首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
ES cell neural differentiation reveals a substantial number of novel ESTs   总被引:3,自引:0,他引:3  
We have used a method for synchronously differentiating murine embryonic stem (ES) cells into functional neurons and glia in culture. Using subtractive hybridization we isolated approximately 1200 cDNA clones from ES cell cultures at the neural precursor stage of neural differentiation. Pilot studies indicated that this library is a good source of novel neuro-embryonic cDNA clones. We therefore screened the entire library by single-pass sequencing. Characterization of 604 non-redundant cDNA clones by BLAST revealed 96 novel expressed sequence tags (ESTs) and an additional 197 matching uncharacterized ESTs or genomic clones derived from genome sequencing projects. With the exception of a handful of genes, whose functions are still unclear, most of the 311 known genes identified in this screen are expressed in embryonic development and/or the nervous system. At least 80 of these genes are implicated in disorders of differentiation, neural development and/or neural function. This study provides an initial snapshot of gene expression during early neural differentiation of ES cell cultures. Given the recent identification of human ES cells, further characterization of these novel and uncharacterized ESTs has the potential to identify genes that may be important in nervous system development, physiology and disease. Electronic Publication  相似文献   

2.

Background

High throughput techniques have generated a huge set of biological data, which are deposited in various databases. Efficient exploitation of these databases is often hampered by a lack of appropriate tools, which allow easy and reliable identification of genes that miss functional characterization but are correlated with specific biological conditions (e.g. organotypic expression).

Results

We have developed a simple algorithm (DGSA = Database-dependent Gene Selection and Analysis) to identify genes with unknown functions involved in organ development concentrating on the heart. Using our approach, we identified a large number of yet uncharacterized genes, which are expressed during heart development. An initial functional characterization of genes by loss-of-function analysis employing morpholino injections into zebrafish embryos disclosed severe developmental defects indicating a decisive function of selected genes for developmental processes.

Conclusion

We conclude that DGSA is a versatile tool for database mining allowing efficient selection of uncharacterized genes for functional analysis.  相似文献   

3.
Epithelial cells interact directly with bacteria in the environment and play a critical role in airway defense against microbial pathogens. In this study, we examined the response of respiratory epithelial cells to infection with nontypable Haemophilus influenzae. Using an in vitro cell culture model, we found that epithelial cell monolayers released significant quantities of IL-8 and expressed increased levels of ICAM-1 mRNA and surface protein in response to H. influenzae. In contrast, levels of IL-1beta, TNF-alpha, and MHC class I were not significantly affected, suggesting preferential activation of a specific subset of epithelial genes directed toward defense against bacteria. Induction of ICAM-1 required direct bacterial interaction with the epithelial cell surface and was not reproduced by purified H. influenzae lipooligosaccharide. Consistent with a functional role for this response, induction of ICAM-1 by H. influenzae mediated increased neutrophil adherence to the epithelial cell surface. Furthermore, in an in vivo murine model of airway infection with H. influenzae, increased epithelial cell ICAM-1 expression coincided with increased chemokine levels and neutrophil recruitment in the airway. These results indicate that ICAM-1 expression on human respiratory epithelial cells is induced by epithelial cell interaction with H. influenzae and suggest that an ICAM-1-dependent mechanism can mediate neutrophil adherence to these cells independent of inflammatory mediator release by other cell types. Direct induction of specific epithelial cell genes (such as ICAM-1 and IL-8) by bacterial infection may allow for rapid and efficient innate defense in the airway.  相似文献   

4.
The APOBEC3 genes encode cytidine deaminases that act as components of an intrinsic immune defense that have potent activity against a variety of retroelements. This family of genes has undergone a rapid expansion from one or two genes in nonprimate mammals to at least seven members in primates. Here we describe the evolution and function of an uncharacterized antiviral effector, APOBEC3H, which represents the most evolutionarily divergent APOBEC3 gene found in primates. We found that APOBEC3H has undergone significant adaptive evolution in primates. Consistent with our previous findings implicating adaptively evolving APOBEC3 genes as antiviral effectors, APOBEC3H from Old World monkeys (OWMs) has efficient antiviral activity against primate lentiviruses, is sensitive to inactivation by the simian immunodeficiency virus Vif protein, and is capable of hypermutating retroviral genomes. In contrast, human APOBEC3H is inherently poorly expressed in primate cells and is ineffective at inhibiting retroviral replication. Both OWM and human APOBEC3H proteins can be expressed in bacteria, where they display significant DNA mutator activity. Thus, humans have retained an APOBEC3H gene that encodes a functional, but poorly expressed, cytidine deaminase with no apparent antiviral activity. The consequences of the lack of antiviral activity of human APOBEC3H are likely to be relevant to the current-day abilities of humans to combat retroviral challenges.  相似文献   

5.
Large-scale statistical analysis of secondary xylem ESTs in pine   总被引:3,自引:0,他引:3  
  相似文献   

6.
7.
Attempted allelic replacement of 144 Streptococcus pneumoniae open reading frames of previously uncharacterized function led to the identification of 36 genes essential for growth under laboratory conditions. Of these, 14 genes (obg, spoIIIJ2, trmU, yacA, yacM, ydiC, ydiE, yjbN, yneS, yphC, ysxC, ytaG, yloI and yxeH4) were also essential in Staphylococcus aureus and Haemophilus influenzae or Escherichia coli, 2 genes (yrrK and ydiB) were only essential in H. influenzae as well as S. pneumoniae and 8 genes were necessary for growth of S.pneumoniae and S. aureus and did not have a homolog in H. influenzae(murD2, ykqC, ylqF, yqeH, ytgP, yybQ) or were not essential in that organism (yqeL, yhcT). The proteins encoded by these genes could represent good targets for novel antibiotics covering different therapeutic profiles. The putative functions of some of these essential proteins, inferred by bioinformatic analysis, are presented. Four mutants, with deletions of loci not essential for in vitro growth, were found to be severely attenuated in a murine respiratory tract infection model, suggesting that not all targets for antibacterial therapeutics are revealed by simple in vitro essentiality testing. The results of our experiments together with those collated from previously reported studies including Bacillus subtilis, E. coli and Mycoplasma sp. demonstrate that gene conservation amongst bacteria does not necessarily indicate that essentiality in one organism can be extrapolated to others. Moreover, this study demonstrates that different experimental procedures can produce apparently contradictory results.  相似文献   

8.
Through in silico screens, we have identified many previously uncharacterized genes that display similar expression patterns as the mouse Dazl gene, a germ line-specific marker. Here, we report the identification and characterization of one of these novel genes. TSAP gene encodes a protein with 350 amino acids and contains five ankyrin repeats and a PEST sequence motif. Furthermore, we have generated an anti-TSAP antibody and have used three different approaches (RT-PCR, in situ hybridization, and immunohistochemistry) to investigate the expression profiles of TSAP mRNAs and proteins. TSAP is specifically expressed in testis, but not in other tissues such as ovary. Within the testis, TSAP is detected 10 days after birth and is mainly expressed in spermatocytes (ST) and later stage of germ cells, but not in spermatogonia (SG) or sertoli cells. Therefore, TSAP protein likely plays a role in spermatogenesis.  相似文献   

9.
Haemophilus influenzae, a commensal of the human respiratory mucosa, is an important cause of localized and systemic infections. We have recently shown that numerous strains of capsulate (typeable) and acapsulate (non-typeable) H. influenzae target the carcinoembryonic antigen (CEA) family of cell adhesion molecules (CEACAMs). Moreover, the ligands appeared to be antigenically variable and, when using viable typeable bacteria, their adhesive functions were inhibited by the presence of capsule. In this report, we show that the antigenically variable outer membrane protein, P5, expressed by typeable and non-typeable H. influenzae targets human CEACAM1. Variants and mutants lacking the expression of P5 of all strains tested were unable to target purified soluble receptors. A non-typeable strain that did not interact with CEACAM1 was made adherent to both the soluble receptors and CEACAM1-transfected Chinese hamster ovary cells by transformation with the P5 gene derived from the adherent typeable strain Rd. However, several H. influenzae mutants lacking P5 expression continued to bind the cell-bound CEACAM1 receptors. These observations suggest that (i) CEACAM1 alone can support P5 interactions and (ii) some strains contain additional ligands with the property to target CEACAM1 but require the receptor in the cellular context. The identification of a common ligand in diverse strains of H. influenzae and the presence of multiple ligands for the same receptor suggests that targeting of members of the CEACAM family of receptors may be of primary significance in colonization and pathogenesis of H. influenzae strains.  相似文献   

10.
COMBREX (computational bridges to experimentation) is a project to engage the biological community in providing better functional annotation of genomes. In essence, the project involves the generation by computational biologists of a database of predicted functions for genes in bacterial genomes. Those genes for which no functional assignments have been proven experimentally are then open for bids by biochemists to test the predicted functions. High-priority genes are those for which no previous functional assignment has been made as well as those where uncharacterized examples are present in many genomes. A pilot project is running that focuses on bacterial and archaeal genomes.  相似文献   

11.
12.
Predicting the biological function of all the genes of an organism is one of the fundamental goals of computational system biology. In the last decade, high-throughput experimental methods for studying the functional interactions between gene products (GPs) have been combined with computational approaches based on Bayesian networks for data integration. The result of these computational approaches is an interaction network with weighted links representing connectivity likelihood between two functionally related GPs. The weighted network generated by these computational approaches can be used to predict annotations for functionally uncharacterized GPs. Here we introduce Weighted Network Predictor (WNP), a novel algorithm for function prediction of biologically uncharacterized GPs. Tests conducted on simulated data show that WNP outperforms other 5 state-of-the-art methods in terms of both specificity and sensitivity and that it is able to better exploit and propagate the functional and topological information of the network. We apply our method to Saccharomyces cerevisiae yeast and Arabidopsis thaliana networks and we predict Gene Ontology function for about 500 and 10000 uncharacterized GPs respectively.  相似文献   

13.
The human cDNA and genomic sequencing projects will result in the identification and isolation of some 140,000 genes, the majority of which lack predicted functions and for which the cellular localizations are not known. The identification and characterization of protein components of specific cell structures and machineries are essential steps not only toward defining functions of genes but also toward understanding cell function and regulation. We describe here a new approach, termed PROLOC, which uses full-length cDNAs for systematic classification of novel proteins as a functional pointer. We have PCR-amplified 25 uncharacterized human genes and expressed the encoded proteins as GFP fusions in a human cell line. This pilot project has identified novel proteins associated with the nucleolus, mitochondria, the ER, the ER-Golgi-intermediate compartment (ERGIC), the GC, the plasma membrane, and cytoplasmic foci. This visual classification approach may be scaled up to handle a large number of novel genes and permit the generation of a global cellular protein localization map. Such information should be valuable for many aspects of functional genomics and cell biology.  相似文献   

14.
15.
A large number of protein sequences are registered in public databases such as PubMed. Functionally uncharacterized enzymes are included in these databases, some of which likely have potential for industrial applications. However, assignment of the enzymes remained difficult tasks for now. In this study, we assigned a total of 28 original sequences to uncharacterized enzymes in the FAD-dependent oxidase family expressed in some species of bacteria including Chryseobacterium, Flavobacterium, and Pedobactor. Progenitor sequence of the assigned 28 sequences was generated by ancestral sequence reconstruction, and the generated sequence exhibited L-lysine oxidase activity; thus, we named the enzyme AncLLysO. Crystal structures of ligand-free and ligand-bound forms of AncLLysO were determined, indicating that the enzyme recognizes L-Lys by hydrogen bond formation with R76 and E383. The binding of L-Lys to AncLLysO induced dynamic structural change at a plug loop formed by residues 251 to 254. Biochemical assays of AncLLysO variants revealed the functional importance of these substrate recognition residues and the plug loop. R76A and E383D variants were also observed to lose their activity, and the kcat/Km value of G251P and Y253A mutations were approximately 800- to 1800-fold lower than that of AncLLysO, despite the indirect interaction of the substrates with the mutated residues. Taken together, our data demonstrate that combinational approaches to sequence classification from database and ancestral sequence reconstruction may be effective not only to find new enzymes using databases of unknown sequences but also to elucidate their functions.  相似文献   

16.
High-content screening for gene profiling has generally been limited to single cells. Here, we explore an alternative approach-profiling gene function by analyzing effects of gene knockdowns on the architecture of a complex tissue in a multicellular organism. We profile 554 essential C. elegans genes by imaging gonad architecture and scoring 94 phenotypic features. To generate a reference for evaluating methods for network construction, genes were manually partitioned into 102 phenotypic classes, predicting functions for uncharacterized genes across diverse cellular processes. Using this classification as a benchmark, we developed a robust computational method for constructing gene networks from high-content profiles based on a network context-dependent measure that ranks the significance of links between genes. Our analysis reveals that multi-parametric profiling in a complex tissue yields functional maps with a resolution similar to genetic interaction-based profiling in unicellular eukaryotes-pinpointing subunits of macromolecular complexes and components functioning in common cellular processes.  相似文献   

17.
The advent of genome-wide RNA interference (RNAi)–based screens puts us in the position to identify genes for all functions human cells carry out. However, for many functions, assay complexity and cost make genome-scale knockdown experiments impossible. Methods to predict genes required for cell functions are therefore needed to focus RNAi screens from the whole genome on the most likely candidates. Although different bioinformatics tools for gene function prediction exist, they lack experimental validation and are therefore rarely used by experimentalists. To address this, we developed an effective computational gene selection strategy that represents public data about genes as graphs and then analyzes these graphs using kernels on graph nodes to predict functional relationships. To demonstrate its performance, we predicted human genes required for a poorly understood cellular function—mitotic chromosome condensation—and experimentally validated the top 100 candidates with a focused RNAi screen by automated microscopy. Quantitative analysis of the images demonstrated that the candidates were indeed strongly enriched in condensation genes, including the discovery of several new factors. By combining bioinformatics prediction with experimental validation, our study shows that kernels on graph nodes are powerful tools to integrate public biological data and predict genes involved in cellular functions of interest.  相似文献   

18.
Members of the AP1/SQUA subfamily of plant MADS-box genes play broad roles in the regulation of reproductive meristems, the specification of sepal and petal identities, and the development of leaves and fruits. It has been shown that AP1/SQUA-like genes are angiosperm-specific, and have experienced several major duplication events. However, the evolutionary history of this subfamily is still uncertain. Here, we report the isolation of 14 new AP1/SQUA-like genes from seven early-diverging eudicots and the identification of 11 previously uncharacterized ESTs and genomic sequences from public databases. Sequence comparisons of these and other published sequences reveal a conserved C-terminal region, the FUL motif, in addition to the known euAP1/paleoAP1 motif, in AP1/SQUA-like proteins. Phylogenetic analyses further suggest that there are three major lineages (euAP1, euFUL, and AGL79) in core eudicots, likely resulting from two close duplication events that predated the divergence of core eudicots. Among the three lineages, euFUL is structurally very similar to FUL-like genes from early-diverging eudicots and basal angiosperms, whereas euAP1 might have originally been generated through a 1-bp deletion in the exon 8 of an ancestral euFUL- or FUL-like gene. Because euFUL- and FUL-like genes usually have broad expression patterns, we speculate that AP1/SQUA-like genes initially had broad functions. Based on these observations, the evolutionary fates of duplicate genes and the contributions of the frameshift mutation and alternative splicing to functional diversity are discussed.  相似文献   

19.
20.
The genome of Mycobacterium tuberculosis (H37Rv) contains 4,019 protein coding genes, of which more than thousand have been categorized as 'hypothetical' implying that for these not even weak functional associations could be identified so far. We here predict reliable functional indications for half of this large hypothetical orfeome: 497 genes can be annotated based on orthology, and another 125 can be linked to interacting proteins via integrated genomic context analysis and literature mining. The assignments include newly identified clusters of interacting proteins, hypothetical genes that are associated to well known pathways and putative disease-relevant targets. All together, we have raised the fraction of the proteome with at least some functional annotation to 88% which should considerably enhance the interpretation of large-scale experiments targeting this medically important organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号