首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
A branched pathway for transgene-induced RNA silencing in plants   总被引:31,自引:0,他引:31  
In plants, RNA silencing can be induced by highly transcribed sense transgenes (S-PTGS) or by transgene loci producing double-stranded RNA (dsRNA) due to the presence of inverted repeats (IR-PTGS). Both phenomena correlate with accumulation of 21-25 nt sense and anti-sense RNA homologous to the silent gene and with methylation of the coding sequence. We have challenged IR-PTGS with four viruses known to inhibit S-PTGS: CMV, TuMV, TVCV, and TCV ( this work) and in sgs2, sgs3, and ago1 mutants impaired in S-PTGS. Surprisingly, whereas the four viruses inhibit IR-PTGS, IR-PTGS and methylation of a GUS trangene and IR-PTGS of three endogeneous genes occur in the sgs2, sgs3, and ago1 mutations. Based on these results, we propose a branched pathway for RNA silencing in plants. RNA silencing would occur via the action of dsRNA produced either via the action of SGS2 (also known as SDE1), SGS3, and AGO1 on the S-PTGS branch or by transgenes arranged as inverted repeats on the IR-PTGS branch. Moreover, transgene methylation would result from production or action of dsRNA, since it does not require SGS2/SDE1, SGS3, and AGO1.  相似文献   

5.
6.
Formation of trans-acting small interfering RNAs (ta-siRNAs) from the TAS3 precursor is triggered by the AGO7/miR390 complex, which primes TAS3 for conversion into double-stranded RNA by the RNA-dependent RNA polymerase RDR6 and SGS3. These ta-siRNAs control several aspects of plant development. The mechanism routing AGO7-cleaved TAS3 precursor to RDR6/SGS3 and its subcellular organization are unknown. We show that AGO7 accumulates together with SGS3 and RDR6 in cytoplasmic siRNA bodies that are distinct from P-bodies. siRNA bodies colocalize with a membrane-associated viral protein and become positive for stress-granule markers upon stress-induced translational repression, this suggests that siRNA bodies are membrane-associated sites of accumulation of mRNA stalled during translation. AGO7 congregates with miR390 and SGS3 in membranes and its targeting to the nucleus prevents its accumulation in siRNA bodies and ta-siRNA formation. AGO7 is therefore required in the cytoplasm and membranous siRNA bodies for TAS3 processing, revealing a hitherto unknown role for membrane-associated ribonucleoparticles in ta-siRNA biogenesis and AGO action in plants.  相似文献   

7.
8.
During RNA interference and related gene regulatory pathways, the endonuclease Dicer cleaves precursor RNA molecules to produce microRNAs (miRNAs) and short interfering RNAs (siRNAs). Human cells encode a single Dicer enzyme that can associate with two different double-stranded RNA (dsRNA)-binding proteins, protein activator of PKR (PACT) and trans-activation response RNA-binding protein (TRBP). However, the functional redundancy or differentiation of PACT and TRBP in miRNA and siRNA biogenesis is not well understood. Using a reconstituted system, we show here that PACT and TRBP have distinct effects on Dicer-mediated dsRNA processing. In particular, we found that PACT in complex with Dicer inhibits the processing of pre-siRNA substrates when compared with Dicer and a Dicer–TRBP complex. In addition, PACT and TRBP show non-redundant effects on the production of different-sized miRNAs (isomiRs), which in turn alter target-binding specificities. Experiments using chimeric versions of PACT and TRBP suggest that the two N-terminal RNA-binding domains of each protein confer the observed differences in dsRNA substrate recognition and processing behavior of Dicer–dsRNA-binding protein complexes. These results support the conclusion that in humans, Dicer-associated dsRNA-binding proteins are important regulatory factors that contribute both substrate and cleavage specificity during miRNA and siRNA production.  相似文献   

9.
10.
Chen J  Li WX  Xie D  Peng JR  Ding SW 《The Plant cell》2004,16(5):1302-1313
Small interfering RNAs (siRNAs) and microRNAs (miRNAs) are processed by the ribonuclease Dicer from distinct precursors, double-stranded RNA (dsRNA) and hairpin RNAs, respectively, although either may guide RNA silencing via a similar complex. The siRNA pathway is antiviral, whereas an emerging role for miRNAs is in the control of development. Here, we describe a virulence factor encoded by turnip yellow mosaic virus, p69, which suppresses the siRNA pathway but promotes the miRNA pathway in Arabidopsis thaliana. p69 suppression of the siRNA pathway is upstream of dsRNA and is as effective as genetic mutations in A. thaliana genes involved in dsRNA production. Possibly as a consequence of p69 suppression, p69-expressing plants contained elevated levels of a Dicer mRNA and of miRNAs as well as a correspondingly enhanced miRNA-guided cleavage of two host mRNAs. Because p69-expressing plants exhibited disease-like symptoms in the absence of viral infection, our findings suggest a novel mechanism for viral virulence by promoting the miRNA-guided inhibition of host gene expression.  相似文献   

11.
12.
microRNAs (miRNAs) and small interfering RNAs (siRNAs) in plants bear a methyl group on the ribose of the 3′ terminal nucleotide. We showed previously that the methylation of miRNAs and siRNAs requires the protein HEN1 in vivo and that purified HEN1 protein methylates miRNA/miRNA* duplexes in vitro. In this study, we show that HEN1 methylates both miRNA/miRNA* and siRNA/siRNA* duplexes in vitro with a preference for 21–24 nt RNA duplexes with 2 nt overhangs. We also demonstrate that HEN1 deposits the methyl group on to the 2′ OH of the 3′ terminal nucleotide. Among various modifications that can occur on the ribose of the terminal nucleotide, such as 2′-deoxy, 3′-deoxy, 2′-O-methyl and 3′-O-methyl, only 2′-O-methyl on a small RNA inhibits the activity of yeast poly(A) polymerase (PAP). These findings indicate that HEN1 specifically methylates miRNAs and siRNAs and implicate the importance of the 2′-O-methyl group in the biology of RNA silencing.  相似文献   

13.
14.
One of the most exciting recent developments in RNA biology has been the discovery of small non-coding RNAs that affect gene expression through the RNA interference (RNAi) mechanism. Two major classes of RNAs involved in RNAi are small interfering RNA (siRNA) and microRNA (miRNA). Dicer, an RNase III enzyme, plays a central role in the RNAi pathway by cleaving precursors of both of these classes of RNAs to form mature siRNAs and miRNAs, which are then loaded into the RNA-induced silencing complex (RISC). miRNA and siRNA precursors are quite structurally distinct; miRNA precursors are short, imperfect hairpins while siRNA precursors are long, perfect duplexes. Nonetheless, Dicer is able to process both. Dicer, like the majority of RNase III enzymes, contains a dsRNA binding domain (dsRBD), but the data are sparse on the exact role this domain plays in the mechanism of Dicer binding and cleavage. To further explore the role of human Dicer-dsRBD in the RNAi pathway, we determined its binding affinity to various RNAs modeling both miRNA and siRNA precursors. Our study shows that Dicer-dsRBD is an avid binder of dsRNA, but its binding is only minimally influenced by a single-stranded – double-stranded junction caused by large terminal loops observed in miRNA precursors. Thus, the Dicer-dsRBD contributes directly to substrate binding but not to the mechanism of differentiating between pre-miRNA and pre-siRNA. In addition, NMR spin relaxation and MD simulations provide an overview of the role that dynamics contribute to the binding mechanism. We compare this current study with our previous studies of the dsRBDs from Drosha and DGCR8 to give a dynamic profile of dsRBDs in their apo-state and a mechanistic view of dsRNA binding by dsRBDs in general.  相似文献   

15.
16.
17.
Plant microRNAs (miRNAs) regulate gene expression mainly by guiding cleavage of target mRNAs. In this study, a degradome library constructed from different soybean (Glycine max (L.) Merr.) tissues was deep-sequenced. 428 potential targets of small interfering RNAs and 25 novel miRNA families were identified. A total of 211 potential miRNA targets, including 174 conserved miRNA targets and 37 soybean-specific miRNA targets, were identified. Among them, 121 targets were first discovered in soybean. The signature distribution of soybean primary miRNAs (pri-miRNAs) showed that most pri-miRNAs had the characteristic pattern of Dicer processing. The biogenesis of TAS3 small interfering RNAs (siRNAs) was conserved in soybean, and nine Auxin Response Factors were identified as TAS3 siRNA targets. Twenty-three miRNA targets produced secondary small interfering RNAs (siRNAs) in soybean. These targets were guided by five miRNAs: gma-miR393, gma-miR1508, gma-miR1510, gma-miR1514, and novel-11. Multiple targets of these secondary siRNAs were detected. These 23 miRNA targets may be the putative novel TAS genes in soybean. Global identification of miRNA targets and potential novel TAS genes will contribute to research on the functions of miRNAs in soybean.  相似文献   

18.
19.
Two classes of short interfering RNA in RNA silencing   总被引:52,自引:0,他引:52  
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号