首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Partially purified nucleotide fraction of moss containing [14C]-labelled putative adenosine 3′, 5′ -cyclic monophosphate (cAMP) and marker authentic [3H] -cAMP was characterized by chemical deamination and also by the enzymatic hydrolysis with beef heart cyclic nucleotide phosphodiesterase. A significant conversion of marker authentic [3H] -cAMP into [3H] -inosine 3′, 5′ -cyclic monophosphate (cIMP) and [3H] -5′ adenosine monophosphate was observed by respective treatments. In contrast, the [14C] -labelled putative cAMP from control and theophylline-treated moss tissue was insensitive to chemical deamination and enzymatic hydrolysis. Apparently, the [14C] -labelled product which comigrates with authentic [3H] -cAMP does not represent true cAMP. Both the methods employed for characterization of the labelled putative cAMP were sensitive enough to detect picomole quantities of authentic [3H] -cAMP. Lack of detectability of prelabelled [14C] -cAMP in our preparations implies that the tissue may contain authentic cyclic AMP below the picomole levels. Thus, the attributed physiological role to adenosine 3′, 5′ -cyclic monophosphate in moss tissue appears somewhat skeptical.  相似文献   

2.
Certain hormonal primary messengers identified in the mammalian palate during its ontogeny transmit information to the interior of the cell via transmembrane signaling systems that control the production of the secondary messenger cyclic adenosine monophosphate. The singular role of intracellular cyclic AMP is to activate cAMP-dependent protein kinases (cAMP-dPK). cAMP-dPK were thus identified and characterized in the developing murine embryonic palate. Incubation of cytosolic fractions of embryonic palatal tissue with cAMP resulted in a dose-dependent increase in the cAMP-dPK activity ratio. A transient elevation of basal cAMP-dPK was seen during the period of palatal ontogeny that corresponded temporally with a previously demonstrated transient elevation of palatal basal cAMP levels. Fractions of embryonic palatal tissue cytosols derived by diethylaminoethyl (DEAE)-Sephacel chromatography were analyzed for phosphotransferase activity and for [3H]-cAMP binding to the regulatory (R) subunits of cAMP-dPK. Such analyses revealed two peaks of activity on day 13 of gestation. Based on the salt concentration at which the material in these peaks eluted from DEAE, its ability to cochromatograph with authentic cAMP-dPK isozymes, its molecular weight as determined by sodium dodecyl sulfate-polycrylamide gel electrophoresis, and the ability of the material to be photoaffinity labeled with [3H]-8-azidoadenosine 3',5' cyclic phosphate, types I and II cAMP-dPK were identified. Regulatory subunits of cAMP-dPK were characterized by the binding of [3H]-cAMP to cytosolic fractions of embryonic palatal tissue. Such binding was saturable (Bmax = 1,096 fmol/mg protein) and of high affinity (Kd = 7 nM). Only cAMP and cyclic guanosine monophosphate competed in a dose-related manner with [3H]-cAMP for binding to R subunits of cAMP-dPK. Adenosine, cTMP, and adenosine triphosphate, at doses up to 10(-4) M, did not compete for binding. Temporal analysis of binding data indicated that the number of binding sites transiently decreased during day 13 of gestation. Characterization of cAMP-dPK in tissue derived from the developing mammalian palate allows consideration of cAMP-dPK as a key regulatory enzyme capable of transducing hormonally elevated intracellular levels of cAMP into metabolic responses during orofacial ontogenesis.  相似文献   

3.
We have previously reported [(1980) J. Biol. Chem. 255, 5999-6002] that retinoic acid inhibited growth and increased cyclic-AMP-dependent protein kinase activity in mouse melanoma cells. A variant melanoma line having depressed levels of cyclic-AMP-dependent protein kinase was not growth-inhibited by retinoic acid. In this report we describe the effect of retinoic acid on cyclic AMP binding proteins in B16 mouse melanoma cells. Using the technique of photoaffinity labeling, we found three major proteins of Mr 49 000, 52 000, and 55 000 which were specifically labeled with 8-N3-[32P]AMP in both control and treated cells. Based upon their molecular weight, relative affinity for 8-N3-[32P]AMP and comigration with standards, we have designated the 49 000-Mr and 55 000-Mr species as RI and RII respectively. The position of the intermediate band (Mr 52 000) was not affected by pre-incubation with ATP or alkaline phosphatase, and two-dimensional gel analysis indicated that it had the same pI as RI. Retinoic acid increased the 8-N3-[32P]AMP labeling of RI within 24 h, reaching a maximal six fold increase by 48 h. These increases were limited to the 40 000 X g supernatant fraction and occurred prior to any growth inhibition. By using increasing concentrations of 8-N3-cAMP we were able to construct a saturation curve for RI binding. Calculation of apparent Kd values from these curves showed nearly identical affinities for RI binding of 8-N3-cAMP from control and retinoic-acid-treated cells. Therefore we conclude that retinoic acid is increasing the amount of RI rather than altering its properties. Corroboration of these results was obtained by DEAE-cellulose chromatography. Peak I (corresponding to type I protein kinase) from retinoid-treated cells was increased about six fold in binding activity.  相似文献   

4.
In fetal mouse liver fragments maintained in organ culture, the activities of fructose 1,6-bisphosphatase and glucose 6-phosphatase are elevated in the presence of dibutyryl adenosine 3',5'-monophosphate (Bt2-cAMP). Isobutyl-1-methylxanthine at 2.5 mM increased the two enzyme activities. The enzyme activities returned to the normal levels following removal of Bt2-cAMP from the culture medium. Glucagon at concentrations from 10(-11) M to 10(-6) M induced both enzyme activities. The developmental increases in the two gluconeogenic enzymes are supported by cyclic AMP elevated by glucagon. Only at unphysiologically high concentrations did prostaglandin-E1 show weak stimulatory effects. alpha-Adreno-agonists did not stimulate the enzyme activities. Actinomycin D and cycloheximide reduced the enzyme activities stimulated by Bt2-cAMP. Both inhibitors and removal of Bt2-cAMP prevented the incorporation of [3H]leucine into the bisphosphatase. The kinetic properties, subunit-size, and antigenic nature of the bisphosphate showed that the type of enzyme induced by Bt2-cAMP in vitro is identical to the adult liver type. The results are interpreted as indicating that cyclic AMP acts at certain sites in the syntheses of these two gluconeogenic enzymes in the fetal mouse liver.  相似文献   

5.
8-Azidoadenosine 3',5'-monophosphate (8-N3-cAMP) containing 32P has been used as a photoaffinity label specific for the adenosine 3',5'-monophosphate (cAMP) binding site(s) present in a partially purified preparation of soluble protein kinase from bovine brain. 8-N3-cAMP and cAMP were found to compete for the same binding site(s) in this preparation, as determined by a standard filter assay. When this protein preparation was equilibrated with [32P]-8-N3-cAMP, and then irradiated at 253.7 nm, the incorporation of radioactivity was predominantly into a protein with an apparent molecular weight of 49,000, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. This labeled protein comigrated in the gel with the only protein which is endogenously phosphorylated by [gamma-32P]ATP, a protein which has been shown to be the regulatory subunit of the protein kinase (H. Maeno, P. L. Reyes, T. Ueda, S. A. Rudolph, and P. Greengard (1974), Arch. Biochem. Biophys. 164, 551). The incorporation of [32P]-8-N3-cAMP into this protein was half-maximal at a concentration of 7 x 10(-8) M. In accordance with a proposed mechanism involving the formation of a highly reactive nitrene intermediate upon irradiation of the azide, the incorporation of radioactivity into protein was maximal within 10 min of irradiation, and was almost eliminated by preirradiation of the photolabile ligand. Moreover, this incorporation was virtually abolished by a 50-fold excess of cAMP, but not by AMP, ADP, ATP, or adenosine. We suggest that 8-N3-cAMP may prove to be a useful molecular probe of the cAMP-binding site in receptor proteins and report its use in conjunction with sodium dodecyl sulfate-polyacrylamide gel electrophoresis as a highly sensitive and selective radiochemical marker for cAMP-binding proteins.  相似文献   

6.
Several methods were compared for estimating the amount of regulatory subunit of an 800-fold purified Type II cAMP-dependent protein kinase from bovine heart. These methods included a reversable binding assay using either cAMP, or 8-N3-[32P]cAMP, photoaffinity labeling with 8-N3-[32P]cAMP, and autophosphorylation of the regulatory subunit of the enzyme. Although the regulatory subunit had a slightly lower affinity for 8-N3-cAMP than for cAMP, the total amount of regulatory subunit could be determined by each of the procedures examined. The results indicate that the photoaffinity analog 8-N3-[32P]cAMP is able to label quantitatively all cAMP-binding sites of the regulatory subunit of this cAMP-dependent protein kinase.  相似文献   

7.
2'-O-Chloroacetyl cyclic AMP, 2'-O-acrylyl cyclic AMP and N-6, 2'-O-diacrylyl cyclic AMP were synthesized by the reaction of cyclic AMP with chloroacetic and acrylic anhydrides, respectively. Selective O-deacylation of N-6, 2'-O-diacrylyl cyclic AMP yielded N-6 -monoacrylyl cyclic AMP. In the reaction of gamma-mercaptobutyric acid with 8-bromo cyclic AMP, 8-(gamma-carboxypropylthio) cyclic AMP was obtained. The compounds synthesized and other cyclic AMP analogues (8-bromo cyclic AMP and adenosine 3', 5'-cyclic sulphate) were tested for ability to interact with the highly purified pig brain histone kinase. All compounds under study were found to be activators of the enzyme. The highest activating potency was manifested by 8-bromo cyclic AMP and 8-(gamma-carboxypropylthio) cyclic AMP; adenosine 3', 5'-cyclic sulphate was the least potent in this respect. All compounds were shown to inhibit binding of cyclic [-3-H]AMP to histone kinase. The inhibition was competitive with respect to cyclic AMP in all cases. All compounds, except for 2'-O-chloroacetyl cyclic AMP may indicate the formation of a covalent bond between this analogue and the enzyme. These findings suggest that an active site of the regulatory subunit of the histone kinase contains at least three specific areas responsible for cyclic AMP binding.  相似文献   

8.
Use of nucleotide photoaffinity probes to study hormone action   总被引:1,自引:0,他引:1  
It has been clearly shown that the action of several hormones is differentially mediated intracellularly by nucleotides containing either adenosine or guanosine base units. To study the protein-nucleotide interactions involved in several complex biological systems our laboratory has synthesized several 8-azido-adenosine (8-N3 A) and 8-azidoguanosine (8-N3 G) derivatives of naturally occurring nucleotides. Modification of the nucleotides in the 8-position of the purine ring was done because: a) 8-substituted derivatives of cAMP and cGMP activated their respective protein kinases at physiological concentrations and were much less susceptible to hydrolysis by specific phosphodiesterases (PDE's) and b) substitution at the 8-position was much less likely to disturb the preferential and selective binding of adenosine versus guanosine nucleotides by enzymes that are specifically regulated by such interactions. This would allow studies of guanosine nucleotide specific binding in the presence of both adenosine nucleotides and adenosine nucleotide binding proteins, and vice-versa. In general, such has been the case and [32P] 8-N3 cAMP and [32P] 8-N3 cGMP have been used effectively to study their respectively activated protein kinases in several systems. Also, [32P] 8-N3 ATP has been used to study several ATPases and kinases while [gamma 32P] 8-N3 GTP has been shown effective for studies on tubulin and the G-regulatory protein (G/N) of adenylyl cyclase (A.C.). Several observations suggest that there must be important physical and energetic tie-ins between external hormone binding and the loading and unloading of specific internal nucleotide binding sites. These binding sites may be activator signals for protein kinases (e.g., cAMP protein kinase regulatory subunit), or cyclases (e.g., G/N proteins of A.C.) or catalytic sites involved in the production or hydrolysis of cyclic nucleotides. The thrust of this article is to detail the use of 8-azidopurine photoaffinity analogs of ATP, GTP, cAMP and cGMP as they may be used to study hormone-mediated events which may or may not involve cyclic nucleotides as a second messenger.  相似文献   

9.
The adenosine 3',5'-monophosphate receptor proteins of HeLa cells have been characterized. Using the Millipore filter assay, in the presence of 5'AMP and a phosphodiesterase inhibitor, specific [3H]cyclic AMP binding was detected in cytosol and in a nuclear-free particulate fraction, but not in nuclei. Both preparations exhibited biphasic Scatchard plots. 8-Azido[32P]cyclic AMP was used as a photoaffinity probe to covalently link ligand with receptor proteins. Proteins were then separated on denaturing gels and analyzed by autoradiography. The cytosol exhibited four specific binding proteins, with molecular weights of 46 000, 50 000, 52 000 and approx. 120 000. The 50 000/52 000 doublet could not be interconverted by phosphorylation-dephosphorylation reactions. On DEAE-cellulose, the 50 000-dalton protein eluted with peak II cyclic AMP-dependent protein kinase. The other proteins eluted with Peak I and with a binding peak not associated with kinase activity. Only the 50 000 protein was precipitated by type II protein kinase antibody from bovine heart. In the particulate fraction, the 120 000 protein was not detectable, but 8-azido[32P]cyclic AMP treatment revealed the other three proteins, with a relative increase in the 50 000-dalton protein. The results suggest that HeLa cells have four binding proteins which can associate with catalytic subunit and that the Peak I enzyme is heterogeneous, consisting of several distinct regulatory subunits.  相似文献   

10.
cAMP-dependent protein kinase I and II (cAKI and cAKII) were incubated under near physiological conditions in the presence of various concentrations of 8-N3-c[3H]AMP or c[3H]AMP. Both types (A and B) of cyclic nucleotide binding sites of cAKI or cAKII were occupied to a similar extent and the degree of their occupation correlated with the degree of kinase activation. cAKI and cAKII bound cAMP in an apparent positively cooperative manner in the presence of Mg2+, ATP. 8-N3-c[3H]AMP dissociated several orders of magnitude faster from site A than site B of the regulatory moiety of cAKII, and was photo-incorporated only when bound to site B.  相似文献   

11.
A single cAMP-receptor protein could be detected in mycelial extracts of Coprinun macrorhizus by using the photoaffinity cAMP-analogue, 8-N3-cAMP. The protein which specifically bound 32P-labeled 8-N3-cAMP had an apparent molecular weight of 46,000 as determined by an SDS-polyacrylamide gel electrophoresis system. The 46,000-dalton protein was characterized by the dissociation constant for [32P]-8-N3-cAMP, and by the nucleotide specific inhibition of [32P]-8-N3-cAMP binding. The 46,000-dalton protein was co-chromatographed on a DEAE-cellulose column with cAMP-dependent protein kinase. The levels of [32P]-8-N3-cAMP-binding and protein kinase activities in mycelial extracts of strains used was always in parallel. The result indicated that the 46,000-dalton protein may be a regulatory subunit of protein kinase with the capacity to bind cAMP. cAMP-dependent protein kinase of this fungus was immunologically different from those of higher animals.  相似文献   

12.
C E Larsen  J Preiss 《Biochemistry》1986,25(15):4371-4376
The photoaffinity agent 8-azidoadenosine 5'-monophosphate (8-N3AMP) is an inhibitor site specific probe of the Escherichia coli ADP-glucose synthetase (ADPG synthetase). In the absence of light, 8-N3AMP exhibits the typical reversible allosteric kinetics of the physiological inhibitor AMP. In the presence of light (254 nm), the analogue specifically and covalently modifies the enzyme, and photoincorporation is linearly related to loss of catalytic activity up to at least 65% inactivation. The substrate ADPG provides nearly 100% protection from 8-N3AMP photoinactivation, while the substrate ATP provides approximately 50% protection and the inhibitor AMP, approximately 30% protection. These three adenylate allosteric effectors of E. coli ADPG synthetase also protect it from photoincorporation of 8-N3AMP. A structural overlap of the inhibitor and substrate binding sites is proposed which explains the protection data in light of the known binding and kinetic properties of this tetrameric enzyme.  相似文献   

13.
J Bubis  S S Taylor 《Biochemistry》1987,26(12):3478-3486
Each regulatory subunit of the cAMP-dependent protein kinase contains two in-tandem cAMP binding sites. Photolabeling of holoenzyme I with 8-azidoadenosine 3',5'-monophosphate (8-N3-cAMP) leads to the covalent modification of two residues, Trp-260 and Tyr-371. In order to correlate photolabeling of these two residues with occupancy of each specific cAMP binding site, photolabeling was carried out in the presence of various analogues of cAMP that bind preferentially to one site. Photolabeling of holoenzyme I after dissociation of 60% of 8-N3-[3H]cAMP with an excess of N6-monobutyryl-cAMP nearly abolished the incorporation of 8-N3-cAMP into Trp-260, whereas the modification of Tyr-371 was reduced by 49%. When 8-N3-[32P]cAMP was bound under equilibrium conditions in the presence of various cAMP analogues, N6-monobutyryl-cAMP also selectively abolished incorporation of radioactivity into Trp-260, whereas 8-(methylamino)-cAMP preferentially reduced the covalent modification of Tyr-371. Photolabeling with trace amounts of 8-N3-[32P]cAMP in the presence of saturating amounts of N6-monobutyryl-cAMP led to the covalent modification of only Tyr-371. In addition, photolabeling of Tyr-371 was enhanced synergistically in the presence of N6-monobutyryl-cAMP. MgATP reduced the covalent modification of both Trp-260 and Tyr-371 but showed no selectivity for either site. These studies support a model that correlates photolabeling of Trp-260 with occupancy of cAMP binding site A and photolabeling of Tyr-371 with occupancy of cAMP binding site B.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Adenosine Receptors Mediating Cyclic AMP Productioin the Rat Hippocampus   总被引:6,自引:0,他引:6  
In the transversely cut rat hippocampus, adenosine caused a dose-dependent increase in the accumulation of [3H]cyclic AMP from [3H]ATP. Adenosine breakdown products were inactive. AMP was somewhat less effective than adenosine, and its effect could be partially, but not completely, abolished by alpha, beta-methylene-ADP and GMP, which inhibited its metabolism by 5'-nucleotidase. The effect of adenosine was unaffected by inhibitors of adenosine deaminase, but enhanced by several inhibitors of adenosine uptake. Some analogues of adenosine, including N6-phenylisopropyladenosine (PIA), 2-chloroadenosine and adenosine 5'-ethylcarboxamide (NECA), were more active than adenosine, whereas others such as 2-deoxyadenosine and 9-(tetrahydro-2-furyl)adenine (SQ 22536) actually inhibited the response. The effect of PIA was highly stereospecific. The action of adenosine was inhibited by several alkylxanthines, the most potent of which was 8-phenyltheophylline. [3H]Cyclohexyladenosine (CHA) bound specifically to cell membranes from the rat hippocampus. The extent of binding was similar to that found in other cortical areas. The relative potency of some adenosine analogues and alkylxanthines to displace labelled CHA was essentially similar to their potency as effectors of the cyclic AMP system. Adenosine contributed to the cyclic AMP-elevating effect of alpha-adrenoceptor-stimulating drugs and several amino acids, but not to that seen with isoprenaline. The cyclic AMP increase seen following depolarization was only partially adenosine-dependent. The present results demonstrate that the rat hippocampus contains adenosine receptors mediating cyclic AMP accumulation and that these receptors have similar characteristics to those mediating pyramidal cell depression. Adenosine-induced cyclic AMP accumulation may be used as a biochemical correlate to electrophysiology and as a convenient parameter to assess the influence of drugs on adenosine mechanisms in the rat hippocampus.  相似文献   

15.
Cyclic AMP accumulates in cerebral cortical slices from the C57B1/6J mouse incubated with the following stimulatory agents: norepinephrine, adenosine, veratridine and adenosine-biogenic amine combinations. The results with slices labelled with radioactive adenine or adenosine provide evidence for the existence of distinct functional compartments of adenine nuclcotides which serve as precursors of cyclic AMP on stimulation with specific agents. Thus, in slices labelled with [14C]adenine or [3H]adenosine the ratio of [14C] to [3H]cyclic AMP was dependent on the stimulatory agent; with veratridinc the ratio was 1.4 while with adenosine the ratio was 3.0. In addition, a greater than 2-fold difference in the ratio of endogenous/radioactive cyclic AMP was observed in adenine or adenosine-labelled slices after incubation with veratridine, norepinephrine, adenosine or adenosine-amine combinations; the lowest ratios after stimulation with veratridine and the highest after adenosine or adenosine-amine combinations. The high ratio observed with adenosine was in part due to a quite marked incorporation of the stimulant, adenosine, into the accumulating cyclic AMP. Such distinct functional compartments of cyclic AMP precursors may represent different cell types and/or morphological entities within one cell type.  相似文献   

16.
J W Ogilvie 《Biochemistry》1985,24(2):317-321
The smallest enzymatically active form of rabbit muscle phosphofructokinase is a tetramer of four identical or nearly identical monomers. The enzyme is inhibited by ATP, and this inhibition by ATP is relieved by the activating adenine nucleotides adenosine cyclic 3',5'-phosphate, AMP, and ADP. Each monomer contains one binding site specific for the inhibitor ATP and another site specific for the activating adenine nucleotides. The enzyme can also be activated by covalently labeling the activating adenine nucleotide binding sites with the affinity label 5'-[p-(fluorosulfonyl)benzoyl]adenosine. These activator binding sites on the enzyme have been covalently labeled to various degrees, ranging from an average value of less than one label per tetramer to four labels per tetramer, and the free-energy coupling, delta Gxy, between the covalently bound affinity label and ATP binding at the inhibitory site was determined. For enzyme preparations containing four labels per tetramer, delta Gxy is approximately 1 kcal/mol at pH 6.95 and 25 degrees C. A very significant free-energy coupling is observed in those preparations containing an average of one label per tetramer and less, and the change in delta Gxy in going from native tetramers to ones containing an average of two labels per tetramer is twice as great as the change in delta Gxy observed in going from tetramers containing an average of two labels per tetramer to ones containing four labels per tetramer, suggesting that modification of the final two monomers in the tetramer contributes much less to the antagonistic effect on ATP binding than does modification of the first two monomers in the tetramer.  相似文献   

17.
Low- and high-affinity binding sites for cyclic GMP were found to be associated with the cyclic AMP-dependent protein kinase (ATP: protein phosphotransferase, EC 2.7.1.37) from human tonsillar lymphocytes, but neither of them was identical with the cyclic AMP binding site. The enzyme activated by cyclic GMP phosphorylated the same site of calf thymus H2b histone as the cyclic AMP activated enzyme; however, more complex kinetics of activation were found with cyclic GMP. Two classes of cyclic GMP binding site were demonstrated by kinetic analysis of cyclic [3H]GMP binding in the enzyme preparations eluted by 0.1 M potassium phosphate (pH 7.0) from DEAE cellulose. The high-affinity cyclic GMP binding site (Kd about 4 . 10(-8) M) belonged to some complex form of the protein kinase, as evidenced by the mutual inhibition of cyclic AMP binding and high affinity cyclic GMP binding. However, the high-affinity cyclic GMP binding site disappeared on Sephadex G-100 gel chromatography of the enzyme preparation, whereas the cyclic AMP binding activity was recovered quantitively as separate fractions. The low-affinity cyclic GMP binding site (Kd 2--5 . 10(-6) M) was demonstrated by the inhibitory effect of 10(-5) M cyclic GMP on cyclic AMP binding in each cyclic AMP binding fraction obtained by gel chromatography. However, cyclic AMP did not inhibit the binding of cyclic GMP to the low-affinity binding site.  相似文献   

18.
Goat epididymal intact spermatozoa have been shown to possess on the external surface specific receptors that bind with high affinity to exogenous [8-3H]cyclic AMP. The ecto-cyclic AMP-receptor activity was not due to contamination of broken or "leaky" cells, if any. The binding reaction of [3H]cyclic AMP with the receptors was extremely rapid. Uptake of the labeled cyclic AMP to the sperm cytosolic fraction was undetectable. There was little leakage of cyclic AMP-receptors from intact spermatozoa during the binding assays. The binding reaction was proportional to cell concentration, specific and saturable at 250 nM cyclic AMP. The binding of the labelled cyclic nucleotide was nearly completely displaced at saturating concentrations (2.5 microM) of the unlabelled nucleotide. The ecto-receptors showed high specificity for binding to cyclic AMP. The Kd of the binding sites was approximately 1.7 X 10(-8) M. The binding interaction was highly sensitive to treatment with proteolytic enzymes: trypsin, chymotrypsin, or pronase (125 micrograms/ml). Sonication caused a nearly 450% increase of the ecto-receptor activity. The specific activity of the ecto-cyclic AMP-receptor was approximately twofold higher in the vigorously forwardly motile spermatozoa than in the "composite" cells, suggesting that the ecto-receptors may have a role in modulating flagellar motility.  相似文献   

19.
Evidence is presented for the presence of multiple cyclic AMP binding components in the plasma membrane and cytosol fractions of porcine renal cortex and medulla. N6-(Ethyl-2-diazomalonyl)-3',5'-adenosine monophosphate, a photoaffinity label for cyclic AMP binding sites, exhibits non-covalent binding characteristics similar to cyclic AMP in membrane and soluble fractions. Binding data for either compound to the plasma membrane fraction yields biphasic Scatchard plots while triphasic plots are obtained with the dialyzed cytosol. When covalently labeled fractions are separated on SDS-polyacrylamide gel electrophoresis, the cyclic AMP photoaffinity label is found on 49 000 and 130 000 dalton components in each kidney fraction. DEAE-cellulose and gel filtration chromatography of the labeled cortical cytosol fraction establishes that the three components suggested by the binding data correspond to two 49 000 dalton species and a 130 000 component. The 49 000 species have higher affinities for cyclic AMP than the 130 000 component (Ka(1) = 2.0 . 10(9), Ka(2) = 1.7 . 10(8), Ka(3) = 1.0 . 10(7)). The 49 000 components are associated with protein kinase activity while the 130 000 component does not exhibit protein kinase, adenosine deaminase, or cyclic nucleotide phosphodiesterase activity. Immunologic results and effects of phosphorylation and cyclic GMP on cyclic AMP binding further suggest that the 49 000 components are regulatory subunits of cyclic AMP-dependent protein kinases. Cyclic AMP binding to the 130 000 component is markedly inhibited by adenosine and adenine nucleotides, but not cyclic GMP. Thus, this component may reflect an aspect of adenosine control or metabolism which may or may not be a cyclic AMP-related cellular function.  相似文献   

20.
The photoaffinity probes [gamma-32P]2-azidoATP (2-N3ATP) and [alpha-32P]8-azido-ATP (8-N3ATP) were used to investigate the binding of ATP to highly purified 2-5A synthetase. 2-N3ATP and 8-N3ATP are substrates for 2-5A synthetase [Suhadolnik, R.J., Karikó, K., Sobol, R.W., Jr., Li, S.W., Reichenbach, N.L., & Haley, B.E., preceding paper]. In this study we show that 2- and 8-N3ATP are competitive inhibitors of the enzymatic conversion of ATP to 2-5A. Ultraviolet irradiation results in the photoinsertion of 2-N3ATP and 8-N3ATP into the enzyme. The covalent photoinsertion of [alpha-32P]8-N3ATP into the 2-5A synthetase is proportional to the inactivation of the enzyme as UV irradiation is increased. Photolabeling of 2-5A synthetase is saturated at 1.5 mM 2-N3ATP and 2.0 mM 8-N3ATP. Computer analysis of the curvilinear Scatchard plots of the 2-5A synthetase suggests the presence of high-affinity and low-affinity binding sites that may correspond to the acceptor and the 2'-adenylation sites of the enzyme. The competition of nucleotides for the covalent photoinsertion of 8-N3ATP into the binding site(s) of the synthetase was as follows: ATP greater than 2'dATP = 3'dATP greater than CTP greater than ITP greater than AMP greater than NAD+ greater than UTP greater than UMP greater than CMP. Photoinsertion of 8-N3ATP into 2-5A synthetase increases with the addition of poly(rI).poly(rC).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号