首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study is to test the hypothesis that the mammalian target of rapamycin (mTOR) signaling pathway might mediate neuroprotection in a mouse model of septic encephalopathy and also to identify the role of autophagy. Mice were subjected to cecal ligation and puncture (CLP) or a sham operation, and all 50 mice were randomly assigned to five groups: sham, CLP+ saline, CLP+ rapamycin (1, 5, 10 mg/kg) groups. Two weeks after the operation, Morris water maze was conducted for behavioral test; Nissl staining was used for observing glia infiltration; immunohistochemical staining and biochemical measures in hippocampi were performed to detect mTOR targets and autophagy indicators. Immunochemistry revealed significant loss of neurons and increased glia infiltration in hippocampus after CLP operation. Inhibition of mTOR by rapamycin rescued cognitive deficits caused by sepsis (p < 0.05). Rapamycin did not affect total mTOR targets, while phosphorylated mTOR targets (p-mTOR-Ser2448, p-p70S6k-Thr389, p-AKT-S473) decreased (p < 0.05) and autophagy indicators (LC3-II, Atg5, Atg7) were increased, and P62 was decreased in rapamycin-treated CLP mice compared with the untreated (p < 0.05) in hippocampus. Rapamycin improves learning after sepsis through enhancing autophagy and may be a potentially effective therapeutic agent for the treatment of sepsis-induced cognitive impairment.  相似文献   

2.
IL-17A, produced by Th17 cells, may play a dual role in antitumor immunity. Using the GL261-glioma model, we investigated the effects of Th17 cells on tumor growth and microenvironment. Th17 cells infiltrate mouse gliomas, increase significantly in a time-dependent manner similarly to Treg and do not express Foxp3. To characterize the direct effects of Th17 cells on GL261 murine gliomas and on tumor microenvironment, we isolated IL-17-producing cells enriched from splenocytes derived from naïve (nTh17) or glioma-bearing mice (gTh17) and pre-stimulated in vitro with or without TGF-β. Spleen-derived Th17 cells co-expressing IL-17, IFN-γ and IL-10, but not Treg marker Foxp3, were co-injected intracranially with GL261 in immune-competent mice. Mice co-injected with GL261 and nTh17 survived significantly longer than gTh17 (P < 0.006) and gliomas expressed high level of IFN-γ and TNF-α, low levels of IL-10 and TGF-β. In vitro IL-17 per se did not exert effects on GL261 proliferation; in vivo gliomas grew equally well intracranially in IL-17 deficient and wild-type mice. We further analyzed relationship between Th17 cells and Treg. Treg were significantly higher in splenocytes from glioma-bearing than naïve mice (P = 0.01) and gTh17 produced more IL-10 than IFN-γ (P = 0.002). In vitro depletion of Treg using PC61 in splenocytes from glioma-bearing mice causes increased IL-17/IFN-γ cells (P = 0.007) and decreased IL-17/IL-10 cells (P = 0.03). These results suggest that Th17 polarization may be induced by Treg and that Th17 cells in gliomas modulate tumor growth depending on locally produced cytokines.  相似文献   

3.
The hexosamine biosynthetic pathway (HBP) integrates glucose, amino acids, fatty acids and nucleotides metabolisms for uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) synthesis. UDP-GlcNAc is the nucleotide sugar donor for O-linked β-N-acetylglucosaminylation (O-GlcNAcylation) processes. O-GlcNAc transferase (OGT) is the enzyme which transfers the N-acetylglucosamine (O-GlcNAc) residue onto target proteins. Several studies previously showed that glucose metabolism dysregulations associated with obesity, diabetes or cancer correlated with an increase of OGT expression and global O-GlcNAcylation levels. Moreover, these diseases present an increased activation of the nutrient sensing mammalian target of rapamycin (mTOR) pathway. Other works demonstrate that mTOR regulates protein O-GlcNAcylation in cancer cells through stabilization of OGT. In this context, we studied the cross-talk between these two metabolic sensors in vivo in obese mice predisposed to diabetes and in vitro in normal and colon cancer cells. We report that levels of OGT and O-GlcNAcylation are increased in obese mice colon tissues and colon cancer cells and are associated with a higher activation of mTOR signaling. In parallel, treatments with mTOR regulators modulate OGT and O-GlcNAcylation levels in both normal and colon cancer cells. However, deregulation of O-GlcNAcylation affects mTOR signaling activation only in cancer cells. Thus, a crosstalk exists between O-GlcNAcylation and mTOR signaling in contexts of metabolism dysregulation associated to obesity or cancer.  相似文献   

4.
Poly-β-hydroxybutyrate (PHB) is a natural polymer of the short chain fatty acid β-hydroxybutyrate, which acts as a microbial control agent. The mammalian target of the rapamycin (mTOR) signaling pathway plays a crucial role in intestine inflammation and epithelial morphogenesis. In this study, we examined the composition of intestine microbiota, and mTOR signaling-related gene expression in Pacific white shrimp Litopenaeus vannamei fed diets containing different levels of PHB: 0% (Control), 1% (PHB1), 3% (PHB3), and 5% (PHB5) (w/w) for 35 days. High-throughput sequencing analysis revealed that dietary PHB altered the composition and diversity of intestine microbiota, and that the microbiota diversity decreased with the increasing doses of PHB. Specifically, dietary PHB increased the relative abundance of Proteobacteria and Tenericutes in the PHB1 and PHB5 groups, respectively, and increased that of Gammaproteobacteria in the three PHB groups. Alternatively, PHB decreased Alphaproteobacteria in the PHB3 and PHB5 groups. At the genus level, dietary PHB increased the abundance of beneficial bacteria, such as Bacillus, Lactobacillus, Lactococcus, Clostridium, and Bdellovibrio. The relative mRNA expression levels of the mTOR signaling-related genes TOR, 4E-BP, eIF4E1α, and eIF4E2 all increased in the three PHB treatment groups. These results revealed that dietary PHB supplementation had a beneficial effect on intestine health of L. vannamei by modulating the composition of intestine microbiota and activating mTOR signaling.  相似文献   

5.
Screening live mycobacterial vaccine candidates is the important strategy to develop new vaccines against adult tuberculosis (TB). In this study, the immunogenicity and protective efficacy of several avirulent mycobacterial strains including Mycobacterium smegmatis, M. vaccae, M. terrae, M. phlei, M. trivial, and M. tuberculosis H37Ra were compared with M. bovis BCG in BALB/c mice. Our results demonstrated that differential immune responses were induced in different mycobacterial species vaccinated mice. As BCG-vaccinated mice did, M. terrae immunization resulted in Th1-type responses in the lung, as well as splenocytes secreting IFN-γ against a highly conserved mycobacterial antigen Ag85A. M. smegmatis also induced the same splenocytes secreting IFN-γ as BCG and M. terrae did. In addition, M. terrae and M. smegmatis-immunized mice predominantly increased expression of IL-10 and TGF-β in the lung. Most importantly, mice vaccinated with H37Ra and M. vaccae could provide the same protection in the lung against virulent M. tuberculosis challenge as BCG. The result may have important implications in developing adult TB vaccine.  相似文献   

6.
7.
Rapamycin, as a macrocyclic polyketide with immunosuppressive, antifungal, and anti-tumor activity produced by Streptomyces hygroscopicus, is receiving considerable attention for its significant contribution in medical field. However, the production capacity of the wild strain is very low. Hereby, a computational guided engineering approach was proposed to improve the capability of rapamycin production. First, a genome-scale metabolic model of Streptomyces hygroscopicus ATCC 29253 was constructed based on its annotated genome and biochemical information. The model consists of 1003 reactions, 711 metabolites after manual refinement. Subsequently, several potential genetic targets that likely guaranteed an improved yield of rapamycin were identified by flux balance analysis and minimization of metabolic adjustment algorithm. Furthermore, according to the results of model prediction, target gene pfk (encoding 6-phosphofructokinase) was knocked out, and target genes dahP (encoding 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase) and rapK (encoding chorismatase) were overexpressed in the parent strain ATCC 29253. The yield of rapamycin increased by 30.8% by knocking out gene pfk and increased by 36.2 and 44.8% by overexpression of rapK and dahP, respectively, compared with parent strain. Finally, the combined effect of the genetic modifications was evaluated. The titer of rapamycin reached 250.8 mg/l by knockout of pfk and co-expression of genes dahP and rapK, corresponding to a 142.3% increase relative to that of the parent strain. The relationship between model prediction and experimental results demonstrates the validity and rationality of this approach for target identification and rapamycin production improvement.  相似文献   

8.
Brucellae are intracellular bacterial pathogens that cause Brucellosis, bringing great economic burdens to developing countries. The pathogenic mechanisms of Brucella are still poorly understood. Earlier immune response plays an important role in the Brucella infection. Phosphoglyceromutase (PGM) and dihydrodipicolinate reductase (DapB) were cloned, expressed, purified, and their immunocompetence was analyzed. Cytokines were detected by murine macrophages (RAW 264.7) and splenocytes that stimulated with the two recombinant proteins. The immune responses were analyzed by ELISA from mice with the two recombinant proteins immunized. TNF-α, IL-6 and IL-8 were produced in stimulated RAW 264.7 cells and splenocytes. Th1-type cytokines, IFN-γ and IL-2, induced in RAW 264.7 cells and splenocytes were higher then Th2-type cytokines, IL-4 and IL-5. Th2-related immune response was induced in splenocytes obtained 35 days after mice immunized with the two proteins. The production of IgG1 was higher than IgG2a in immunized mice. Taken together, our results demonstrated that the two proteins could induce Th1 and Th2-type immune responses in vivo and in vitro.  相似文献   

9.

Background

Tuberculosis is one of the most common and deadliest infectious diseases worldwide affecting almost a third of the world’s population. Although this disease is being prevented and controlled by the Bacille Calmette Guérin (BCG) vaccine, the protective efficacy is highly variable and substandard (0–80%) in adults. Therefore, novel and effective tuberculosis vaccine that can overcome the limitations from BCG vaccine need to be developed.

Results

A novel approach of utilizing an in-trans protein surface display system of Lactobacillus plantarum carrying and displaying combination of Mycobacterium tuberculosis subunit epitope antigens (Ag85B, CFP-10, ESAT-6, Rv0475 and Rv2031c) fused with LysM anchor motif designated as ACERL was constructed, cloned and expressed in Esherichia coli Rossetta expression host. Subsequently the binding capability of ACERL to the cell wall of L. plantarum was examined via the immunofluorescence microscopy and whole cell ELISA where successful attachment and consistent stability of cell wall binding up to 4 days was determined. The immunization of the developed vaccine of L. plantarum surface displaying ACERL (Lp ACERL) via the oral route was studied in mice for its immunogenicity effects. Lp ACERL immunization was able to invoke significant immune responses that favor the Th1 type cytokine response of IFN-γ, IL-12 and IL-2 as indicated by the outcome from the cytokine profiling of spleen, lung, gastrointestinal tract (GIT), and the re-stimulation of the splenocytes from the immunized mice. Co-administration of an adjuvant consisting of Lactococcus lactis secreting mouse IL-12 (LcIL-12) with Lp ACERL was also investigated. It was shown that the addition of LcIL-12 was able to further generate significant Th1 type cytokines immune responses, similar or better than that of Lp ACERL alone which can be observed from the cytokine profiling of the immunized mice’s spleen, lung and GIT.

Conclusions

This study represents a proof of concept in the development of L. plantarum as a carrier for a non-genetically modified organism (GMO) tuberculosis vaccine, which may be the strategy in the future for tuberculosis vaccine development.
  相似文献   

10.
At present, there is no doubt that the signal transduction pathway P13K/Akt/PTEN/mTOR, controlled by phosphatidylinositol-3-kinase, is involved in tumor cell resistance to a number of drugs. Another well-known mechanism determining drug resistance in tumors is associated with the activity of drug transporters of the ABC superfamily (first of all, P-glycoprotein (Pgp), MRP1, BCRP, and LRP). Several mechanisms of cell defense can simultaneously operate in one cell. The interplay of different mechanisms involved in drug resistance is poorly understood. The PC3 and DU145 human prostate cell lines were used to show that the PTEN functional status determined the cell resistance to some drugs and that correlated with the levels of MRP1 and BCRP. Pgp was not involved in drug resistance of these cells. Introduction of PTEN into PTEN-deficient PC3 cells, as well as rapamycin treatment, inhibited Akt and mTOR and sensitized cells to doxorubicin and vinblastine. Exogenous PTEN altered the MRP1 and BCRP expression. The results indicate that at least two mechanisms of drug resistance operate in prostate cancer cells: the PI3K/Akt/PTEN/mTOR pathway and an elevated MRP1 expression. The mechanisms are interconnected: PTEN and mTOR signaling is involved in MRP1 and BCRP expression regulation.  相似文献   

11.
Gut microbiota provides a wide range of beneficial function for the host and has an immense effect on the host’s health state. It has also been shown that gut microbiome is often involved in the biotransformation of xenobiotics; however, the molecular mechanisms of the interaction between the gut bacteria and the metabolism of drugs by the host are still unclear. To investigate the effect of microbial colonization on messenger RNA (mRNA) expression of liver cytochromes P450 (CYPs), the main drug-metabolizing enzymes, we used germ-free (GF) mice, lacking the intestinal flora and mice monocolonized by non-pathogenic bacteria Lactobacillus plantarum NIZO2877 or probiotic bacteria Escherichia coli Nissle 1917 compared to specific pathogen-free (SPF) mice. Our results show that the mRNA expression of Cyp1a2 and Cyp2e1 was significantly increased, while the expression of Cyp3a11 mRNA was decreased under GF conditions compared to the SPF mice. The both bacteria L. plantarum NIZO2877 and E. coli Nissle 1917 given to the GF mice decreased the level of Cyp1a2 mRNA and normalized it to the control level. On the other hand, the colonization by these bacteria had no effect on the expression of Cyp3a11 mRNA in the liver of the GF mice (which remained decreased). Surprisingly, monocolonization with chosen bacterial strains has shown a different effect on the expression of Cyp2e1 mRNA in GF mice. Increased level of Cyp2e1 expression observed in the GF mice was found also in mice colonized by L. plantarum NIZO2877; however, the colonization with probiotic E. coli Nissle 1917 caused a decrease in Cyp2e1 expression and partially restored the SPF mice conditions.  相似文献   

12.
Germline and somatic mutations in key genes of the mammalian target of rapamycin (mTOR) pathway have been identified in seizure-associated disorders. mTOR mutations lead to aberrant activation of mTOR signaling, and, although affected neurons are critical for epileptogenesis, the role of mTOR activation in glial cells remains poorly understood. We previously reported a consistent activation of the mTOR pathway in astrocytes in the epileptic foci of temporal lobe epilepsy. In this study, it was demonstrated that mTOR deletion from reactive astrocytes prevents increases in seizure frequency over the disease course. By using a tamoxifen-inducible mTOR conditional knockout system and kainic acid, a model was developed that allowed astrocyte-specific mTOR gene deletion in mice with chronic epilepsy. Animals in which mTOR was deleted from 44 % of the astrocyte population exhibited a lower seizure frequency compared with controls. Down-regulation of mTOR significantly ameliorated astrogliosis in the sclerotic hippocampus but did not rescue mossy fiber sprouting. In cultured astrocytes, the mTOR pathway modulated the stability of the astroglial glutamate transporter 1 (Glt1) and influenced the ability of astrocytes to remove extracellular glutamate. Taken together, these data indicate that astrocytes with activated mTOR signaling may provide conditions that are favorable for spontaneous recurrent seizures.  相似文献   

13.
14.
15.

Introduction

This study aimed to compare the accuracy of selected laboratory markers in assessing disease activity in patients with ulcerative colitis (UC). The analysis included serum IL-2, IL-4, IL-6, IL-10, IL-17, TNF-α, IFN-γ, hsCRP, peripheral regulatory T cells, as well as fecal calprotectin and lactoferrin.

Patients and methods

A group of 45 adults with UC was enrolled in the study. Disease activity was assessed using the Mayo endoscopic index, while for clinical activity scoring, the Clinical Activity Index (CAI) was used. Concentrations of markers investigated were estimated by means of flow cytometry and enzyme-linked immunosorbent assays: the results were correlated with both indices.

Results

The study demonstrated that both fecal markers, i.e. calprotectin (r = 0.880, P<0.001) and lactoferrin (r = 0.799, P<0.001) correlated closely with the Mayo endoscopic score, and might be used to evaluate the severity of UC in the clinical setting. The correlation of these markers with CAI was also significant, with r = 0.831 for calprotectin (P<0.001) and r = 0.672 for lactoferrin (P<0.05). As for the other markers investigated, only IL-6 (r = 0.598, P<0.001), IL-17A (r = 0.587, P<0.005), and TNF-α (r = 0.701, P<0.001) correlated closely with the Mayo endoscopic index. The correlation of the markers with CAI was also significant, though weaker, with r = 0.525 for IL-6 (P<0.001), r = 0.587 for IL-17A (P<0.05), and r = 0.624 for TNF-α (P<0.001).

Discussion

Despite the fact, that UC is generally considered to be an IL-13-driven, Th2-like type of disease, markers of inflammation such as serum interleukin (IL)-6, IL-17, TNF-α, fecal calprotectin and lactoferrin might be useful in assessing disease activity.
  相似文献   

16.
Based on the male genitalia structure, 3 subgenera are distinguished in the genus Thamnurgus: Thamnurgus s. str. (type species Thamnurgus euphorbiae Küster; the subgenus includes also Th. characiae and Th. varipes), Parathamnurgus subgen. n. (type species Thamnurgus caucasicus Reitter; includes also Th. armeniacus, Th. kaltenbachii, Th. brylinskyi, and Th. pegani) and Macrothamnurgus subgen. n. (type species Thamnurgus delphinii Rosenhauer; includes also Th. petzi and Th. rossicus). Thamnurgus s. str. comprises species with the aedeagus lacking supporting apical structures and with unbranched apophyses. In the two other subgenera the aedeagal apophyses are branched and the apical supporting structures are differently arranged. Species of Thamnurgus s. str. are associated exclusively with Euphorbiaceae, species of Macrothamnurgus, with Ranunculaceae, and those of Parathamnurgus, with plants of several families. A key to Palaearctic Thamnurgus species based on the external and genital characters is proposed. The host plants and distribution of some species are clarified. In the aedeagus structure, the Palaearctic Thamnurgus species clearly differ from the African Thamnurgus and also from the members of Taphronurgus, Cynanchophagus, Triotemnus, and Xylocleptes. Data on the male genital structure support generic distinctness of Thamnurgus, Taphronurgus and Xylocleptes. Lectotypes of Th. armeniacus Reitter, 1897, Th. brylinskyi Reitter, 1889, Th. characiae Rosenhauer, 1878, Th. declivis Reitter, 1897, Th. delphinii (Rosenhauer, 1856), Th. pegani Eggers, 1933, and Th. petzi Reitter, 1901 are designated. Thamnurgus jemeniae Schedl, 1975 is transferred to Xylocleptes, and Th. orientalis Schedl, 1978, to Pseudothamnurgus. Based on the endophallus characters, Thamnurgus ugandensis Nunberg, 1961 and Th. lobeliae Eggers, 1939 are considered to belong to a genus distinct from the Palaearctic Thamnurgus.  相似文献   

17.
Silibinin is a natural phenol found in the seeds of the milk thistle plant. Recent data have shown its effectiveness for preventing/treating bladder tumours. Therefore, in this study we investigated the cytotoxic and toxicogenetic activity of silibinin in bladder cancer cells with different TP53 statuses. Two bladder urothelial carcinoma cell lines were used: RT4 (wild-type TP53 gene) and T24 (mutated TP53 gene). Cell proliferation, clonogenic survival, apoptosis rates, genotoxicity and relative expression profile of FRAP/mTOR, FGFR3, AKT2 and DNMT1 genes and of miR100 and miR203 were evaluated. Silibinin promoted decreased proliferation and increased late apoptosis in TP53 mutated cells. Increased early apoptosis rates, primary DNA damage, and decrease of cell colonies in the clonogenic survival assay were detected in both RT4 and T24 cell lines. Down-regulation of FRAP/mTOR, AKT2, FGFR3, DNMT1 and miR100 expression occurred in RT4 cells. Modulation of miR203 was observed in both cell lines. In conclusion, despite the reduction of clone formation in both cell lines, the toxicogenomic effect of silibinin on FRAP/mTOR, AKT2, FGFR3, DNMT1 and miR100 was dependent on the TP53 status. Taken together, the data confirmed the role of silibinin as an antiproliferative compound, whose mechanism of action was related to the TP53 status.  相似文献   

18.
19.
The purpose of this study was to evaluate T-cell immunity markers using serial post-transplantation monitoring of cytokine-producing cells during the first post-transplant months for the prediction of acute rejection and potentially chronic rejection of kidney allograft. We followed 57 kidney allograft recipients for meanly 3 years post-transplantation. Blood samples were collected pre-transplant, 2, 4 and 12 weeks post-transplant. The frequencies of IL-10-, IL-17- and IFN-γ-producing cells were determined in all time-points using ELISPOT assay. The results of ELISpot monitoring and levels of IL-23 and TGF-β were compared between recipients with acute (n = 12) or chronic rejection episodes and patients with stable graft function (n = 45). In all post-transplant time-points, significantly high frequencies of IFN-γ- and IL-17-producing cells and low frequency of IL-10-producing cells were observed in rejection group versus patients with stable graft function (P<0.0001). TheROCcurve analysis for determining the reliability of cytokine-producing cells for the prediction of acute rejection revealed that AUC was 0.046 for IL-10 (P<0.001), 0.927 for IL-17 (P<0.001) and 0.929 for INF-γ-producing cells (P<0.001). Our results indicate that analyzing the frequencies of INF-γ/IL-10/IL-17-producing cells may define a reliable panel for the prediction of acute rejection within the first post-transplant year which could also be applicable for the prediction of chronic rejection episodes.  相似文献   

20.

Background

Tuberculosis, the disease due to Mycobacterium tuberculosis, is an important cause of morbidity and mortality in the elderly. Use of mouse models may accelerate insight into the disease and tests of therapies since mice age thirty times faster than humans. However, the majority of TB research relies on inbred mouse strains, and these results might not extrapolate well to the genetically diverse human population. We report here the first tests of M. tuberculosis infection in genetically heterogeneous aging mice, testing if old mice benefit from rapamycin.

Findings

We find that genetically diverse aging mice are much more susceptible than young mice to M. tuberculosis, as are aging human beings. We also find that rapamycin boosts immune responses during primary infection but fails to increase survival.

Conclusions

Genetically diverse mouse models provide a valuable resource to study how age influences responses and susceptibility to pathogens and to test interventions. Additionally, surrogate markers such as immune measures may not predict whether interventions improve survival.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号