCL loss. This is a continuous relationship and patients with INL microcysts may represent the extreme end of the scale.  相似文献   

8.
Using immunocytochemistry, we have investigated the localization of CD15 in the rat retina. In the present study, two types of amacrine cell in the inner nuclear layer (INL) and some cells in the ganglion cell layer were labeled with anti-CD15 antisera. Type 1 amacrine cells have large somata located in the INL, with long and branched processes ramifying mainly in stratum 3 of the inner plexiform layer (IPL). Type 2 cells have a smaller soma and processes branching in stratum 1 of the IPL. A third population showing CD15 immunoreactivity was a class of displaced amacrine cells in the ganglion cell layer. The densities of type 1 and type 2 amacrine cells were 166/mm(2) and 190/mm(2) in the central retina, respectively. The density of displaced amacrine cells was 195/mm(2). Colocalization experiments demonstrated that these CD15-immunoreactive cells exhibit gamma-aminobutyric acid and neuronal nitric oxide synthase (nNOS) immunoreactivities. Thus, the same cells of the rat retina are labeled by anti-CD15 and anti-nNOS antisera and these cells constitute a subpopulation of GABAergic amacrine cells.  相似文献   

9.
The present investigation was focused on the ultrastructural changes in the neurons and glial cells in the retina of rats with experimentally-induced glaucoma. An experimental glaucoma model was created by limbal-derived vein cauterization. Animals were sacrificed at 1, 3 weeks and 3 months post-operation. Retinae were dissected and processed for electron microscopy. Neuronal degeneration was observed in all the different layers of the retina at both 1 and 3 weeks post-operation. Some degenerating neurons were found in the ganglion cell layer (GCL), inner nuclear layer (INL) and outer nuclear layer (ONL). And the dying neurons presented apoptotic-like more than necrotic neurons. Many degenerating axons and axon terminals were observed between neurons in the GCL, inner plexiform layer (IPL), INL, and outer plexiform layer (OPL). Activated astrocytes and microglial cells were present in close association with degenerating neurons and axons. The Müller cells in the INL also presented longer and darker processes with more microfilaments than in normal cells. Degenerating neuronal debris, degenerating axonal profiles and electron-dense bodies were often found in the cytoplasm of macrophages. The results suggest that both microglial cells and astrocytes are activated in the process of neuronal degeneration in the retina of experimentally-induced glaucomatous rats. It is hypothesized that they may play a protective role in removing degenerating neuronal elements in the retina after the onset of glaucoma.  相似文献   

10.
11.
Summary The differentiation of cells and synapses in explants of 9-day-old chick embryo retina has been studied by light and electron microscopy over a period of 35 days in vitro, and samples of retina from the 9-day chick foetus were directly fixed and prepared for study.At the time of explantation the retinae were poorly differentiated and no lamination was apparent. From day 14 onwards, (i) outer and inner nuclear layers (ONL, INL) separated by a layer of neuropil corresponding to the outer plexiform layer (OPL) and (ii) a layer of scattered large ganglion cells separated from the INL by a zone of neuropil resembling the inner plexiform layer (IPL) were apparent, and (iii) a well-differentiated outer limiting membrane was established close to the surface of the explants. In the oldest cultures some development of photoreceptor outer segments occurred but a distinct optic nerve fibre layer did not form.Although cell identification presented problems even in the oldest cultures, the major retinal cell types described in vivo could be identified. Photoreceptor cells developed pedicles in the OPL which became filled with synaptic vesicles and synaptic ribbons and established ribbon synapses (including triads) with and were commonly invaginated by processes from horizontal and bipolar cells. Processes of bipolar cells in the IPL formed simple and dyad synapses. At least two types of presynaptic amacrine cells were also identified in the INL, one of which contained large numbers of dense-core vesicles. The ganglion cells, though sparse, were large and well differentiated.These findings show that all the major neuronal types of the retina are capable of developing and differentiating in vitro, lagging behind the time-table of development and differentiation in vivo by approximately 7 days, but resulting in a histotypically organised retina with synaptic neuropil showing many similarities to the corresponding neuropil in vivo.  相似文献   

12.
The light-sensitive capacity of fish larvae is determined by the structure of the retina and the opsins expressed in the retinal and nonretinal photoreceptors. In this study, the retinal structure and expression of opsin genes during the early developmental stage of Takifugu rubripes larvae were investigated. Histological examination showed that at 1 days after hatching (dah), seven layers were observed in the retina of T. rubripes larva, including the pigment epithelial layer [retinal pigment epithelium layer (RPE)], photoreceptor layer (PRos/is), outer nuclear layer (ONL), outer plexiform layer (OPL), inner nuclear layer (INL), inner plexiform layer (IPL) and ganglion cell layer (GCL). At 2 dah, optic fibre layer (OFL) can be observed, and all eight layers were visible in the retina. By measuring the thickness of each layer, opposing developmental trends were found in the thickness of ONL, OPL, INL, IPL, GCL and OFL. The nuclear density of ONL, INL and GCL and the ratios of ONL/INL, ONL/GCL and INL/GCL were also measured and the ratio of ONL/GCL ranged from 1.9 at 2 dah to 3.4 at 8 dah and no significant difference was observed between the different developmental stages (P > 0.05). No significant difference was observed for the INL/GCL ratio between the different developmental stages, which ranged from 1.2 at 2 dah to 2.0 at 18 dah (P > 0.05). The results of quantitative real-time polymerase chain reaction (PCR) showed that the expression of RH1, LWS, RH2-1, RH2-2, SWS2, rod opsin, opsin3 and opsin5 could be detected from 1 dah. These results suggest that the well-developed retina and early expression of the opsins of T. rubripes during the period of transition from endogenous to mixed feeding might be critical for vision-based survival skills during the early life stages after hatching.  相似文献   

13.
Immunocytochemical techniques were employed to locate somatostatin (SS)-containing cells in the retina of the 13-lined ground squirrel (Spermophilus tridecemlineatus). In normal retinas immunostain was limited to neuronal processes, yet distinctly labeled somata were detected in retinas of animals pretreated with colchicine. Labeled cell bodies were located in the outermost and innermost portions of the inner nuclear layer (INL) and in the ganglion cell layer (GCL). The largest population of SS-like immunoreactive neurons was found in the innermost INL. These cells were identified as small and medium sized amacrine cells whose soma diameters ranged from 4 to 14μm. A smaller population of immunoreactive cells was observed in the outermost region of the INL. These cells, presumptive horizontal cells, were found mainly in peripheral regions of the retina. Immunoreactive cells in the GCL were of two types: displaced amacrines, and retinal ganglion cells. SS-positive axons in the optic fiber layer suggest that some of the immunoreactive GCL neurons were ganglion cells, and it is our opinion that these cells belong to a class of associational ganglion cells previously identified in other species.  相似文献   

14.
The activity and distribution of nicotinamide dinucleotide phosphate diaphorase (NADPH-d), an enzyme that is widely distributed in the central nervous system and involved in the production of the free radical nitric oxide, were investigated histochemically in the normal developing and intracranially transplanted retinas. In the normal rat retina, NADPH-d activity was first detected in cells in the ganglion cells layer (GCL) and blood vessels on the first postnatal day (P0). A small but distinct population of NADPH-d positive cells were observed along the inner border of the inner nuclear layer at P7. NADPH-d positive sublaminae began to appear in the inner plexiform layer during the second postnatal week, and several strongly reactive sublaminae resembling those observed in the adult were observed by the fourth postnatal week. The overall spatio- temporal sequence of development of NADPH-d positive cells in the transplanted retina was similar to that of the normal retina, except a lack of reactive in the inner plexiform layer in more mature transplants as compared with normal retinas of corresponding ages. These results indicate that the time course of development and distribution of NADPH-d cells in early postnatal retina requires signals mainly of intraretinal origin and is independent of influence from the surroundings. While this finding is supportive to the notion that neurons that are rich in NADPH-d are resistant to injury or perturbation, the observation of a lack of well organized NADPH-d reactive sublaminae in the inner plexiform layer in older transplants suggests a possible alteration in the synaptic circuitry in the inner retina with increasing postgrafting survival time.  相似文献   

15.
Histochemical studies on catecholaminergic cells were conducted with the carp (Cyprinus carpio) retina. Catecholamine (CA)-containing cell bodies appear sparsely distributed among amacrine cells in the innermost cellular row of the inner nuclear layer (INL) and occasionally in the outer half part of the inner plexiform layer (IPL); only exceptionally are they found among ganglion cells. The fluorescent cells interspersed with the amacrine cells and in the IPL send their fiber processes toward both the outer plexiform layer (OPL) and the IPL; the fine fibers form dense networks in the INL and IPL. Pretreatment of the fish with intramuscular injection of reserpine (20 hr prior to enucleation) completely depleted CA from the retina. The fluorescence of catecholaminergic cells was enhanced, and the number of fluorescent cells visible was increased, by intravitreous injection ofl-DOPA, DA, and NA (3 hr prior to enucleation). A combination of pretreatment with intramuscular reserpine and intravitreous NA was particularly effective. These results indicate that catecholamines may play an important role in the modulation of the membrane potential of horizontal cells.  相似文献   

16.
The rodent retina undergoes considerable postnatal neurogenesis and phenotypic differentiation, and it is likely that diffusible neurotrophic factors contribute to this development and to the subsequent formation of functional retinal circuitry. Accordingly, perturbation of specific neurotrophin ligand-receptor interactions has provided valuable information as to the fundamental processes underlying this development. In the present studies we have built upon our previous observation that suppression of expression of trk(B), the high-affinity receptor for brain-derived neurotrophic factor (BDNF), in the postnatal rat retina results in the alteration of a specific interneuron in the rod pathway-the parvalbumin (PV)-immunoreactive AII amacrine cell. Here, we isolated retinas from newborn rats and maintained them in organotypic culture for up to 14 days (approximating the time of eye opening, in vivo) in the presence of individual neurotrophins [BDNF or nerve growth factor (NGF)]. We then examined histological sections of cultures for PV immunoreactivity. In control cultures, only sparse PV-immunostained cells were observed. In cultures supplemented with NGF, numerous lightly immunostained somata were present in the inner nuclear layer (INL) at the border of the inner plexiform layer (IPL). Many of these cells had rudimentary dendritic arborizations in the IPL. Cultures supplemented with BDNF displayed numerous well-immunostained somata at the INL/IPL border that gave rise to elaborate dendritic arborizations that approximated the morphology of mature AII amacrine cells in vivo. These observations indicate that neurotrophins have specific effects upon the neurochemical and, perhaps, morphological differentiation of an important interneuron in a specific functional retinal circuit.  相似文献   

17.
In this study, we aimed to investigate the distribution pattern of ubiquitin and p97/VCP in the rat retina during postnatal development. Eyeballs from 1-, 4-, 10-, 36- and 72-week-old rats were examined by immunohistochemistry, and protein colocalization was determined by immunofluorescence microscopy. In the 1-week-old rat retina, p97/VCP was strongly expressed in the neuroblast layer, however no ubiquitin immunoreactivity was observed. p97/VCP immunoreactivity was present in the ganglion cell layer (GCL), inner nuclear layer (INL), outer nuclear layer (ONL), inner segment (IS) of the photoreceptor layer, and retinal pigment epithelium in the 4- and 10-week-old rat retinas. p97/VCP immunoreactivity increased significantly in the 10-week-old rat retinas. Ubiquitin was barely seen in the 4-week-old rat retinas, and ubiquitin expression was weak in the GCL and the IPL of the 10-week-old rat retinas. In the 36- and 72-week-old rats, the presence of ubiquitin was remarkable in the IS, INL, IPL and GCL, however, p97/VCP immunoreactivity was significantly decreased. Colocalization of ubiquitin and p97/VCP was also observed in the INL, IS, GCL and ONL of 36- and 72-week-old rat retinas. Our results indicate that p97/VCP immunoreactivity in the retina significantly decreases after rats reach 10 weeks of age, whereas ubiquitin immunoreactivity increases with aging. These results suggest that an altered expression pattern of p97/VCP and ubiquitin in the developing rat retina may associate with age-related retinal degeneration.  相似文献   

18.
In mammalian development, apoptosis spreads over the retina in consecutive waves and induces a remarkable amount of cell loss. No evidence for such consecutive waves has been revealed in the fish retina so far. As the zebrafish is of growing importance as a model for retinal development and for degenerative retinal diseases, we examined the onset and time course of apoptosis in the developing zebrafish retina and in adult fish. We found that apoptosis peaked in the ganglion cell layer (GCL) and inner nuclear layer (INL) in early developmental stages (3-4 days post-fertilization; dpf) followed by a second, but clearly smaller wave at 6-7dpf. Apoptosis in the outer nuclear layer (ONL) started at 5dpf and peaked at 7dpf. This late-onset high peak of apoptosis of photoreceptors is different from that of all other species examined to date. With 1.09% of cells in the GCL and 1.10% in the ONL being apoptotic, the rate of apoptosis in the developing zebrafish retina was conspicuously lower than that observed in other vertebrates (up to 50% in GCL). During development (2-21dpf), apoptotic waves were most obvious in the central retina, whereas in the periphery near the marginal zone (MZ), apoptosis was much lower; in adult animals, practically no apoptosis was present in the central retina but it still occurred near the MZ. Our data show that the onset and time course of apoptosis in the GCL and INL of the zebrafish is comparable with other vertebrates; however, the amount of apoptosis is clearly reduced. Thus, apoptosis in the zebrafish retina may serve more as a mechanism for the fine tuning of the retinal neuronal network after mitotic waves during development or in remaining mitotic areas than as a mechanism for eliminating large numbers of excess cells.  相似文献   

19.
We used a policlonal antiserum against GABA and demonstated GABA-immunoreactivity (GABA-IR) in several populations of amacrine cells in the inner nuclear layer (INL), and other cells in the inner plexiform layer (IPL) of the central and peripheral retina of the chameleon. Horizontal cells do not contain GABA-IR and the chameleon retina is therefore an exception among non-mammals. GABA-IR was not seen in cell bodies in the position of photoreceptor, bipolar and interplexiform cells suggesting that GABA is not involved in synaptic transmission in the outer plexiform layer of chameleon retina.  相似文献   

20.
The rodent retina undergoes considerable postnatal neurogenesis and phenotypic differentiation, and it is likely that diffusible neurotrophic factors contribute to this development and to the subsequent formation of functional retinal circuitry. Accordingly, perturbation of specific neurotrophin ligand–receptor interactions has provided valuable information as to the fundamental processes underlying this development. In the present studies we have built upon our previous observation that suppression of expression of trkB, the high‐affinity receptor for brain‐derived neurotrophic factor (BDNF), in the postnatal rat retina results in the alteration of a specific interneuron in the rod pathway—the parvalbumin (PV)‐immunoreactive AII amacrine cell. Here, we isolated retinas from newborn rats and maintained them in organotypic culture for up to 14 days (approximating the time of eye opening, in vivo) in the presence of individual neurotrophins [BDNF or nerve growth factor (NGF)]. We then examined histological sections of cultures for PV immunoreactivity. In control cultures, only sparse PV‐immunostained cells were observed. In cultures supplemented with NGF, numerous lightly immunostained somata were present in the inner nuclear layer (INL) at the border of the inner plexiform layer (IPL). Many of these cells had rudimentary dendritic arborizations in the IPL. Cultures supplemented with BDNF displayed numerous well‐immunostained somata at the INL/IPL border that gave rise to elaborate dendritic arborizations that approximated the morphology of mature AII amacrine cells in vivo. These observations indicate that neurotrophins have specific effects upon the neurochemical and, perhaps, morphological differentiation of an important interneuron in a specific functional retinal circuit. © 1999 John Wiley & Sons, Inc. J Neurobiol 41: 376–384, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号