首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
2.
SYF2 is a putative homolog of human p29 in Saccharomyces cerevisiae. It seems to be involved in pre-mRNA splicing and cell cycle progression. Disruption of SYF2 leads to reduced α-tubulin expression and delayed nerve system development in zebrafish. Due to the potential of SYF2 in modulating microtubule dynamics in nervous system, we investigated the spatiotemporal expression of SYF2 in a rat sciatic nerve crush (SNC) model. We found that SNC resulted in a significant upregulation of SYF2 from 3 days to 1 week and subsequently returned to the normal level at 4 weeks. At its peak expression, SYF2 distributed predominantly in Schwann cells. In addition, upregulation of SYF2 was approximately in parallel with Oct-6, and numerous Schwann cells expressing SYF2 were Oct-6 positive. In vitro, we observed enhanced expression of SYF2 during the process of cyclic adenosine monophosphate (cAMP)-induced Schwann cell differentiation. SYF2-specific siRNA-transfected Schwann cells did not show significant morphological change in the process of Schwann cell differentiation. Also, we found shorter and disorganized microtubule structure and a decreased migration in SYF2-specific siRNA-transfected Schwann cells. Together, these findings indicated that the upregulation of SYF2 was associated with Schwann cell differentiation and migration following sciatic nerve crush.  相似文献   

3.
Cell division cycle protein 37 (Cdc37), a molecular chaperone takes part in a series of cellular processes including cell signal transduction, cell cycle progression, cell proliferation, cell motility, oncogenesis and malignant progression. It can not only recruit immature protein kinases to HSP90 but also work alone. Cdc37 was reported to be associated with neurogenesis, neurite outgrowth, axon guidance and myelination. However, the roles of Cdc37 on Schwann cells (SC) after peripheral nerve injury (PNI) remain unknown. In this study, we found that the expression of Cdc37 increased and reached the peak at 1 week after sciatic nerve crush (SNC), which was consistent with that of proliferation cell nuclear antigen. Immunofluorescence verified that Cdc37 co-localized with SC in vivo and in vitro. Intriguingly, Cdc37 protein level was potentiated in the model of TNF-α-induced SC proliferation. Moreover, we found that Cdc37 silencing impaired proliferation of SC in vitro. Moreover, Cdc37 suppression attenuated kinase signaling pathways of Raf–ERK and PI3K/AKT which are crucial cell signaling for SC proliferation. Finally, we found that Cdc37 silencing inhibited SC migration in vitro. In conclusion, we demonstrated that the way Cdc37 contributed to SC proliferation is likely via activating kinase signaling pathways of Raf–ERK and PI3K/AKT, and CDC37 was also involved in SC migration after SNC.  相似文献   

4.
Gem belongs to the Rad/Gem/Kir subfamily of Ras-related GTPases, whose expression is induced in several cell types upon activation by extracellular stimuli. Two functions of Gem have been demonstrated, including regulation of voltage-gated calcium channel activity and inhibition of Rho kinase-mediated cytoskeletal reorganization, such as stress fiber formation and neurite retraction. Because of the essential relationship between actin reorganization and peripheral nerve regeneration, we investigated the spatiotemporal expression of Gem in a rat sciatic nerve crush (SNC) model. After never injury, we observed that Gem had a significant up-regulation from 1 day, peaked at day 5 and then gradually decreased to the normal level. At its peak expression, Gem expressed mainly in Schwann cells (SCs) and macrophages of the distal sciatic nerve segment, but had few colocalization in axons. In addition, the peak expression of Gem was in parallel with PCNA, and numerous SCs expressing Gem were PCNA positive. Thus, all of our findings suggested that Gem may be involved in the pathophysiology of sciatic nerve after SNC.  相似文献   

5.
Adenylate cyclase-associated protein 1 (CAP1), a member of cyclase-associated proteins that regulating actin dynamics, was shown to regulate actin filaments, localize to dynamic actin structures and mediate such processes as establishment of cell polarity, motility, morphogenesis, receptor-mediated endocytosis and mRNA location. But little is known about the role of CAP1 during peripheral nervous system injury. Here, we found the spatiotemporal protein expression of CAP1 after sciatic nerve crush. After crush, CAP1 had an increased protein expression level, reached a peak at about day 5 and then returned to the normal level at 4 weeks, similar to Oct-6. Besides, in 5-day injured tissue, using double immunofluorescent staining we found CAP1 had a colocalization with S100 and Oct-6. In vitro, during the process of cAMP-induced Schwann cells differentiation, we observed enhanced expression of CAP1 and P0. Specially, CAP1-specific siRNA-tranfected SCs did not show significant actin structure which form cellure surface tension and protrusion shape after cAMP treatment. And we observed the interaction of CAP1 with actin and that CAP1-specific siRNA-transfected SCs had a decreased motility and migration. Together, all these data indicated that the change of CAP1 protein expression was associated with Schwann cells motility and differentiation after the crush of sciatic nerve.  相似文献   

6.
As a novel cell cycle inhibitor, PHB2 controls the G1/S transition in cycling cells in a complex manner. Its aberrant expression is closely related to cell carcinogenesis. While its expression and role in peripheral nervous system lesion and repair were still unknown. Here, we performed an acute sciatic nerve crush (SNC) model in adult rats to examine the dynamic changes of PHB2. Temporally, PHB2 expression was sharply decreased after sciatic nerve crush and reached a valley at day 5. Spatially, PHB2 was widely expressed in the normal sciatic nerve including axons and Schwann cells. While after injury, PHB2 expression decreased predominantly in Schwann cells. The alteration was due to the decreased expression of PHB2 in Schwann cells after SNC. PHB2 expression correlated closely with Schwann cells proliferation in sciatic nerve post injury. Furthermore, PHB2 largely localized with GAP43 in axons in the crushed segment. Collectively, we suggested that PHB2 participated in the pathological process response to sciatic nerve injury and may be associated with Schwann cells proliferation and axons regeneration.  相似文献   

7.
Poly(C)-binding proteins (PCBPs), also known as RNA-binding proteins, interact in a sequence-specific fashion with single-stranded poly(C). It was reported that PCBP2 contributed to gastric cancer proliferation and survival through miR-34a, and knockdown of PCBP2 inhibited glioma proliferation through inhibition of cell cycle progression. In addition, PCBP2 might play a critical role in the regulation of cortical neurons apoptosis induced by hypoxia or ischemia. Because of the essential role of PCBP2 in nervous system and cell growth, we investigated the spatiotemporal expression of PCBP2 in a rat sciatic nerve crush (SNC) model. We detected the upregulated expression of PCBP2 in Schwann cell after SNC. Besides, the peak expression of PCBP2 was in parallel with proliferation cell nuclear antigen. In vitro, we observed increased expression of PCBP2 during the process of TNF-α-induced Schwann cell proliferation. Specially, PCBP2-specific siRNA-transfected Schwann cell showed significantly decreased ability for proliferation. Together, all these data indicated that the change of PCBP2 protein expression was associated with Schwann cell proliferation after the trauma of the peripheral nervous system.  相似文献   

8.
Histone deacetylase 4 (HDAC4), a member of the class IIa HDACs subfamily, has emerged as a critical regulator of cell growth, differentiation, and migration in various cell types. It was reported that HDAC4 stimulated colon cell proliferation via repression of p21. Also, HDAC4 contributes to platelet-derived growth factor-BB-induced proliferation and migration of vascular smooth muscle cells. Furthermore, HDAC4 may play an important role in the regulation of neuronal differentiation and survival. However, the role of HDAC4 in the process of peripheral nervous system regeneration after injury remains virtually unknown. Herein, we investigated the spatiotemporal expression of HDAC4 in a rat sciatic nerve crush model. We found that sciatic nerve crush induced up-regulated expression of HDAC4 in Schwann cells. Moreover, the expression of the proliferation marker Ki-67 exhibited a similar tendency with that of HDAC4. In cell cultures, we observed increased expression of HDAC4 during the process of TNF-α-induced Schwann cell proliferation, whereas the protein level of p21 was down-regulated. Interference of HDAC4 led to enhanced expression of p21 and impaired proliferation of Schwan cells. Taken together, our findings implicated that HDAC4 was up-regulated in the sciatic nerve after crush, which was associated with proliferation of Schwann cells.  相似文献   

9.
As a novel cell cycle protein, Spy1 enhances cell proliferation, promotes the G1/S transition as well as inhibits apoptosis in response to UV irradiation. Spy1 levels are tightly regulated during mammary development, and overexpression of Spy1 accelerates tumorigenesis in vivo. But little is known about the role of Spy1 in the pathological process of damage and regeneration of the peripheral nervous system. Here we established a rat sciatic nerve crush (SNC) model to examine the spatiotemporal expression of Spy1. Spy1 expression was elevated gradually after sciatic nerve crush and peaked at day 3. The alteration was due to the increased expression of Spy1 in axons and Schwann cells after SNC. Spy1 expression correlated closely with Schwann cells proliferation in sciatic nerve post injury. Furthermore, Spy1 largely localized in axons in the crushed segment, but rarely co-localized with GAP43. These findings suggested that Spy1 participated in the pathological process response to sciatic nerve injury and may be associated with Schwann cells proliferation and axons regeneration.  相似文献   

10.
Ataxin-10 is a cytoplasmic protein that belongs to the family of armadillo repeat proteins and the ataxin proteins are ubiquitously expressed in nervous tissue. A loss of Ataxin-10 in primary neuronal cells causes increased apoptosis of cerebellar neurons. Knockdown of ATXN10 with siRNA in HeLa cells results in cytokinesis defects-multinucleation. Because of the essential role of Ataxin-10 in nervous system and cellular cytokinesis, we investigated the spatiotemporal expression of Ataxin-10 in a rat sciatic nerve crush (SNC) model. After never injury, we observed that Ataxin-10 had a significant up-regulation from 3d, peaked at day 5 and then gradually decreased to the normal level at 4 weeks. At its peak expression, Ataxin-10 expressed mainly in Schwann cells and macrophages of the distal sciatic nerve segment from injury, but had few co-localizations in axons. Besides, the peak expression of Ataxin-10 was in parallel with proliferating cell nuclear antigen (PCNA), and Ataxin-10 co-labeled with PCNA. Thus, all of our findings suggested that Ataxin-10 may be involved in the pathophysiology of sciatic nerve after SNC.  相似文献   

11.
12.
13.
Gao S  Fei M  Cheng C  Yu X  Chen M  Shi S  Qin J  Guo Z  Shen A 《Neurochemical research》2008,33(6):1090-1100
Neuronal nitric oxide synthase (nNOS) has been implicated to influence peripheral nerve lesion and regeneration. Post-synaptic density-95 (PSD-95) is one of nNOS-anchoring proteins and plays an important role in specifying the sites of reaction of NO in nervous system. Here we established a rat sciatic nerve crush (SNC) model to examine the spatiotemporal expression of PSD-95 and nNOS. At gene levels, PSD-95 mRNA diminished shortly after crush, and significantly elevated from 2 days to 2 weeks, whereas nNOS decreased progressively post-operation, reached the valley at 1 day, and markedly up-regulated from 1 to 2 weeks after SNC. The expression of both molecules returned to the control level at 4 weeks post-injury. At protein levels, PSD-95 and nNOS underwent the similar changes as their gene expression except for a time lag during up-regulating. At their peak expression, PSD-95 co-labeled with nNOS in Schwann cells (SCs) of sciatic nerve within 0.5 mm from the lesion site, but had few colocalization in axons. In addition, the interaction between PSD-95 and nNOS enhanced significantly at 2 weeks after SNC. These results suggest a correlation of PSD-95 up-regulation with nNOS in reactive SCs of crushed sciatic nerve, which may lead to understanding the function of PSD-95 during peripheral nerve regeneration. Shangfeng Gao and Min Fei contributed equally to this work.  相似文献   

14.
15.
16.
17.
TRIM32, which belongs to the tripartite motif (TRIM) protein family, has the RING finger, B-box, and coiled-coil domain structures common to this protein family, along with an additional NHL domain at the C terminus. TRIM32 reportedly functions as an E3 ligase for actin, a protein inhibitor of activated STAT y (PIASy), dysbindin, and c-Myc, and it has been associated with diseases such as muscular dystrophy and epithelial carcinogenesis. Here, we identify a new substrate of TRIM32 and propose a mechanism through which TRIM32 might regulate apoptosis. Our overexpression and knockdown experiments demonstrate that TRIM32 sensitizes cells to TNFα-induced apoptosis. The RING domain is necessary for this pro-apoptotic function of TRM32 as well as being responsible for its E3 ligase activity. TRIM32 colocalizes and directly interacts with X-linked inhibitor of apoptosis (XIAP), a well known cancer therapeutic target, through its coiled-coil and NHL domains. TRIM32 overexpression enhances XIAP ubiquitination and subsequent proteasome-mediated degradation, whereas TRIM32 knockdown has the opposite effect, indicating that XIAP is a substrate of TRIM32. In vitro reconstitution assay reveals that XIAP is directly ubiquitinated by TRIM32. Our novel results collectively suggest that TRIM32 sensitizes TNFα-induced apoptosis by antagonizing XIAP, an anti-apoptotic downstream effector of TNFα signaling. This function may be associated with TRIM32-mediated tumor suppressive mechanism.  相似文献   

18.
Human amniotic membrane (hAM) is a tissue containing cells with proven stem cell properties. In its decellularized form it has been successfully applied as nerve conduit biomaterial to improve peripheral nerve regeneration in injury models. We hypothesize that viable hAM without prior cell isolation can be differentiated towards the Schwann cell lineage to generate a possible alternative to commonly applied tissue engineering materials for nerve regeneration. For in vitro Schwann cell differentiation, biopsies of hAM of 8 mm diameter were incubated with a sequential order of neuronal induction and growth factors for 21 days and characterized for cellular viability and the typical glial markers glial fibrillary acidic protein (GFAP), S100β, p75 and neurotrophic tyrosine kinase receptor (NTRK) using immunohistology. The secretion of the neurotrophic factors brain-derived neurotrophic factor (BDNF) and glial cell-derived neurotrophic factor (GDNF) was quantified by ELISA. The hAM maintained high viability, especially under differentiation conditions (90.2 % ± 41.6 day 14; 80.0 % ± 44.5 day 21 compared to day 0). Both, BDNF and GDNF secretion was up-regulated upon differentiation. The fresh membrane stained positive for GFAP and p75 and NTRK, which was strongly increased after culture in differentiation conditions. Especially the epithelial layer within the membrane exhibited a change in morphology upon differentiation forming a multi-layered epithelium with intense accumulations of the marker proteins. However, S100β was expressed at equal levels and equal distribution in fresh and cultured hAM conditions. Viable hAM may be a promising alternative to present formulations used for peripheral nerve regeneration.  相似文献   

19.
Tripartite motif (TRIM)-containing proteins, which are defined by the presence of a common domain structure composed of a RING finger, one or two B-box motifs and a coiled-coil motif, are involved in many biological processes including innate immunity, viral infection, carcinogenesis, and development. Here we show that TRIM67, which has a TRIM motif, an FN3 domain and a SPRY domain, is highly expressed in the cerebellum and that TRIM67 interacts with PRG-1 and 80K-H, which is involved in the Ras-mediated signaling pathway. Ectopic expression of TRIM67 results in degradation of endogenous 80K-H and attenuation of cell proliferation and enhances neuritogenesis in the neuroblastoma cell line N1E-115. Furthermore, morphological and biological changes caused by knockdown of 80K-H are similar to those observed by overexpression of TRIM67. These findings suggest that TRIM67 regulates Ras signaling via degradation of 80K-H, leading to neural differentiation including neuritogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号