首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Purpose

To investigate epilepsy-induced changes in effective connectivity between the non-epileptic amygdalo-hippocampal complex (AHC) and the rest of the brain in patients with unilateral mesiotemporal lobe epilepsy (MTLE) associated with hippocampal sclerosis (HS).

Methods

Thirty-three patients with unilateral MTLE associated with HS (20 females, mean age: 36 years, 19 left HS) and 33 adult controls matched for age and gender underwent 18F-Fluorodeoxyglucose positron emission tomography (FDG-PET). Right-HS patients'' FDG-PET data were flipped to obtain a left–epileptic–focus–lateralized group of patients. Voxels of interest (VOI) were selected within the cytoarchitectonic probabilistic maps of the non-epileptic AHC (probability level  = 100%, SPM8 Anatomy toolbox v1.7). Patients and controls were compared using VOI metabolic activity as covariate of interest to search for epilepsy-induced changes in the contribution of the non-epileptic AHC to the level of metabolic activity in other brain areas. Age, gender, duration of epilepsy, seizure type and frequency were used as covariates of no-interest for connectivity analyses.

Key findings

Significant decrease in effective connectivity was found between the non-epileptic AHC and ventral prefrontal cortical areas bilaterally, as well as with the temporal pole and the posterior cingulate cortex contralateral to HS. Significant increase in connectivity was found between the non-epileptic AHC and midline structures, such as the anterior cingulate and dorsal medial prefrontal cortices, as well as the temporo-parietal junction bilaterally. Connectivity analyses also revealed a preserved positive connectivity between the non-epileptic and the epileptic AHC in the patients'' group.

Significance

This study evidences epilepsy-induced changes in connectivity between the non-epileptic AHC and some limbic and default mode network areas. These changes in connectivity probably account for emotional, cognitive and decision-making impairments frequently observed in MTLE patients. The preserved neurometabolic connectivity between the non-epileptic and the epileptic AHC in MTLE patients is pivotal to explain the epilepsy-induced changes found in this study.  相似文献   

2.
Mutation in Plaur gene encoding urokinase-type plasminogen activator receptor (uPAR) results in epilepsy and autistic phenotype in mice. In humans, a single nucleotide polymorphism in PLAUR gene represents a risk for autism spectrum disorders. Importantly, the expression of uPAR is elevated in the brain after various epileptogenic insults like traumatic brain injury and status epilepticus. So far, the consequences of altered uPAR expression on brain networks are poorly known. We tested a hypothesis that uPAR regulates post-injury neuronal reorganization and consequent functional outcome, particularly epileptogenesis. Epileptogenesis was induced by intrahippocampal injection of kainate in adult male wild type (Wt) or uPAR knockout (uPAR?/?) mice, and animals were monitored with continuous (24/7) video-electroencephalogram for 30 days. The severity of status epilepticus did not differ between the genotypes. The spontaneous electrographic seizures which developed were, however, longer and their behavioral manifestations were more severe in uPAR?/? than Wt mice. The more severe epilepsy phenotype in uPAR?/? mice was associated with delayed but augmented inflammatory response and more severe neurodegeneration in the hippocampus. Also, the distribution of newly born cells in the dentate gyrus was more scattered, and the recovery of hippocampal blood vessel length from status epilepticus-induced damage was compromised in uPAR?/? mice as compared to Wt mice. Our data demonstrate that a deficiency in uPAR represents a mechanisms which results in the development of a more severe epilepsy phenotype and progressive brain pathology after status epilepticus. We suggest that uPAR represents a rational target for disease-modifying treatments after epileptogenic brain insults.  相似文献   

3.
4.
Journal of Evolutionary Biochemistry and Physiology - Epilepsy is one of the most common chronic neurological diseases. About 30% of patients with epilepsy suffer from drug resistant forms of the...  相似文献   

5.
Genetic Epilepsy Model Derived from Common Inbred Mouse Strains   总被引:7,自引:0,他引:7       下载免费PDF全文
The recombinant inbred mouse strain, SWXL-4, exhibits tonic-clonic and generalized seizures similar to the commonest epilepsies in humans. In SWXL-4 animals, seizures are observed following routine handling at about 80 days of age and may be induced as early as 55 days by rhythmic gentle tossing. Seizures are accompanied by rapid, bilateral high frequency spike cortical discharges and followed by a quiescent post-ictal phase. Immunohistochemistry of the immediate early gene products c-Fos and c-Jun revealed abnormal activation within cortical and limbic structures. The seizure phenotype of SWXL-4 can be explained and replicated fully by the inheritance of susceptibility alleles from its progenitor strains, SWR/J and C57L/J. Outcrosses of SWXL-4 with most other common inbred strains result in F(1) hybrids that have seizures at least as frequently as SWXL-4 itself. Quantitative trait locus mapping reveals a seizure frequency determinant, Szf1, near the pink-eyed dilution locus on chromosome 7, accounting for up to 32% of the genetic variance in an F(2) intercross between SWXL-4 and the linkage testing strain ABP/Le. These studies demonstrate that common strains of mice such as SWR and C57L contain latent epilepsy susceptibility alleles. Although the inheritance of susceptibility may be complex, these results imply that a number of potentially important and practical, noninvasive models for this disorder can be constructred and studied in crosses between common mouse strains.  相似文献   

6.
Temporal lobe epilepsy appears to be of increasing concern to psychiatrists, pediatricians and lawyers as an explanation for some aspects of behavior. There is a high incidence of structural abnormality associated with temporal lobe epilepsy, the most common being mesial temporal sclerosis. Depth electrode studies have shown that the most common focus for the clinical seizure is in the hippocampus or hippocampal gyrus. The first line of treatment continues to be attempt at control with anticonvulsant agents. Surgical treatment can be offered, in many instances, when drug therapy has failed.  相似文献   

7.

Objective

In order to better investigate the cause/effect relationships of human mesial temporal lobe epilepsy (mTLE), we hereby describe a new non-human primate model of mTLE.

Methods

Ten macaques were studied and divided into 2 groups: saline control group (n = 4) and kainic acid (KA) injection group (n = 6). All macaques were implanted bilaterally with subdural electrodes over temporal cortex and depth electrodes in CA3 hippocampal region. KA was stereotaxically injected into the right hippocampus of macaques. All animals were monitored by video and electrocorticography (ECoG) to assess status epilepticus (SE) and subsequent spontaneous recurrent seizures (SRS). Additionally, in order to evaluate brain injury produced by SE or SRS, we used both neuroimaging, including magnetic resonance image (MRI) & magnetic resonance spectroscopy (MRS), and histological pathology, including Nissl stainning and glial fibrillary acid protein (GFAP) immunostaining.

Results

The typical seizures were observed in the KA-injected animal model. Hippocampal sclerosis could be found by MRI & MRS. Hematoxylin and eosin (H&E) staining and GFAP immunostaining showed neuronal loss, proliferation of glial cells, formation of glial scars, and hippocampal atrophy. Electron microscopic analysis of hippocampal tissues revealed neuronal pyknosis, partial ribosome depolymerization, an abnormal reduction in rough endoplasmic reticulum size, expansion of Golgi vesicles and swollen star-shaped cells. Furthermore, we reported that KA was able to induce SE followed by SRS after a variable period of time. Similar to human mTLE, brain damage is confined to the hippocampus. Accordingly, hippocampal volume is in positive correlations with the neuronal cells count in the CA3, especially the ratio of neuron/glial cell.

Conclusions

The results suggest that a model of mTLE can be developed in macaques by intra-hippocampal injection of KA. Brain damage is confined to the hippocampus which is similar to the human mTLE. The hippocampal volume correlates with the extension of the hippocampal damage.  相似文献   

8.
目的:探讨SCN9A基因多态与颞叶癫痫相关性。方法:搜集179例癫痫患者及正常对照组236例血样,提取全基因组DNA。聚合酶链反应-限制性片段长度多态(PCR-RFLP)、测序法检测四个标签SNPs多态性,比较两组各位点基因型和等位基因频率的差异。结果:SCN9A基因rs12620053和rs7588632位点多态在癫痫组与对照组间存在显著差异(P0.05),而rs2893013和rs4465779位点多态在癫痫组与对照组间无显著差异(P0.05)。结论:SCN9A基因rs12620053和rs7588632位点多态与癫痫易感性相关,而位点rs2893013和rs4465779与癫痫易感性无关。  相似文献   

9.
D. N. Preston  E. A. Atack 《CMAJ》1964,91(24):1256-1259
Clinical features of 47 cases of temporal lobe epilepsy are analyzed and treatment of this disorder is outlined. Twenty-four per cent of all cases of epilepsy seen by one of the authors over a two-year period were of this type. Fifteen of these 47 patients had a history of birth injury. Care must be taken to distinguish the symptoms of temporal lobe epilepsy from those of acute anxiety or hysteria and to differentiate the short-lived temporal lobe attack from centrencephalic petit mal.Interictal personality disturbances were identified in 11 of 24 persons with temporal lobe epilepsy, four of 35 with focal epilepsy from all other areas, and one of 17 with centrencephalic epilepsy. Personality deviations most frequently encountered were irritability, aggressiveness, bouts of depression, paranoid tendencies and exhibitionism. Medical or surgical treatment often improves the personality abnormalities concomitantly with control of seizures.  相似文献   

10.
目的研究锂-匹罗卡品颞叶癫模型大鼠致后性发作的行为学特点及海马结构病理改变的动态变化。方法将所有Wistar大鼠随机分为对照组和实验组,实验组大鼠腹腔依次注射氯化锂、匹罗卡品诱发癫持续状态(SE)后,观察其自发性癫发作(SRS),分别于SE后1周至10周5个不同时间点取材,Nissl染色和Timm染色分别观察海马神经元损伤及苔藓纤维出芽(MFS)的变化。结果注射匹罗卡品后84%的大鼠可诱发出SE,经过10~20d的缄默期后,可观察到Ⅰ~Ⅲ级的反复SRS,病理学检查可见海马神经元的损伤及齿状回内分子层MFS。结论锂-匹罗卡品颞叶癫模型与人类颞叶癫有类似发作特点及病理改变,是一种理想的颞叶癫动物模型。  相似文献   

11.
12.
ObjectiveThe current practice under which patients with refractory epilepsy are surgically treated is based mainly on the identification of specific cortical areas, mainly the epileptogenic zone, which is believed to be responsible for generation of seizures. A better understanding of the whole epileptic network and its components and properties is required before more effective and less invasive therapies can be developed. The aim of the present study was to partially characterize the evolution of the functional network during the preictal-ictal transition in partial seizures in patients with temporal lobe epilepsy (TLE).MethodsScalp and foramen ovale (FOE) recordings from twenty-two TLE patients were analyzed under the complex network perspective. The density of links, average path length, average clustering coefficient, and modularity were calculated during the preictal and the ictal stages. Both linear–Pearson correlation–and non-linear–phase synchronization–measures were used as proxies of functional connectivity between the electrode locations areas. The transition from one stage to the other was evaluated in the whole network and in the mesial sub-networks. The results were compared with a voltage-dependent measure, namely, the spectral entropy.ResultsChanges in the global functional network during the transition from the preictal to the ictal stage show, in the linear case, that in sixteen cases (72.7%) the density of the links increased during the seizure, with a decrease in the average path length in fifteen cases (68.1%). There was also a preictal and ictal imbalance in functional connectivity during both stages (77.2% to 86.3%). The SE dropped during the seizure in 95.4% of the cases, but did not show any tendency towards lateralization. When using the nonlinear measure of functional connectivity, the phase synchronization, similar results were obtained.ConclusionsIn TLE patients, the transition to the ictal stage is accompanied by increasing global synchronization and a more ordered spectral content of the signals, indicated by lower spectral entropy. The interictal connectivity imbalance (lower ipsilateral connectivity) is sustained during the seizure, irrespective of any appreciable imbalance in the spectral entropy of the mesial recordings.  相似文献   

13.
Purinergic P2X3 receptors (P2X3Rs) play extensive roles in nerve cells in the central nervous system, particularly in hyperexcitability and calcium (Ca2+) influx. However, the role of P2X3Rs in epilepsy has not been previously investigated. To determine the relationship between P2X3Rs and epilepsy, the expression and cellular location of P2X3Rs in patients with intractable temporal lobe epilepsy (TLE) and in a lithium chloride-pilocarpine-induced chronic rat model of epilepsy were assessed. Furthermore, the function of P2X3Rs was assessed in vitro. Real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis were used to evaluate the expression levels of P2X3Rs in brain tissues from TLE patients and an epileptic rat model, whereas immunofluorescence labeling was applied to determine the distribution of target proteins. Whole-cell recording was subsequently performed to identify the influence of P2X3Rs on seizure-like discharges. P2X3Rs were located at the cell bodies and dendrites of neurons with significantly increased expression in the TLE patients and epileptic rat model. In vitro, P2X3R activation accelerated sustained repetitive firing, whereas P2X3R inhibition led to relatively low-frequency discharges. To the best of our knowledge, this is the first study provide evidence that upregulated P2X3R expression exists in both epileptic humans and rats and may aggravate the epileptic state in vitro. Thus, P2X3Rs may represent a novel therapeutic target for antiepileptic drugs.  相似文献   

14.
Excitotoxic damage represents the major mechanism leading to cell death in many human neurodegenerative diseases such as ischemia, trauma and epilepsy. Caused by an excess of glutamate that acts on metabotropic and ionotropic excitatory receptors, excitotoxicity activates several death signaling pathways leading to an extensive neuronal loss and a consequent strong activation of astrogliosis. Currently, the search for a neuroprotective strategy is aimed to identify the level in the signaling pathways to block excitotoxicity avoiding the loss of important physiological functions and side effects. To this aim, PTEN can be considered an ideal candidate: downstream the excitatory receptors activated in excitotoxicity (whose inhibition was shown to be not clinically viable), it is involved in neuronal damage and in the first stage of the reactive astrogliosis in vivo. In this study, we demonstrated the involvement of PTEN in excitotoxicity through its pharmacological inhibition by dipotassium bisperoxo (picolinato) oxovanadate [bpv(pic)] in a model of temporal lobe epilepsy, obtained by intraperitoneal injection of kainate in 2-month-old C57BL/6J male mice. We have demonstrated that inhibition of PTEN by bpv(pic) rescues neuronal death and decreases the reactive astrogliosis in the CA3 area of the hippocampus caused by systemic administration of kainate. Moreover, the neurotoxin administration increases significantly the scanty presence of mitochondrial PTEN that is significantly decreased by the administration of the inhibitor 6 hr after the injection of kainate, suggesting a role of PTEN in mitochondrial apoptosis. Taken together, our results confirm the key role played by PTEN in the excitotoxic damage and the strong anti-inflammatory and neuroprotective potential of its inhibition.  相似文献   

15.
Absence epilepsy (AE) is a common type of genetic generalized epilepsy (GGE), particularly in children. AE and GGE are complex genetic diseases with few causal variants identified to date. Gria4 deficient mice provide a model of AE, one for which the common laboratory inbred strain C3H/HeJ (HeJ) harbors a natural IAP retrotransposon insertion in Gria4 that reduces its expression 8-fold. Between C3H and non-seizing strains such as C57BL/6, genetic modifiers alter disease severity. Even C3H substrains have surprising variation in the duration and incidence of spike-wave discharges (SWD), the characteristic electroencephalographic feature of absence seizures. Here we discovered extensive IAP retrotransposition in the C3H substrain, and identified a HeJ-private IAP in the Pcnxl2 gene, which encodes a putative multi-transmembrane protein of unknown function, resulting in decreased expression. By creating new Pcnxl2 frameshift alleles using TALEN mutagenesis, we show that Pcnxl2 deficiency is responsible for mitigating the seizure phenotype – making Pcnxl2 the first known modifier gene for absence seizures in any species. This finding gave us a handle on genetic complexity between strains, directing us to use another C3H substrain to map additional modifiers including validation of a Chr 15 locus that profoundly affects the severity of SWD episodes. Together these new findings expand our knowledge of how natural variation modulates seizures, and highlights the feasibility of characterizing and validating modifiers in mouse strains and substrains in the post-genome sequence era.  相似文献   

16.
17.
The inflammatory response mediated by microglia in the central nervous system is closely related to epilepsy. Notch signaling plays an important role in the microglial activation during hypoxia. This study aimed to investigate whether Notch signaling is involved in microglial activation and subsequent inflammation-related neuronal injury during the process of epileptogenesis in a rat model of temporal lobe epilepsy. By using western blotting, real-time quantitative PCR, immunohistochemistry and immunofluorescence labeling, we found that the expression of Notch signaling increased after status epilepticus and that a γ-secretase inhibitor could significantly inhibit the upregulation of Notch signaling, the activation of microglia, and the release of proinflammatory cytokines. Likewise, the neuronal apoptosis and loss in the hippocampus after SE were attenuated by the γ-secretase inhibitor. These results suggest that Notch signaling plays a key role in neuroinflammation and inflammation-related neuronal damage in epilepsy, and γ-secretase inhibitors may become a novel prospective therapeutic agent for epilepsy.  相似文献   

18.

Purpose

To examine the effects of current shunt on rats with temporal lobe epilepsy and neocortex epilepsy.

Experimental Design

A kainic acid (KA)-induced model of temporal lobe seizure and a penicillin-induced model of neocortical partial seizure were used in this study. Rats of each model were randomly allocated into two groups: control and model groups. The model group was further divided into the KA or penicillin group, sham conduction group and conduction group. The current shunt was realized through the implantation of a customized conduction electrode. After surgery, electroencephalogram (EEG) was recorded for two hours for each rat under anesthesia. Subsequently, the rats were video monitored for 72 h to detect the occurrence of behavioral seizures upon awakening. The average number and duration of seizures on EEG and the number of behavioral seizures were measured.

Results

In KA model, the number of total EEG seizures in conduction group (9.57±2.46) was significantly less than that in sham conduction group (15.13±3.45) (p<0.01). The duration of EEG seizures in conduction group (26.13±7.81 s) was significantly shorter than that in sham conduction group (34.17±7.25 s) (p = 0.001). A significant reduction of behavioral seizures was observed in the conduction group compared with KA (p = 0.000) and sham conduction groups (p = 0.000). In penicillin model, there was a 61% reduction in total EEG seizures in conduction group compared with sham conduction group (p<0.01), and the duration of EEG seizures in conduction group (6.29±2.64 s) was significantly shorter than that in the sham conduction group (12.07±3.81 s) (p = 0.002). A significant reduction of behavioral seizures was observed in conduction group compared with penicillin (p<0.01) and sham conduction groups (p<0.01).

Conclusion

Current shunt effectively reduces the onset and severity of seizures. Current shunt therapy could be an effective alternative minimally invasive approach for temporal lobe epilepsy and neocortex epilepsy.  相似文献   

19.
20.
Wang  Jin-Gang  Cai  Qing  Zheng  Jun  Dong  Yu-Shu  Li  Jin-Jiang  Li  Jing-Chen  Hao  Guang-Zhi  Wang  Chao  Wang  Ju-Lei 《Neurochemical research》2016,41(7):1751-1760
Neurochemical Research - Recent studies have shown that histone acetylation is involved with the regulation of enzyme glutamate decarboxylases (GADs), including GAD67 and GAD65. Here, we...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号