共查询到20条相似文献,搜索用时 0 毫秒
1.
Although Butylphthalide (BP) has protective effects that reduce ischemia-induced brain damage and neuronal cell death, little is known about the precise mechanisms occurring during cerebral ischemia/reperfusion (I/R). Therefore, the aim of this study was to investigate the neuroprotective mechanisms of BP against ischemic brain injury induced by cerebral I/R through inhibition of the c-Jun N-terminal kinase (JNK)–Caspase3 signaling pathway. BP in distilled non-genetically modified Soybean oil was administered intragastrically three times a day at a dosage of 15 mg/(kg day) beginning at 20 min after I/R in Sprague–Dawley rats. Immunohistochemical staining and Western blotting were performed to examine the expression of related proteins, and TUNEL-staining was used to detect the percentage of neuronal apoptosis in the hippocampal CA1 region. The results showed that BP could significantly protect neurons against cerebral I/R-induced damage. Furthermore, the expression of p-JNK, p-Bcl2, p–c-Jun, FasL, and cleaved-caspase3 was also decreased in the rats treated with BP. In summary, our results imply that BP could remarkably improve the survival of CA1 pyramidal neurons in I/R-induced brain injury and inhibit the JNK–Caspase3 signaling pathway. 相似文献
3.
The MAPK/ERK/p38 are signal transduction pathways that couple intracellular responses to the external stimuli. Contrary to ERK protein which is part of the survival route, presence of p38 could have an impact on cell injury. Tolerance induced by ischemic preconditioning (IPC) is a phenomenon of tissue adaptation, which results in increased tolerance to lethal ischemia-reperfusion injury (IRI). Paper describes changes in MAPK protein pathways after brain IPC. Ischemia was induced by 4-vessels occlusion and rats were preconditioned by sub-lethal ischemia. Western blot and immunohistochemistry identified ERK/p38 proteins in injured areas. The highest level of the pERK was detected at 24 h in IPC groups. A contrary pattern of MAPK/p38 activation was observed in this group, where the lowest level of p38 was displayed at 24 h after ischemia. This suggests that the MAPK signal transduction might have a potential role in tissues response subjected to IRI and in the phenomenon of tolerance. 相似文献
4.
The pattern of cell death in the immature brain differs from that seen in the adult CNS. During normal development, more than half of the neurons are removed through apoptosis, and mediators like caspase-3 are highly upregulated. The contribution of apoptotic mechanisms in cell death appears also to be substantial in the developing brain, with a marked activation of downstream caspases and signs of DNA fragmentation. Mitochondria are important regulators of cell death through their role in energy metabolism and calcium homeostasis, and their ability to release apoptogenic proteins and to produce reactive oxygen species. We find that secondary brain injury is preceded by impairment of mitochondrial respiration, signs of membrane permeability transition, intramitochondrial accumulation of calcium, changes in the Bcl-2 family proteins, release of proapoptotic proteins (cytochrome C, apoptosis inducing factor) and downstream activation of caspase-9 and caspase-3 after hypoxia-ischemia. These data support the involvement of mitochondria-related mechanisms in perinatal brain injury. 相似文献
6.
Stroke and circulatory arrest cause interferences in blood flow to the brain that result in considerable tissue damage. The primary method to reduce or prevent neurologic damage to patients suffering from brain ischemia is prompt restoration of blood flow to the ischemic tissue. However, paradoxically, restoration of blood flow causes additional damage and exacerbates neurocognitive deficits among patients who suffer a brain ischemic event. Mitochondria play a critical role in reperfusion injury by producing excessive reactive oxygen species (ROS) thereby damaging cellular components, and initiating cell death. In this review, we summarize our current understanding of the mechanisms of mitochondrial ROS generation during reperfusion, and specifically, the role the mitochondrial membrane potential plays in the pathology of cerebral ischemia/reperfusion. Additionally, we propose a temporal model of ROS generation in which posttranslational modifications of key oxidative phosphorylation (OxPhos) proteins caused by ischemia induce a hyperactive state upon reintroduction of oxygen. Hyperactive OxPhos generates high mitochondrial membrane potentials, a condition known to generate excessive ROS. Such a state would lead to a “burst” of ROS upon reperfusion, thereby causing structural and functional damage to the mitochondria and inducing cell death signaling that eventually culminate in tissue damage. Finally, we propose that strategies aimed at modulating this maladaptive hyperpolarization of the mitochondrial membrane potential may be a novel therapeutic intervention and present specific studies demonstrating the cytoprotective effect of this treatment modality. 相似文献
8.
5′-Amino-4-imidazolecarboxamide (AICA) riboside induces apoptosis in neuronal cell models. In order to exert its effect, AICA riboside must enter the cell and be phosphorylated to the ribotide. In the present work, we have further studied the mechanism of apoptosis induced by AICA riboside. The results demonstrate that AICA riboside activates AMP-dependent protein kinase (AMPK), induces release of cytochrome c from mitochondria and activation of caspase 9. The role of AMPK in determining cell fate is controversial. In fact, AICA riboside has been reported to be neuroprotective or to induce apoptosis depending on its concentration, cell type or apoptotic stimuli used. In order to clarify whether the activation of AMPK is related to apoptosis in our model, we have used another AMPK stimulator, metformin, and we have analysed its effects on cell viability, nuclear morphology and AMPK activity. Five mM metformin increased AMPK activity, inhibited viability, and increased the number of apoptotic nuclei. AICA riboside, which can be generated from the ribotide (an intermediate of the purine de novo synthesis) by the action of the ubiquitous cytosolic 5′-nucleotidase (cN-II), may accumulate in those individuals in which an inborn error of purine metabolism causes both a building up of intermediates and/or an increase of the rate of de novo synthesis, and/or an overexpression of cN-II. Therefore, our results suggest that the toxic effect of AICA riboside on some types of neurons may participate in the neurological manifestations of syndromes related to purine dismetabolisms. 相似文献
9.
ObjectiveTo ascertain if levosimendan postconditioning can alleviate lung ischemia–reperfusion injury (LIRI) in rats. MethodOne hundred rats were divided into five groups: Sham (sham), ischemia–reperfusion group (I/R group), ischemic postconditioning (IPO group), levosimendan postconditioning (Levo group) and combination postconditioning group of levosimendan and 5-Hydroxydecanoic acid (Levo+5-HD group). The apoptotic index (AI) of lung tissue cells was determined using the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Expression of active cysteine aspartate specific protease-3 ( active caspase-3), Bcl-2 and Bax in lung tissue was determined by immunohistochemical staining. The morphopathology of lung tissue was observed using light and electron microscopy. ResultsAI values and expression of active caspase-3, Bcl-2 and Bax of lung tissue in I/R and Levo+5-HD groups were significantly higher than those in the sham group ( P<0.05). AI values and expression of active caspase-3 and Bax were significantly lower, whereas that of Bcl-2 was higher significantly in the Levo group, compared with I/R and Levo+5-HD groups (P<0.05). Significant differences were not observed in comparisons between I/R and Levo+5-HD groups as well as IPO and Levo groups. ConclusionLIRI can be alleviated by levosimendan, which simulates an IPO protective function. A postulated lung-protective mechanism of action could involve opening of mitochondrial adenosine triphosphate-sensitive potassium channels, relieving Ca2+ overload, upregulation of expression of Bcl-2, and downregulation of expression of active caspase-3 and Bax. 相似文献
10.
The aim of the present study was to reveal the effect of liver ischemia–reperfusion injury (LIRI) on the activity of selected
neuronal phenotypes in rat brain by applying dual Fos-oxytocin (OXY), vasopressin (AVP), tyrosine hydroxylase (TH), phenylethanolamine
N-methyltransferase (PNMT), corticoliberine (CRH), and neuropeptide Y (NPY) immunohistochemistry. Two liver ischemia–reperfusion
models were investigated: (i) single ligation of the hepatic artery (LIRIa) for 30 min and (ii) combined ligation of the portal
triad (the common hepatic artery, portal vein, and common bile duct) (LIRIb) for 15 min. The animals were killed 90 min, 5 h,
and 24 h after reperfusion. Intact and sham operated rats served as controls. As indicated by semiquantitative estimation,
increases in the number of Fos-positive cells mainly occurred 90 min after both liver reperfusion injuries, including activation
of AVP and OXY perikarya in the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei, and TH, NPY, and PNMT perikarya
in the catecholaminergic ventrolateral medullar A1/C1 area. Moreover, only PNMT perikarya located in the A1/C1 cell group
exhibited increased Fos expression 5 h after LIRIb reperfusion. No or very low Fos expression was found 24 h after reperfusion
in neuronal phenotypes studied. Our results show that both models of the LIRI activate, almost by the same effectiveness,
a number of different neuronal phenotypes which stimulation may be associated with a complex of physiological responses induced
by (1) surgery (NPY, TH, PNMT), (2) hemodynamic changes (AVP, OXY, TH, PNMT), (3) inflammation evoked by ischemia and subsequent
reperfusion (TH), and (4) glucoprivation induced by fasting (NPY, PNMT, TH). All these events may contribute by different
strength to the development of pathological alterations occurring during the liver ischemia–reperfusion injury. 相似文献
11.
l-3-n-Butylphthalide (l-NBP) exerts neuroprotective effects in animal models of cerebral ischemia, but its potential benefits in repeated cerebral ischemia–reperfusion (RCIR) injury remain unknown. We investigated the effect of l-NBP on cognitive impairment induced by RCIR in mice. Male C57Bl/6 mice received sham surgery or bilateral common carotid artery occlusion (3 times, 20 min each) and were orally administered preoperative l-NBP (30 mg/kg/day, 7 days), postoperative l-NBP (30 or 60 mg/kg/day, 28 days) or postoperative vehicle (28 days). Learning and memory were assessed by the Morris water maze task and step-down passive avoidance test. Nissl staining was used to identify pathologic changes in the hippocampal CA1 region. The expressions of proteins associated with signaling, apoptosis and autophagy were assessed by quantitative PCR and western blot. RCIR induced deficits in learning and memory that were alleviated by preoperative or postoperative l-NBP administration. Pathologic lesions in the hippocampal CA1 region induced by RCIR were less severe in mice treated with l-NBP. Preoperative or postoperative l-NBP administration in mice receiving RCIR promoted hippocampal expression of phospho-Akt and phospho-mTOR (suggesting activation of Akt/mTOR signaling), increased the Bcl-2/Bax ratio (indicating suppression of apoptosis) and reduced the LC3-II/LC3-I ratio (implying inhibition of autophagy). Preoperative or postoperative l-NBP administration also depressed hippocampal levels of beclin-1 mRNA (indicating suppression of autophagy). These findings suggest that the effect of l-NBP to alleviate learning and memory deficits in mice following RCIR may involve activation of Akt/mTOR signaling and regulation of the expressions of proteins related to apoptosis and autophagy. 相似文献
12.
Hydroxysafflor yellow A (HSYA) is the major active chemical component of the flower of the safflower plant, Carthamus tinctorius L. Previously, its neuroprotection against cerebral ischemia–reperfusion (I/R) injury was reported by anti-oxidant action and suppression of thrombin generation. Here, we investigate the role of HSYA in cerebral I/R-mediated apoptosis and possible signaling pathways. Male Wistar rats were subjected to transient middle cerebral artery occlusion for 2 h, followed by 24 h reperfusion. HSYA was administered via tail-vein injection just 15 min after occlusion. The number of apoptotic cells was measured by TUNEL assay, apoptosis-related proteins Bcl-2, Bax and the phosphorylation levels of Akt and GSK3β in ischemic penumbra were assayed by western blot. The results showed that administration of HSYA at the doses of 4 and 8 mg/kg significantly inhibited the apoptosis by decreasing the number of apoptotic cells and increasing the Bcl-2/Bax ratio in rats subjected to I/R injury. Simultaneously, HSYA treatment markedly increased the phosphorylations of Akt and GSK3β. Blockade of PI3K activity by wortmannin dramatically abolished its anti-apoptotic effect and lowered both Akt and GSK3β phosphorylation levels. Taken together, these results suggest that HSYA protects against cerebral I/R injury partly by reducing apoptosis via PI3K/Akt/GSK3β signaling pathway. 相似文献
13.
Tanshinone I (TsI) is an important lipophilic diterpene extracted from Danshen (Radix Salvia miltiorrhizae) and has been used in Asia for the treatment of cerebrovascular diseases such as ischemic stroke. In this study, we examined the neuroprotective effect of TsI against ischemic damage and its neuroprotective mechanism in the gerbil hippocampal CA1 region (CA1) induced by 5 min of transient global cerebral ischemia. Pre-treatment with TsI protected pyramidal neurons from ischemic damage in the stratum pyramidale (SP) of the CA1 after ischemia–reperfusion. The pre-treatment with TsI increased the immunoreactivities and protein levels of anti-inflammatory cytokines [interleukin (IL)-4 and IL-13] in the TsI-treated-sham-operated-groups compared with those in the vehicle-treated-sham-operated-groups; however, the treatment did not increase the immunoreactivities and protein levels of pro-inflammatory cytokines (IL-2 and tumor necrosis factor-α). On the other hand, in the TsI-treated-ischemia-operated-groups, the immunoreactivities and protein levels of all the cytokines were maintained in the SP of the CA1 after transient cerebral ischemia. In addition, we examined that IL-4 injection into the lateral ventricle did not protect pyramidal neurons from ischemic damage. In conclusion, these findings indicate that the pre-treatment with TsI can protect against ischemia-induced neuronal death in the CA1 via the increase or maintenance of endogenous inflammatory cytokines, and exogenous IL-4 does not protect against ischemic damage. 相似文献
14.
Biophysics - Oxidative stress caused by ischemia–reperfusion kidney injury may play a key role in liver dysfunction. To reduce liver and kidney damage in ischemia–reperfusion kidney... 相似文献
16.
The aim of the study was to elucidate the therapeutic effects of Cytisine (CYT) on cerebral ischemia–reperfusion injury in mice. Male ICR mice were pretreated with reagents (drug), and then subjected to 2 h focal cerebral ischemia and 24 h reperfusion. Morphologically, the histopathological impairment were estimated by the TTC, HE and TUNEL staining. The expression of GluN2B-containing NMDA receptor, phosphorylation of extracellular regulated protein kinases, total ERK, phosphorylation of cAMP-response element binding protein and total CREB were determined by immunofluorescence and Western blot assay, respectively. The mRNA expression of NR2B, ERK and CREB were quantified by the real-time RT-PCR. CYT significantly diminished the infarct size and neuronal apoptosis. Additionally, it ameliorated histopathological lesion dramatically. CYT promoted the phosphorylation of ERK, CREB and their mRNA expression. In contrast, the expression of NR2B was suppressed in concomitant with the down-regulation of genes. The overall results thus far suggest that CYT confers the neuroprotection against cerebral I/R injury by regulating the NR2B-ERK/CREB signal pathway. 相似文献
18.
Miltirone is a phenanthrene-quinone derived from Salvia miltiorrhiza Bunge with anti-inflammatory and anti-oxidant effects. Our study aimed to explore the protective effect of miltirone on 1-methyl-4-phenylpyridinium (MPP+)-induced cell model of Parkinson’s disease (PD). PharmMapper database was employed to predict the targets of miltirone. PD-related genes were identified using GeneCards database. The overlapping genes between miltirone and PD were screened out using Venn diagram. KEGG analysis was performed using DAVID and KOBAS databases. Cell viability, reactive oxygen species (ROS) generation, apoptosis, and caspase-3 activity were detected by CCK-8 assay, a ROS assay kit, TUNEL, and caspase-3 activity assay, respectively. Effect of miltirone on the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway was explored by western blot analysis. A total of 214 targets of miltirone and 372 targets related to PD were attained, including 29 overlapping targets. KEGG analysis demonstrated that the 29 overlapping targets were both significantly enriched in the PI3K/Akt pathway. MPP+ stimulation reduced the cell viability in SH-SY5Y cells and neuronal primary cultures derived from human brain. Miltirone or N-acetylcysteine (NAC) attenuated MPP+-induced reduction in cell viability, ROS production, SOD activity reduction, apoptosis, and increase of caspase-3 activity. Additionally, miltirone recuperated MPP+-induced inactivation of the PI3K/Akt pathway. Moreover, treatment with LY294002, an inhibitor of the PI3K/Akt pathway, reversed the inhibitory effect of miltirone on MPP+-induced ROS generation and apoptosis in SH-SY5Y cells and neuronal primary cultures. In conclusion, miltirone attenuated ROS-dependent apoptosis in MPP+-induced cellular model of PD through activating the PI3K/Akt pathway. 相似文献
19.
Biophysics - Abstract—The Miles assay using Evans Blue dye is a conventional method to assess vascular permeability. The penetration Evans dye into intestinal tissue was studied in the early... 相似文献
20.
All-trans retinoic acid (ATRA) influences the outcomes of cerebral ischemic reperfusion (CIR) injury, but the mechanism remains unclear. The present study aimed to investigate the effects of ATRA on loss of the blood brain barrier (BBB) following CIR and to explore the possible mechanisms. Transient middle cerebral artery occlusion was performed on male SD rats to construct an in vivo CIR model. Neurological deficits, BBB permeability, brain edema, MRI and JNK/P38 MAPK proteins were detected at 24 h following CIR. We demonstrated that ATRA pretreatment could alleviate CIR-induced neurological deficits, increase of BBB permeability, infarct volume, degradation of tight junction proteins, inhibit MMP-9 protein expression and activity. ATRA treatment also reduced the p-P38 and p-JNK protein level. However the protective effect of ATRA on CIR could be reversed by administration of retinoic acid alpha receptor antagonist Ro41-5253. SP600125 and SB203580, which is the JNK/P38 pathway inhibitors has the same protective effect as ATRA. These results indicated that ATRA may inhibit the JNK/P38 MAPK pathway to alleviate BBB disruption and improve CIR outcomes. 相似文献
|