共查询到17条相似文献,搜索用时 15 毫秒
1.
Tahseen SayaraEduard Borràs Gloria CaminalMontserrat Sarrà Antoni Sánchez 《International biodeterioration & biodegradation》2011,65(6):859-865
The degradation of several polycyclic aromatic hydrocarbons (PAHs) in soil through composting was investigated. The selected PAHs included: fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo(a)anthracene, and chrysene, with concentrations simulating a real creosote sample. The degradation of PAHs (initial concentration 1 g of total PAHs kg−1 dry soil) was assessed applying bioaugmentation with the white-rot fungi Trametes versicolor and biostimulation using compost of the source-selected organic fraction of municipal solid waste (OFMSW) and rabbit food as organic co-substrates. The process performance during 30 days of incubation was evaluated through different analyses including: dynamic respiration index (DRI), cumulative oxygen consumption during 5 days (AT5), enzymatic activity, and fungal biomass. These analyses demonstrated that the introduced T. versicolor did not significantly enhance the degradation of PAHs. However, biostimulation was able to improve the PAHs degradation: 89% of the total PAHs were degraded by the end of the composting period (30 days) compared to the only 29.5% that was achieved by the soil indigenous microorganisms without any co-substrate (control, not amended). Indeed, the results showed that stable compost from the OFMSW has a greater potential to enhance the degradation of PAHs compared to non-stable co-substrates such as rabbit food. 相似文献
2.
微生物修复是去除土壤中多环芳烃(PAHs)的主要措施。本文以微生物修复PAHs污染土壤的理论基础及其难点为主线,全面综述了土壤中高环PAHs的微生物降解机理。近年来,富集分离得到的以高环PAHs为唯一碳源和能源的优势降解菌逐渐增多,其中,主要是代谢降解四环PAHs的单株降解菌,一些降解菌还能以共代谢方式利用五环PAHs。高环PAHs污染土壤修复的一个难点是其低生物可利用性,微生物通过释放生物表面活性剂、形成生物膜以及分泌胞外多糖提高高环PAHs的生物可利用性,从而加速其降解。真菌和细菌联合作用能增强污染土壤实地修复的效果。因此,通过微生物修复技术来去除土壤中PAHs具有环境友好性、经济适用性以及可持续应用性。 相似文献
3.
Bacterial metabolism of polycyclic aromatic hydrocarbons: strategies for bioremediation 总被引:1,自引:0,他引:1
Archana Chauhan Fazlurrahman John G. Oakeshott Rakesh K. Jain 《Indian journal of microbiology》2008,48(1):95-113
Polycyclic aromatic hydrocarbons (PAHs) are compounds of intense public concern due to their persistence in the environment
and potentially deleterious effects on human, environmental and ecological health. The clean up of such contaminants using
invasive technologies has proven to be expensive and more importantly often damaging to the natural resource properties of
the soil, sediment or aquifer. Bioremediation, which exploits the metabolic potential of microbes for the clean-up of recalcitrant
xenobiotic compounds, has come up as a promising alternative. Several approaches such as improvement in PAH solubilization
and entry into the cell, pathway and enzyme engineering and control of enzyme expression etc. are in development but far from
complete. Successful application of the microorganisms for the bioremediation of PAH-contaminated sites therefore requires
a deeper understanding of the physiology, biochemistry and molecular genetics of potential catabolic pathways. In this review,
we briefly summarize important strategies adopted for PAH bioremediation and discuss the potential for their improvement. 相似文献
4.
Biotreatability of polycyclic aromatic hydrocarbons in brackish sediments: Preliminary studies of an integrated monitoring 总被引:1,自引:0,他引:1
Federica Abbondanzi Luigi Bruzzi Tiziana Campisi Annalisa Frezzati Roberta Guerra Antonella Iacondini 《International biodeterioration & biodegradation》2006,57(4):214-221
An integrated monitoring, of chemical, microbiological and ecotoxicological parameters, was performed for a biotreatability study of polycyclic aromatic hydrocarbons (PAHs)—contaminated brackish sediments. Three slurry reactors were prepared, consisting of (a) a slurry with sediment and seawater called TQ slurry, to evaluate the intrinsic bioremediation potential, (b) a slurry with the addition of a selected microbial consotrium called BIO slurry, to evaluate the bioaugmentation effect, (c) a slurry with the addition of Soya lecithin called LEC slurry, to evaluate the effect of the addition of a natural surfactant. Biodegradation results showed that both BIO and LEC slurries enhanced PAHs removal, increasing the biodegradation rate for 5- and 6-ring PAHs. Furthermore, ecotoxicological response (Microtox® assay on whole sediment, aqueous extract and organic extract) demonstrated a detoxification of the PAHs initial mixture only for BIO slurry. The findings that aerobic PAHs degradation can be stimulated via inoculation with adapted sediment bacteria suggest that a bioaugmentation process may be a useful strategy for ex-situ treatment. 相似文献
5.
Natalia Pozdnyakova Ekaterina Dubrovskaya Marina Chernyshova Oleg Makarov Sergey Golubev Svetlana Balandina Olga Turkovskaya 《Fungal biology》2018,122(5):363-372
The degradation of two isomeric three-ringed polycyclic aromatic hydrocarbons by the white rot fungus Pleurotus ostreatus D1 and the litter-decomposing fungus Agaricus bisporus F-8 was studied. Despite some differences, the degradation of phenanthrene and anthracene followed the same scheme, forming quinone metabolites at the first stage. The further fate of these metabolites was determined by the composition of the ligninolytic enzyme complexes of the fungi. The quinone metabolites of phenanthrene and anthracene produced in the presence of only laccase were observed to accumulate, whereas those formed in presence of laccase and versatile peroxidase were metabolized further to form products that were further included in basal metabolism (e.g. phthalic acid). Laccase can catalyze the initial attack on the PAH molecule, which leads to the formation of quinones, and that peroxidase ensures their further oxidation, which eventually leads to PAH mineralization.A. bisporus, which produced only laccase, metabolized phenanthrene and anthracene to give the corresponding quinones as the dominant metabolites. No products of further utilization of these compounds were detected. Thus, the fungi's affiliation with different ecophysiological groups and their cultivation conditions affect the composition and dynamics of production of the ligninolytic enzyme complex and the completeness of PAH utilization. 相似文献
6.
Characteristics of PAHs adsorption on inorganic particles and activated sludge in domestic wastewater treatment 总被引:2,自引:0,他引:2
The occurrence of polycyclic aromatic hydrocarbons (PAHs) in a domestic wastewater treatment plant (WWTP) was investigated in a 1 year period. In order to understand how PAHs were removed at different stages of the treatment process, adsorption experiments were conducted using quartz sand, kaolinite, and natural clay as inorganic adsorbents and activated sludge as organic adsorbent for adsorbing naphthalene, phenanthrene, and pyrene. As a result, the adsorption of PAHs by the inorganic adsorbents well followed the Langmuir isotherm while that by the activated sludge well followed the Freundlich isotherm. By bridging equilibrium partitioning coefficient with the parameters of adsorption isotherm, a set of mathematical models were developed. Under an assumption that in the primary settler PAHs removal was by adsorption onto inorganic particles and in the biological treatment unit it was by adsorption onto activated sludge, the model calculation results fairly reflected the practical condition in the WWTP. 相似文献
7.
土壤-植物系统中多环芳烃和重金属的行为研究 总被引:14,自引:0,他引:14
对土壤中多环芳烃和重金属的行为研究表明,与对照相比,0—20cm以上表土层存在多环芳烃和重金属积累,20cm以下土层未发现积累;与春、秋两次采样结果相比,土壤中多环芳烃的含量有所下降,表明土壤微生物对多环芳烃有一定降解作用,且其降解程度与土壤-植物系统的生态结构有关.菲在地下水中检出浓度较高,表明这一污染物有向下迁移的可能性.此外,柳树对土壤中重金属Cd的积累有明显的削减与净化作用.本研究表明,严格限制污水中多环芳烃和重金属的污染负荷以及设计合理的生态结构是避免多环芳烃和重金属在土壤中积累的关键. 相似文献
8.
Li JH Gao Y Wu SC Cheung KC Wang XR Wong MH 《International journal of phytoremediation》2008,10(2):104-116
Phenanthrene (Phe) and pyrene (Pyr) are two typical polycyclic aromatic hydrocarbons (PAHs) found in contaminated soil. This study investigated physiological and biochemical responses of rice (Oryza sativa L.) to PAH stress after they were planted in soils contaminated with Phe and Pyr, in the presence or absence of a PAH-degrading bacteria (Acinetobacteria sp.). A number of parameters including biomass and water, chlorophyll and chlorophyll a/b ratio, electrolyte leakage, activities of superoxide dismutase (SOD) and peroxidase, and soluble carbohydrate and soluble protein contents were monitored. Results show that rice plants have good resistance and tolerance to lower levels of PAHs stress, while adding high levels of PAHs to soils resulted in adverse effects on rice plants such as a reduction in biomass and damage to photosynthetic function. Water content and SOD activities were the most sensitive indicators of PAH stress among the observed parameters. Inoculation with PAH-degrading bacteria promoted growth and photosynthesis of rice. 相似文献
9.
Effectiveness of phytoremediation as a secondary treatment for polycyclic aromatic hydrocarbons (PAHs) in composted soil 总被引:5,自引:0,他引:5
A greenhouse study was conducted over a 12-month period to investigate the fate of polycyclic aromatic hydrocarbons (PAHs) in soil using phytoremediation as a secondary treatment. The soil was pretreated by composting for 12 weeks, then planted with tall fescue (Festuca arundinacea), annual ryegrass (Lolium multiflorum), and yellow sweet clover (Melilotus officinalis). Two sets of unvegetated controls also were evaluated, one fertilized and one unfertilized. Total PAH concentrations decreased in the tall fescue, annual ryegrass, and yellow sweet clover treatments by 23.9%, 15.3%, and 9.1%, respectively, whereas the control was reduced by less than 5%. The smaller two- and most of the three-ringed compounds--naphthalene, acenaphthylene, acenaphthene, fluorene, and anthracene--were not found in detectable concentrations in any of the treatments. The most probable number analysis for microbial PAH degraders did not show any statistically significant differences among treatments. There were significant differences among treatments (p < 0.05) for the residual concentrations of five of the target PAHs. Root surface area measurements indicated that tall fescue and annual ryegrass both had significantly higher root surface area than yellow sweet clover, although the two species were not significantly different from each other. The tall fescue treatment resulted in the highest root and shoot biomass, followed by annual ryegrass and yellow sweet clover, and also had the highest percent of contaminant removal after 12 months. These results imply a positive relationship between plant biomass development and PAH biodegradation. 相似文献
10.
The cell wall-cosolvent partition coefficients (Km) of polycyclic aromatic hydrocarbons (PAHs) were determined for Rhizopus oryzae cell walls by controlling the volume fraction of methanol (f) ranging from 0.1 to 0.5. Five cosolvent models were employed for extrapolating the cell wall-water partition coefficients (Kw) in pure water. The extrapolated Kw values of four PAHs on R. oryzae cell walls were ranged from 2.9 to 5.1. Comparison of various Kw values of pyrene generated from extrapolation and the QSPR model, together with predicted different (PD), mean percentage deviations (MPD), and root mean square errors (RSE), revealed that the performance of the LL and Bayesian models were the best among all five tested cosolvent models. This study suggests that R. oryzae cell walls play an important role in the partitioning of PAHs during bioremediation because of the high Kw of fungal cell walls. 相似文献
11.
Isolation of phenanthrene-degrading bacteria and characterization of phenanthrene metabolites 总被引:1,自引:0,他引:1
Xue-Qin Tao Gui-Ning Lu Zhi Dang Xiao-Yun Yi Chen Yang 《World journal of microbiology & biotechnology》2007,23(5):647-654
Three aerobic bacterial consortia GY2, GS3 and GM2 were enriched from polycyclic aromatic hydrocarbon-contaminated soils with
water-silicone oil biphasic systems. An aerobic bacterial strain utilizing phenanthrene as the sole carbon and energy source
was isolated from bacterial consortium GY2 and identified as Sphingomonas sp. strain GY2B. Within 48 h and at 30°C the strain metabolized 99.1% of phenanthrene (100 mg/l) added to batch culture in
mineral salts medium and the cell number increased by about 40-fold. Three metabolites 1-hydroxy-2-naphthoic acid, 1-naphthol
and salicylic acid, were identified by gas chromatographic mass spectrometry and UV–visible spectroscopy analysis. A degradation
pathway was proposed based on the identified metabolites. In addition to phenanthrene, strain GY2B could use other aromatic
compounds such as naphthalene, 2-naphthol, salicylic acid, catechol, phenol, benzene and toluene as a sole source of carbon
and energy. 相似文献
12.
This article provides an overview of the development, theoretical basis, regulatory status, and application of the U.S. Environmental Protection Agency's (USEPA's) Equilibrium Partitioning Sediment Benchmarks (ESBs) for PAH mixtures. ESBs are compared to other sediment quality guidelines (SQGs) for PAHs. Data that examine the ability of the ESB approach to predict toxic effects to invertebrates are discussed. A USEPA draft methodology for the development of site-specific ESBs that takes into account the limited bioavailability of PAHs at certain sites is discussed. Research is presented that compares the ability of ESBs and site-specific ESBs to predict the toxicity of sediments collected from manufactured gas plants (MGPs). Site-specific ESBs that accounted for adsorption of PAHs onto black carbon were better predictors of the toxicity of sediments from MGP sites than ESBs that did not account for adsorption to black carbon. 相似文献
13.
Chang-Hyun ChangJaeyoon Lee Bong-Gun KoSung-Kuk Kim Jong-Soo Chang 《International biodeterioration & biodegradation》2011,65(1):198-203
We isolated three species of phenanthrene-degrading bacteria from oil-contaminated soils and marine sediment, and assessed the potential use of these bacteria for bioremediation of soils contaminated by polycyclic aromatic hydrocarbons (PAHs). Based on 16S rDNA sequences, these bacteria were Staphylococcus sp. KW-07 and Pseudomonas sp. CH-11 from soil, and Ochrobactrum sp. CH-19 from the marine sediment. By PCR amplification, catechol 2,3-dioxygenase genes (nahH genes) mediating PAH degradation in the chromosome of Staphylococcus sp. KW-07 and Ochrobactrum sp. CH-19, and in plasmid DNA of Pseudomonas sp. CH-11 were detected. All isolates had a similar optimal growth temperature (25 °C) and optimal growth pH (7.0) in a minimal salt medium (MSM) with 0.1% (w/v) phenanthrene as the sole source of carbon and energy. Pseudomonas sp. CH-11 and Staphylococcus sp. KW-07 degraded 90% of added phenanthrene in 3 days and Ochrobactrum sp. CH-19 degraded 90% of the phenanthrene in 7 days under laboratory batch culture conditions. However, Staphylococcus sp. KW-07 was the most effective among the three strains in degradation of phenanthrene in soil. After inoculation of 1 × 1011 cells of Staphylococcus sp. KW-07, over 90% degradation of 0.1% phenanthrene (0.1 g/100 g soil) was achieved after 1 month at 25 °C. The results collectively suggest that the Staphylococcus sp. KW-07 strain isolated may be useful in bioremediation of PAH-contaminated soils. 相似文献
14.
Ibarrolaza A Coppotelli BM Del Panno MT Donati ER Morelli IS 《Journal of applied microbiology》2011,111(1):26-35
Aims: The objective of this study was to apply the knowledge‐based approach to the selection of an inoculum to be used in bioaugmentation processes to facilitate phenanthrene degradation in phenanthrene‐ and Cr(VI)‐co‐contaminated soils. Methods and Results: The bacterial community composition of phenanthrene and phenanthrene‐ and Cr(VI)‐co‐contaminated microcosms, determined by denaturing gradient gel electrophoresis analysis, showed that members of the Sphingomonadaceae family were the predominant micro‐organisms. However, the Cr(VI) contamination produced a selective change of predominant Sphingomonas species, and in co‐contaminated soil microcosms, a population closely related to Sphingomonas paucimobilis was naturally selected. The bioaugmentation process was carried out using the phenanthrene‐degrading strain S. paucimobilis 20006FA, isolated and characterized in our laboratory. Although the strain showed a low Cr(VI) resistance (0·250 mmol l?1); in liquid culture, it was capable of reducing chromate and degrading phenanthrene simultaneously. Conclusion: The inoculation of this strain managed to moderate the effect of the presence of Cr(VI), increasing the biological activity and phenanthrene degradation rate in co‐contaminated microcosm. Significance and Impact of the Study: In this study, we have applied a novel approach to the selection of the adequate inoculum to enhance the phenanthrene degradation in phenanthrene‐ and Cr(VI)‐co‐contaminated soils. 相似文献
15.
Di Fabio R Pellacani A Faedo S Roth A Piccoli L Gerrard P Porter RA Johnson CN Thewlis K Donati D Stasi L Spada S Stemp G Nash D Branch C Kindon L Massagrande M Poffe A Braggio S Chiarparin E Marchioro C Ratti E Corsi M 《Bioorganic & medicinal chemistry letters》2011,21(18):5562-5567
The hypothalamic peptides orexin-A and orexin-B are potent agonists of two G-protein coupled receptors, namely the OX(1) and the OX(2) receptor. These receptors are widely distributed, though differentially, in the rat brain. In particular, the OX(1) receptor is highly expressed throughout the hypothalamus, whilst the OX(2) receptor is mainly located in the ventral posterior nucleus. A large body of compelling evidence, both pre-clinical and clinical, suggests that the orexin system is profoundly implicated in sleep disorders. In particular, modulation of the orexin receptors activation by appropriate antagonists was proven to be an efficacious strategy for the treatment of insomnia in man. A novel, drug-like bis-amido piperidine derivative was identified as potent dual OX(1) and OX(2) receptor antagonists, highly effective in a pre-clinical model of sleep. 相似文献
16.
Laccase is a promising biocatalyst with many possible applications, including bioremediation, chemical synthesis, biobleaching of paper pulp, biosensing, textile finishing and wine stabilization. The immobilization of enzymes offers several improvements for enzyme applications because the storage and operational stabilities are frequently enhanced. Moreover, the reusability of immobilized enzymes represents a great advantage compared with free enzymes. In this work, we discuss the different methodologies of enzyme immobilization that have been reported for laccases, such as adsorption, entrapment, encapsulation, covalent binding and self-immobilization. The applications of laccase immobilized by the aforementioned methodologies are presented, paying special attention to recent approaches regarding environmental applications and electrobiochemistry. 相似文献