首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The affinity for K+ of silkworm nerve Na+/K+-ATPase is markedly lower than that of mammalian Na+/K+-ATPase (Homareda 2010). In order to obtain clues on the molecular basis of the difference in K+ affinities, we cloned cDNAs of silkworm (Bombyx mori) nerve Na+/K+-ATPase α and β subunits, and analyzed the deduced amino acid sequences. The molecular masses of the α and β subunits were presumed to be 111.5 kDa with ten transmembrane segments and 37.7 kDa with a single transmembrane segment, respectively. The α subunit showed 75% identity and 93% homology with the pig Na+/K+-ATPase α1 subunit. On the other hand, the amino acid identity of the β subunit with mammalian counterparts was as low as 30%. Cloned α and β cDNAs were co-expressed in cultured silkworm ovary-derived cells, BM-N cells, which lack endogenous Na+/K+-ATPase. Na+/K+-ATPase expressed in the cultured cells showed a low affinity for K+ and a high affinity for Na+, characteristic of the silkworm nerve Na+/K+-ATPase. These results suggest that the β subunit is responsible for the affinity for K+ of Na+/K+-ATPase.  相似文献   

2.
3.
A ouabain sensitive inward current occurs in Xenopus oocytes in Na+ and K+ -free solutions. Several laboratories have investigated the properties of this current and suggested that acidic extracellular pH (pHo) produces a conducting pathway through the Na+/K+ pump that is permeable to H+ and blocked by [Na+]o. An alternative suggestion is that the current is mediated by an electrogenic H+-ATPase. Here we investigate the effect of pHo and [Na+]o on both transient and steady-state ouabain-sensitive current. At alkaline or neutral pHo the relaxation rate of pre-steady-state current is an exponential function of voltage. Its U-shaped voltage dependence becomes apparent at acidic pHo, as predicted by a model in which protonation of the Na+/K+ pump reduces the energy barrier between the internal solution and the Na+ occluded state. The model also predicts that acidic pHo increases steady-state current leak through the pump. The apparent pK of the titratable group(s) is 6, suggesting that histidine is involved in induction of the conductance pathway. 22Na efflux experiments in squid giant axon and current measurements in oocytes at acidic pHo suggest that both Na+ and H+ are permeant. The acid-induced inward current is reduced by high [Na+]o, consistent with block by Na+. A least squares analysis predicts that H+ is four orders of magnitude more permeant than Na+, and that block occurs when 3 Na+ ions occupy a low affinity binding site (K 0.5=130±30 mM) with a dielectric coefficient of 0.23±0.03. These data support the conclusion that the ouabain-sensitive conducting pathway is a result of passive leak of both Na+ and H+ through the Na+/K+ pump.  相似文献   

4.
The expression of Na+, K+-ATPase α3 subunit and synaptosomal membrane Na+, K+-ATPase activity were analyzed after administration of ouabain and endobain E, respectively commercial and endogenous Na+, K+-ATPase inhibitors. Wistar rats received intracerebroventricularly ouabain or endobain E dissolved in saline solution or Tris–HCl, respectively or the vehicles (controls). Two days later, animals were decapitated, cerebral cortex and hippocampus removed and crude and synaptosomal membrane fractions were isolated. Western blot analysis showed that Na+, K+-ATPase α3 subunit expression increased roughly 40% after administration of 10 or 100 nmoles ouabain in cerebral cortex but remained unaltered in hippocampus. After administration of 10 μl endobain E (1 μl = 28 mg tissue) Na+, K+-ATPase α3 subunit enhanced 130% in cerebral cortex and 103% in hippocampus. The activity of Na+, K+-ATPase in cortical synaptosomal membranes diminished or increased after administration of ouabain or endobain E, respectively. It is concluded that Na+, K+-ATPase inhibitors modify differentially the expression of Na+, K+-ATPase α3 subunit and enzyme activity, most likely involving compensatory mechanisms.  相似文献   

5.
1. Patients affected by isovaleric acidemia (IVAcidemia) suffer from acute episodes of encephalopathy. However, the mechanisms underlying the neuropathology of this disease are poorly known. The objective of the present study was to investigate the in vitro effects of the metabolites that predominantly accumulate in IVAcidemia, namely isovaleric acid (IVA), 3-hydroxyisovaleric acid (3-OHIVA) and isovalerylglycine (IVG), on important parameters of energy metabolism, such as 14CO2 production from acetate and the activities of the respiratory chain complexes I–IV, creatine kinase and Na+, K+-ATPase in synaptic plasma membranes from cerebral cortex homogenates of 30-day-old rats. 2. We observed that 3-OHIVA acid and IVG did not affect all the parameters analyzed. Similarly, 14CO2 production from acetate (Krebs cycle activity), the activities of creatine kinase, and of the respiratory chain complexes was not modified by IVA. In contrast, IVA exposition to cortical homogenates provoked a marked inhibition of Na+, K+-ATPase activity. However, this activity was not changed when IVA was directly exposed to purified synaptic plasma membranes, suggesting an indirect effect of this organic acid on the enzyme. Furthermore, pretreatment of cortical homogenates with α-tocopherol and creatine totally prevented IVA-induced inhibition on Na+, K+-ATPase activity from synaptic plasma membranes, whereas glutathione (GSH) and the NO synthase inhibitor Nω-nitro-l-arginine methyl ester (L-NAME) did not alter this inhibition. 3. These data indicate that peroxide radicals were probably involved in this inhibitory effect. Since Na+, K+-ATPase is a critical enzyme for normal brain development and functioning and necessary to maintain neuronal excitability, it is presumed that the inhibitory effect of IVA on this activity may be involved in the pathophysiology of the neurological dysfunction of isovaleric acidemic patients.  相似文献   

6.
High salinity is the one of important factors limiting plant growth and crop production. Many NHX-type antiporters have been reported to catalyze K+/H+ exchange to mediate salt stress. This study shows that an NHX gene from Arachis hypogaea L. has an important role in K+ uptake and transport, which affects K+ accumulation and plant salt tolerance. When overexpressing AhNHX1, the growth of tobacco seedlings is improved with longer roots and a higher fresh weight than the wild type (WT) under NaCl treatment. Meanwhile, when exposed to NaCl stress, the transgenic seedlings had higher K+/H+ antiporter activity and their roots got more K+ uptake. NaCl stress could induce higher K+ accumulation in the roots, stems, and leaves of transgenic tobacco seedlings but not Na+ accumulation, thus, leading to a higher K+/Na+ ratio in the transgenic seedlings. Additionally, the AKT1, HAK1, SKOR, and KEA genes, which are involved in K+ uptake or transport, were induced by NaCl stress and kept higher expression levels in transgenic seedlings than in WT seedlings. The H+-ATPase and H+-PPase activities were also higher in transgenic seedlings than in the WT seedlings under NaCl stress. Simultaneously, overexpression of AhNHX1 increased the relative distribution of K+ in the aerial parts of the seedlings under NaCl stress. These results showed that AhNHX1 catalyzed the K+/H+ antiporter and enhanced tobacco tolerance to salt stress by increasing K+ uptake and transport.  相似文献   

7.
Side-by-side with inhibition of the Na+,K+-ATPase ouabain and other cardiotonic steroids (CTS) can affect cell functions by mechanisms other than regulation of the intracellular Na+ and K+ ratio ([Na+]i/[K+]i). Thus, we compared the doseand time-dependences of the effect of ouabain on intracellular [Na+]i/[K+]i ratio, Na+,K+-ATPase activity, and proliferation of human umbilical vein endothelial cells (HUVEC). Treatment of the cells with 1-3 nM ouabain for 24-72 h decreased the [Na+]i/[K+]i ratio and increased cell proliferation by 20-50%. We discovered that the same ouabain concentrations increased Na+,K+-ATPase activity by 25-30%, as measured by the rate of 86Rb+ influx. Higher ouabain concentrations inhibited Na+,K+-ATPase, increased [Na+]i/[K+]i ratio, suppressed cell growth, and caused cell death. When cells were treated with low ouabain concentrations for 48 or 72 h, a negative correlation between [Na+]i/[K+]i ratio and cell growth activation was observed. In cells treated with high ouabain concentrations for 24 h, the [Na+]i/[K+]i ratio correlated positively with proliferation inhibition. These data demonstrate that inhibition of HUVEC proliferation at high CTS concentrations correlates with dissipation of the Na+ and K+ concentration gradients, whereas cell growth stimulation by low CTS doses results from activation of Na+,K+-ATPase and decrease in the [Na+]i/[K+]i ratio.  相似文献   

8.
The influence of the KATP+-channel opener diazoxide on the K+ cycle and oxygen consumption has been studied in rat liver mitochondria. It was found that diazoxide activates the KATP+-channel in the range of nanomolar concentrations (50–300 nM, K 1/2 ∼ 140 nM), which results in activation of K+/H+ exchange in mitochondria. The latter, in turn, accelerates mitochondrial respiration in respiratory state 2. The contribution of KATP+-channel to the mitochondrial potassium cycle was estimated using the selective KATP+-channel blocker glibenclamide. The data show that the relative contribution of KATP+-channel in the potassium cycle of mitochondria is variable and increases only with the decrease in the ATP-independent component of K+ uptake. Possible mechanisms underlying the observed phenomena are discussed. The experimental results more fully elucidate the role of KATP+-channel in the regulation of mitochondrial functions, especially under pathological conditions accompanied by impairment of the mitochondrial energy state.  相似文献   

9.
The Na+/K+-ATPase generates an electrochemical gradient of Na+ and K+, which is necessary for the functioning of animal cells. During the catalytic act, the enzyme passes through two principal conformational states, E1 and E2. To assess the domain organization of the protein in these conformations, thermal denaturation of Na+/K+-ATPases from duck salt gland and from rabbit kidney has been studied in the absence and in the presence of Na+ or K+, which induce the transition to E1 or E2. The melting curves for the ion-free forms of the two ATPases have different shapes: the rabbit protein shows one transition at 56.1°C, whereas the duck protein shows two transitions, at 49.8 and 56.9°C. Addition of Na+ or K+ ions abolishes the difference in thermal behavior between these enzymes, but through opposite effects. The melting curves for the E2 conformation (K+ bound) in both cases exhibit a single peak of heat absorption at ∼63°C. For the E1 conformation (Na+ bound), each melting curve has three peaks, indicating denaturation of three domains. The difference in the domain organization of Na+/K+-ATPase in the E1 and E2 states may account for the different sensitivity to temperature, proteolysis, and oxidative stress observed for the two enzyme conformations.  相似文献   

10.
Summary Hypothetical model based on deficient glutamatergic neurotransmission caused by hyperactive glutamate transport in astrocytes surrounding excitatory synapses in the prefrontal cortex is examined in relation to the aetiology of schizophrenia. The model is consistent with actions of neuroleptics, such as clozapine, in animal experiments and it is strongly supported by recent findings of increased expression of glutamate transporter GLT in prefrontal cortex of patients with schizophrenia. It is proposed that mechanisms regulating glutamate transport be investigated as potential targets for novel classes of neuroactive compounds with neuroleptic characteristics. Development of new efficient techniques designed specifically for the purpose of studying rapid activity-dependent translocation of glutamate transporters and associated molecules such as Na+, K+-ATPase is essential and should be encouraged.  相似文献   

11.
Pristanic acid (Prist) accumulates in some peroxisomal disorders characterized by neurologic dysfunction and brain abnormalities. The present work investigated the in vitro effects of Prist on important parameters of energy metabolism in brain cortex of young rats. CO2 production from labeled acetate and the activities of the respiratory chain complexes I–IV, creatine kinase and synaptic Na+, K+-ATPase were measured. Prist decreased CO2 production and the activities of complexes I, II and II–III. Prist also reduced Na+, K+-ATPase activity, but did not affect the activity of creatine kinase. Considering the importance of the citric acid cycle and the electron flow through the respiratory chain for brain energy production and of Na+, K+-ATPase for the maintenance of membrane potential, the present data indicate that Prist compromises brain bioenergetics and neurotransmission. It is presumed that these pathomechanisms may be involved in the neurological damage found in patients affected by disorders in which Prist accumulates.  相似文献   

12.
The effect of pH on electrogenic sodium transport by the Na+,K+-ATPase has been studied. Experiments were carried out by admittance recording in a model system consisting of a bilayer lipid membrane with adsorbed membrane fragments containing purified Na+,K+-ATPase. Changes in the membrane admittance (capacitance and conductance increments in response to photo-induced release of ATP from caged ATP) were measured as function of AC voltage frequency, sodium ion concentration, and pH. In solutions containing 150 mM Na+, the frequency dependence of capacitance increments was not significantly dependent on pH in the range between 6 and 8. At a low NaCl concentration (3 mM), the capacitance increments at low frequencies decreased with the increasing pH. In the absence of NaCl, the frequency-dependent capacitance increment at low frequencies was similar to that measured in the presence of 3 mM NaCl. These results may be explained by involvement of protons in the Na+,K+-ATPase pump cycle, i.e., electroneutral exchange of sodium ions for protons under physiological conditions, electrogenic transport of sodium ions at high pH, and electrogenic transport of protons at low concentrations (and in the absence) of sodium ions.  相似文献   

13.
14.
In an attempt to explore unknown K+ channels in mammalian cells, especially ATP-sensitive K+ (KATP) channels, we compared the sequence homology of Kir6.1 and Kir6.2, two pore-forming subunits of mammalian KATP channel genes, with bacterial genes that code for selective proteins with confirmed or putative ion transport properties. BLAST analysis revealed that a prokaryotic gene (ydfJ) expressed in Escherichia coli K12 strain shared 8.6% homology with Kir6.1 and 8.3% with Kir6.2 genes. Subsequently, we cloned and sequenced ydfJ gene from E. coli K12 and heterologously expressed it in mammalian HEK-293 cells. The whole-cell patch-clamp technique was used to record ion channel currents generated by ydfJ-encoded protein. Heterologous expression of ydfJ gene in HEK-293 cells yielded a novel K+ channel current that was inwardly rectified and had a reversal potential close to K+ equilibrium potential. The expressed ydfJ channel was blocked reversibly by low concentration of barium in a dose-dependent fashion. Specific KATP channel openers or blockers did not alter the K+ current generated by ydfJ expression alone or ydfJ coexpressed with rvSUR1 or rvSUR2B subunits of KATP channel complex. Furthermore, this coexpressed ydfJ/rvSUR1 channels were not inhibited by ATP dialysis. On the other hand, ydfJ K+ currents were inhibited by protopine (a nonspecific K+ channel blocker) but not by dofetilide (a HERG channel blocker). In summary, heterologously expressed prokaryotic ydfJ gene formed a novel functional K+ channel in mammalian cells.  相似文献   

15.
The midgut of the tobacco hornworm, Manduca sexta, actively secretes potassium ions. This can be measured as short-circuit current (Isc) with the midgut mounted in an Ussing chamber and superfused with a high-K+ saline containing as its major osmolyte 166 mM sucrose. Iso-osmotic substitution of sucrose by non-metabolisable compounds (mannitol, urea, NaCl and the polyethylene glycols 200, 400 and 600) led to a dramatic, though reversible, drop in the current. Acarbose, a specific inhibitor of invertase (sucrase) in vertebrates and insects, had no detectable influence on Isc. Unexpectedly, after replacing sucrose iso-osmotically with the saccharides glucose, fructose, trehalose or raffinose, the K+ current could no longer be supported. However, all osmolytes smaller than sucrose (except for NaCl), metabolisable or not, initiated an immediate, quite uniform but transient, increase in Isc by about 20%, before its eventual decline far below the control value. Hypo-osmotic treatment by omission of sucrose also transiently increased the K+ current. Small osmolytes substituted for sucrose caused no transient Isc stimulation when the epithelium had been challenged before with hypo-osmolarity; however, the eventual decline in Isc could not be prevented. Our data seem inconsistent with a role of sucrose as energiser or simple osmolyte. Rather, we discuss here its possible role as analogous to that of sucrose in lower eukaryotes or plants, as an extra- and/or intracellular compatible osmolyte that stabilises structure and/or function of the proteins implicated in K+ transport.Communicated by G. Heldmaier  相似文献   

16.
Lysine (Lys) accumulation in tissues and biological fluids is the biochemical hallmark of patients affected by familial hyperlysinemia (FH) and other inherited metabolic disorders. In the present study we investigated the effects of acute administration of Lys on relevant parameters of energy metabolism and oxidative stress in striatum of young rats. We verified that Lys in vivo intrastriatal injection did not change the citric acid cycle function and creatine kinase activity, but, in contrast, significantly inhibited synaptic Na+,K+-ATPase activity in striatum prepared 2 and 12 h after injection. Moreover, Lys induced lipid peroxidation and diminished the concentrations of glutathione 2 h after injection. These effects were prevented by the antioxidant scavengers melatonin and the combination of α-tocopherol and ascorbic acid. Lys also inhibited glutathione peroxidase activity 12 h after injection. Therefore it is assumed that inhibition of synaptic Na+,K+-ATPase and oxidative damage caused by brain Lys accumulation may possibly contribute to the neurological manifestations of FH and other neurometabolic conditions with high concentrations of this amino acid.  相似文献   

17.
Ca2+ concentration in retinal photoreceptor rod outer segment (OS) strongly affects the generator potential kinetics and the receptor light adaptation. The response to intense light stimuli delivered in the dark produce potential changes exceeding 40 mV: since the Ca2+ extrusion in the OS is entirely controlled by the Na+:Ca2+, K+ exchanger, it is important to assess how the exchanger ion transport rate is affected by the voltage and, in general, by intracellular factors. It is indeed known that the cardiac Na+:Ca2+ exchanger is regulated by Mg-ATP via a still unknown metabolic pathway. In the present work, the Na+:Ca2+, K+ exchanger regulation was investigated in isolated OS, recorded in whole-cell configuration, using ionic conditions that activated maximally the exchanger in both forward and reverse mode. In all species examined (amphibia: Rana esculenta and Ambystoma mexicanum; reptilia: Gecko gecko), the forward (reverse) exchange current increased about linearly for negative (positive) voltages and exhibited outward (inward) rectification for positive (negative) voltages. Since hyperpolarisation increases Ca2+ extrusion rate, the recovery of the dark level of Ca2+ (and, in turn, of the generator potential) after intense light stimuli results accelerated. Mg-ATP increased the size of forward and reverse exchange current by a factor of ∼2.3 and ∼2.6, respectively, without modifying their voltage dependence. This indicates that Mg-ATP regulates the number of active exchanger sites and/or the exchanger turnover number, although via an unknown mechanism. Proceedings of the XVIII Congress of the Italian Society of Pure and Applied Biophysics (SIBPA), Palermo, Sicily, September 2006.  相似文献   

18.
Na+, K+-ATPase is inhibited by neurotensin, an effect which involves the peptide high affinity receptor (NTS1). Neurotensin effect on cerebral cortex synaptosomal membrane Na+, K+-ATPase activity of rats injected i.p. with antipsychotic clozapine was studied. Whereas 3.5 × 10−6 M neurotensin decreased 44% Na+, K+-ATPase activity in the controls, the peptide failed to modify enzyme activity 30 min after a single 3.0, 10.0 and 30.0 mg/kg clozapine dose. Neurotensin decreased Na+, K+-ATPase activity 40 or 20% 18 h after 3.0 or 5.6 mg/kg clozapine administration, respectively, and lacked inhibitory effect 18 h after 17.8 and 30.0 mg/kg clozapine doses. Results indicated that the clozapine treatment differentially modifies the further effect of neurotensin on synaptosomal membrane Na+, K+-ATPase activity according to time and dose conditions employed. Taken into account that clozapine blocks the dopaminergic D2 receptor, findings obtained favor the view of an interplay among neurotensinergic receptor, dopaminergic D2 receptor and Na+, K+-ATPase at synaptic membranes.  相似文献   

19.
Reed plants (Phragmites australis Trinius) grow not only in fresh and brackish water areas but also in arid and high salinity regions. Reed plants obtained from a riverside (Utsunomiya) were damaged by 257 mM NaCl, whereas desert plants (Nanpi) were not. When the plants were grown under salt stress, the shoots of the Utsunomiya plants contained high levels of sodium and low levels of potassium, whereas the upper part of the Nanpi plants contained low levels of sodium and high levels of potassium. One month salt stress did not affect potassium contents in either Utsunomiya or Nanpi plants, but it did dramatically increase sodium contents only in the Utsunomiya plants. The ratio of K+ to Na+ was maintained at a high level in the upper parts of the Nanpi plants, whereas the ratio markedly decreased in the Utsunomiya plants in the presence of NaCl. Accumulation of Na+ in the roots and Na+ efflux from the roots were greater in the Nanpi plants than in the Utsunomiya plants. These results suggest that the salt tolerance mechanisms of Nanpi reed plants include an improved ability to take up K+ to prevent an influx of Na+ and an improved ability to exclude Na+ from the roots.  相似文献   

20.
IN an earlier paper1 we have presented a model for a sodium pump based on the operation of the adenosine triphosphatase component of membranes which is sensitive to ouabain and is activated by sodium and potassium; that is (Na++K+)-ATPase. We attempted to correlate the biochemical properties of this enzyme system as they were then known with the essential properties of Na+ transport systems. The model suggested further experiments which could clarify the role of (Na+ + K +)-ATPase in ion transport and some experimental evidence is now available for the stoichiometry of ouabain binding to isolated enzyme preparations2,3 although differences in the experimental techniques which have been used make the data equivocal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号