共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of patch demography on the structure of forest tree communities was examined using a patch-age and tree-size structured
model of forest dynamics. Changes in abundance of species of different types (four different maximum tree-size classes each
in two or three shade-tolerance classes) were numerically modeled in response to changes in the duration of the gap-formation-free
lag phase. Average patch mortality was identical in all simulations. Tolerant species were more abundant without a lag phase
due to larger variation in patch longevity, while subtolerant or intolerant species were successful when patch longevity was
fixed with a long duration of lag phase. Variation in patch-age distribution facilitated species coexistence. Increasing ‘advance
regeneration’, or surviving fraction at gap formation, brought about the exclusive dominance of the tolerant species. Results
suggest that patch demography plays a significant role in the community organization of forest trees. In species-rich systems
like tropical rain forests, longevity or canopy duration of large trees can differ among species, which brings about the variation
in patch longevity, thus promoting further coexistence of species. 相似文献
2.
Abstract. Changes in woody vegetation were examined over eight years, using a 1.05-ha permanent plot in which the location of every shrub and tree > 1m height was mapped. There was little change in the overstory vegetation, as expected for an old-growth forest. Much greater change occurred in the understory, primarily related to a 40 % increase in density. Differences occurred among species in the under-story, as Acer saccharum and Prunus serotina increased and Fraxinus americana and Fagus grandifolia decreased. Canopy gap dynamics are implicated in differences among species in the establishment and growth of individuals in the understory and their recruitment into the overstory. It is concluded that because understory is temporally variable, overstory recruitment from the understory may take different courses at different times in the same forest. 相似文献
3.
Abstract. The structure and composition of a cool-temperate old-growth beech ( Fagus crenata) - dwarf bamboo ( Sasa spp.) forest, partially affected by landslide disturbance, in the Daisen Forest Reserve of southwestern Japan, were investigated in relation to forest floor and canopy conditions. All stems ≥ 4 cm DBH were mapped on a 4-ha plot and analyses were made of population structure, spatial distribution and spatial association of major tree species. The dominant species, F. crenata, which had the maximum DBH among the species present, had the highest stem density. However, for other species, larger-sized species had lower stem density with few smaller stems or saplings, while smaller-sized species had higher stem density with many smaller stems or saplings. Canopy trees of F. crenata were distributed randomly in the plot, while its stems in the other layers and all other species were distributed patchily. Small patches represent gap-phase regeneration. Larger patches correlate with landslide disturbance, difference in soil age, or the presence/absence of Sasa. Cluster analysis for spatial associations among species and stems in the different layers revealed that the forest community consists of several groups. One main group was formed on sites not covered with Sasa. This group contained a successional subgroup (from Betula grossa to Acer mono and/or F. crenata) initiated by landslide disturbance and a subgroup of tree species that avoid Sasa. Another group was formed on sites with mature soils covered largely with Sasa. This contained associations of canopy trees of F. crenata and smaller-sized tree species such as Acanthopanax sciadophylloides and Acer japonicum. It is found that the community of this old-growth beech forest is largely organized by natural disturbance and heterogeneous conditions of the forest floor (difference in soil age and presence/absence of Sasa). The existence of these different factors and the different responses of species to them largely contribute to the maintenance of tree species diversity in this forest.; Keywords: Cluster analysis; Fagus crenata; Forest dynamics; Gap; Landslide; Spatial pattern. 相似文献
4.
The extant and potential (seed bank) vegetation of a rare maritime holly forest on Fire Island, New York was described to
assess whether treefall gaps act as a mechanism for the persistence of the species composition of this plant community over
time. The Sunken Forest overstory is dominated by Ilex opaca, Amelanchier canadensis and Sassafras albidum. A survey of canopy gaps indicated canopy openings compose 11.3% of the land within the Sunken Forest (16 ha). The composition
and density of the seed bank were described using the emergence method. Germination from soil samples placed in the greenhouse
was monitored over 2 years. Sixteen species germinated with an average propagule density of 215±41 germinants per square metre.
An early successional species ( Rhus copallinum) dominated the seed bank, but the late-successional, shade-tolerant I. opaca was also present. Though only one species in the seed bank did not appear in the current vegetation, species abundance differed
between vegetation strata. The mean cover and density of the ground-layer flora were higher beneath treefall gaps than closed
canopy. Sapling density did not differ between the two canopy conditions, but the dominant species differed with A. canadensis occupying several closed canopy plots and P. serotina saplings appearing more often in gap plots. Most of the dominant canopy species are present in the seed bank and ground layer
but are not present in the shrub and sapling layer, with the exception of A. canadensis. Current (2002) sapling density is lower than three decades ago for all species except P. serotina, which is now the dominant woody species in the Sunken Forest understory. The results of this study indicate that if the
cause of the sapling reduction is lessened or removed, the characteristic species of the overstory of this unusual plant community
may rebound and redevelop a sapling and shrub layer akin to that present before the increase in Odocoileus virginianus on the island. 相似文献
5.
On the Virginia Tech campus, adjacent to the football stadium is a 4.6-ha forest fragment that contains a population of unusually large white oak (Quercus alba L.) trees. We used dendroecology and sampled vegetation in fixed area plots to reconstruct the disturbance history of this forest fragment and compared the radial-growth averaging criteria and the boundary-line release criteria for identifying canopy disturbances. Structurally, the Stadium Woods has an inverse-J diameter distribution and trees present in all canopy strata. The oldest white oak had periods of asynchronous suppression and release indicating a closed canopy forest with periodic canopy disturbances. The boundary-line release criteria detect a broader range of growth releases, whereas the radial-growth averaging criteria are more specialized for capturing canopy gaps. Release events identified with the boundary-line release criteria lagged an average of 5.8 years behind those identified with the radial-growth averaging criteria because the boundary line release criteria identifies the year of maximum percent growth change, whereas the radial-growth averaging criteria identifies the first year with a detectable increase in radial growth. The Stadium Woods represents a unique collection of unusually large white oak trees growing in a heavily populated area and reveals the importance of long-term tree-ring chronologies stored within urban forest fragments. 相似文献
7.
Abstract. Distribution of tree seedlings, forest architecture, light conditions, ground vegetation and humus conditions were studied in a 45 m × 100 m area including multiple gaps in an old-growth beech forest. Gaps were created after some beech trees had been felled in severe storms in February 1990. A group of adult ash trees is found near the study site. The data were analyzed by Correspondence Analysis. Young seedlings (< 4 yr), of both Fraxinus (a sun species) and Fagus (a shade species), were most abundant under the crown of beech trees in semi-shade conditions, and where beech litter did not accumulate. Differences in the dissemination of Fraxinus and Fagus explained differences in the establishment of the two species. In contrast, older seedlings of beech established before the storms were more numerous in the gaps, suggesting a change in the ecological requirements of beech seedlings in the course of time. 相似文献
8.
Patch dynamics, tree injury and mortality, and coarse woody detritus were quantified to examine the ecological impacts of
Hurricane Fran on an oak-hickory-pine forest near Chapel Hill, NC. Data from long-term vegetation plots (1990–1997) and aerial
photographs (1998) indicated that this 1996 storm caused patchy disturbance of intermediate severity (10–50% tree mortality;
Woods, J Ecol 92:464–476, 2004). The area in large disturbance patches (>0.1 ha) increased from <1% to approximately 4% of
the forested landscape. Of the forty-two 0.1-ha plots that were studied, 23 were damaged by the storm and lost 1–66% of their
original live basal area. Although the remaining 19 plots gained basal area (1–15% increase), across all 42 stands basal area
decreased by 17% because of storm impacts. Overall mortality of trees >10 cm dbh was 18%. The basal area of standing dead
trees after the storm was 0.9 m 2/ha, which was not substantially different from the original value of 0.7 m 2/ha. In contrast, the volume and mass of fallen dead trees after the storm (129 m 3/ha; 55 Mg/ha) were 6.1 and 7.9 times greater than the original levels (21 m 3/ha; 7 Mg/ha), respectively. Uprooting was the most frequent type of damage, and it increased with tree size. However, two
other forms of injury, severe canopy breakage and toppling by other trees, decreased with increasing tree size. Two dominant
oak species of intermediate shade-tolerance suffered the largest losses in basal area (30–41% lost). Before the storm they
comprised almost half of the total basal area in a forest of 13% shade-tolerant, 69% intermediate, and 18% shade-intolerant
trees. Recovery is expected to differ with respect to vegetation (e.g., species composition and diversity) and ecosystem properties
(e.g., biomass, detritus mass, and carbon balance). Vegetation may not revert to its former composition; however, reversion
of biomass, detritus mass, and carbon balance to pre-storm conditions is projected to occur within a few decades. For example,
the net change in ecosystem carbon balance may initially be negative from losses to decomposition, but it is expected to be
positive within a decade after the storm. Repeated intermediate-disturbance events of this nature would likely have cumulative
effects, particularly on vegetation properties. 相似文献
9.
Aim Nestedness occurs when species present in depauperate sites are subsets of those found in species‐rich sites. The degree of congruence of site nestedness among different assemblages can inform commonalities of mechanisms structuring the assemblages. Well‐nested assemblages may still contain idiosyncratic species and sites that notably depart from the typical assemblage pattern. Idiosyncrasy can arise from multiple processes, including interspecific interactions and habitat preferences, which entail different consequences for species co‐occurrences. We investigate the influence of fine‐scale habitat variation on nestedness and idiosyncrasy patterns of beetle and bird assemblages. We examine community‐level and pairwise species co‐occurrence patterns, and highlight the potential influence of interspecific interactions for assemblage structure. Location Côte‐Nord region of Québec, Canada. Methods We sampled occurrences of ground‐dwelling beetles, flying beetles and birds at sites within old‐growth boreal forest. We examined the nestedness and idiosyncrasy of sites and sought relationships to habitat attributes. We analysed non‐random species co‐occurrence patterns at pairwise and community levels, using null model analysis and five ‘association’ indices. Results All three assemblages were significantly nested. There was limited congruence only between birds and flying beetles whose nestedness was related to canopy openness. For ground‐dwelling beetles, nestedness was related to high stand heterogeneity and sapling density, whereas site idiosyncrasy was inversely related to structural heterogeneity. For birds, site idiosyncrasy increased with canopy cover, and most idiosyncratic species were closed‐canopy specialists. In all assemblages, species idiosyncrasy was positively correlated with the frequency of negative pairwise associations. Species co‐occurrence patterns were non‐random, and for flying beetles and birds positive species pairwise associations dominated. Community‐level co‐occurrence summaries may not, however, always reflect these patterns. Main conclusions Nestedness patterns of different assemblages may not correlate, even when sampled at common locations, because of different responses to local habitat attributes. We found idiosyncrasy patterns indicating opposing habitat preferences, consistent with antagonistic interactions among species within assemblages. Analysis of such patterns can thus suggest the mechanisms generating assemblage structures, with implications for biodiversity conservation. 相似文献
10.
The population structure and regeneration of canopy species were studied in a 4 ha plot in an old-growth evergreen broad-leaved forest in the Aya district of southwestern Japan. The 200 m × 200 m plot contained 50 tree species, including 22 canopy species, 3,904 trees (dbh5 cm) and a total basal area of 48.3 m 2/ha. Forty one gaps occurred within the plot, and both the average gap size (67.3 m 2) and the total area of gap to plot area (6.9%) were small. Species found in the canopy in the plot were divided into three groups (A, B, C) based on size and spatial distribution patterns, and density in each tree size. Group A (typical species: Distylium racemosum, Persea japonica) showed a high density, nearly random distribution and an inverse J-shaped size distribution. Species in group B ( Quercus salicina, Quercus acuta, Quercus gilva) were distributed contagiously with conspicuous concentration of small trees (<5 cm dbh) around gaps. However, the species in this group included few trees likely to reach the canopy in the near future. Group C included fast-growing pioneer and shade intolerant species (e.g. Cornus controversa, Carpinus tschonoskii, Fagara ailanthoides), which formed large clumps. Most gaps were not characterized by successful regeneration of group B and C but did appear to accelerate the growth of group A. Group B species appear to require long-lived or large gaps while group C species require large, catastrophic disturbances, such as landslides, for regeneration. 相似文献
12.
Aim A major question with regard to the ecology of temperate rain forests in south‐central Chile is how pioneer and shade‐tolerant tree species coexist in old‐growth forests. We explored the correspondence between tree regeneration dynamics and life‐history traits to explain the coexistence of these two functional types in stands apparently representing a non‐equilibrium mixture. Location This study was conducted in northern Chiloé Island, Chile (41.6° S, 73.9° W) in a temperate coastal rain forest with no evidence of stand disruption by human impact. Methods We assessed stand structure by sampling all stems within two 50 × 20 m and four 5 × 100 m plots. A 600‐m long transect, with 20 uniformly spaced sampling points, was used to quantify seedling and sapling densities, obtain increment cores, and randomly select 10 tree‐fall gaps. We used tree‐ring analysis to assess establishment periods and to relate the influences of disturbances to the regeneration dynamics of the main canopy species. Results Canopy emergent tree species were the long‐lived pioneer Eucryphia cordifolia and the shade‐tolerant Aextoxicon punctatum. Shade‐tolerant species such as Laureliopsis philippiana and several species of Myrtaceae occupied the main canopy. The stem diameter distribution for E. cordifolia was distinctly unimodal, while for A. punctatum it was multi‐modal, with all age classes represented. Myrtaceae accounted for most of the small trees. Most tree seedlings and saplings occurred beneath canopy gaps. Based on tree‐ring counts, the largest individuals of A. punctatum and E. cordifolia had minimum ages estimated to be > 350 years and > 286 years, respectively. Shade‐tolerant Myrtaceae species and L. philippiana had shorter life spans (< 200 years). Most growth releases, regardless of tree species, were moderate and have occurred continuously since 1750. Main conclusions We suggest that this coastal forest has remained largely free of stand‐disrupting disturbances for at least 450 years, without substantial changes in canopy composition. Release patterns are consistent with this hypothesis and suggest that the disturbance regime is dominated by individual tree‐fall gaps, with sporadic multiple tree falls. Long life spans, maximum height and differences in shade tolerance provide a basis for understanding the long‐term coexistence of pioneer and shade‐tolerant tree species in this coastal, old‐growth rain forest, despite the rarity of major disturbances. 相似文献
13.
The population structure and dynamics of Castanopsis cuspidata var. sieboldii were studied to evaluate vegetative and sapling regeneration in an old-growth, evergreen broad-leaved forest exposed to low-severity typhoon disturbances by annual typhoons on the Tsushima Islands in Japan. The density of individuals 5cm d.b.h. was 38.0ha –1 in 1990; 7.9% were multiple-stemmed individuals. Over the 7-year study period (1990–1997), the number of individuals decreased, although the number of stems increased. Over 30% of apparently dead individuals were reconstituted by sprouting stems. Compared with sprout regeneration, sapling regeneration rarely occurred and was only observed in canopy gaps. Most individuals had at least one sprout shoot (H 30cm, d.b.h. <5cm), and the number and size of sprout shoots increased as the size of the individuals increased. During the study period, larger individuals with stem breakage tended to produce sprout stems. The density of saplings was 1074ha –1 and they were more abundant in canopy gaps than under closed canopies, but large saplings were very rare even in canopy gaps. The population of C.cuspidata var. sieboldii consisted primarily of single-stemmed individuals with a few multiple-stemmed individuals providing a sprout bank. Larger individuals responded to the low severity typhoon disturbances and formed sprout stems. Although many saplings were observed, regeneration occurred more often by sprout formation than by growth of saplings. Thus, sprout regeneration is an important mode of regeneration, which allows this pioneer-like species to maintain its population in this forest. 相似文献
14.
AbstractForest hiking trails may influence local microclimate and biodiversity, but the effects on community structure and diversity of epiphytic bryophytes on trees are currently unknown. Epiphytic bryophytes on 82 Abies faxoniana Rehder & Wilson tree trunks (41 along the hiking trail edge and 41 controls in the forest interior) were investigated at four heights from the ground (10, 50, 120, and 180 cm). At each site, air temperature and humidity were monitored for 1 year. The light radiation levels and air temperature were higher, and the canopy leaf area index and air humidity lower at the trail edge, indicating deterioration in microclimate, resulting from the trail establishment. The epiphytic bryophyte species richness, community cover, and mean cover of dendroid and pendent growth forms on trunks were significantly lower at the trail edge than the control site, suggesting that trail construction caused these reductions. One marked effect of the presence of the trail was the increase in some sun-loving species and decrease in shade-tolerant species. Moreover, the trail also slightly influenced species richness and epiphytic bryophyte cover at both community and species population levels along the height gradient. Comprehensive analyses showed that microclimate deterioration was mainly driven by the trail establishment, and that the change in micro-climate along the trail, rather than any host traits, played an important role in the declining epiphytic bryophyte community structure and diversity at the trail edge, confirming the initial hypothesis that the presence of a raised boardwalk (hiking trail) indirectly influences epiphytic bryophyte community and diversity by altering the microclimate. 相似文献
15.
Abstract. Dynamics of a Sequoia sempervirens forest in northern California were studied with long‐term plot data (1.44 ha) and recent transect data. The study was conducted in an old stand (> 1100 yr) on alluvial flats. Over three decades (1972–2001), changes in the composition and structure of the tree stratum were minor. Sequoia maintained a broad distribution of stem diameters throughout the period. Annual rates of Sequoia mortality (0.0029) and ingrowth (0.0029) were low, reflecting the great longevity of Sequoia and the slow canopy turnover of the study forest. Transect data also indicated a low frequency of canopy gap disturbance (≤ 0.4% of total land area per yr), but gap size was potentially large (> 0.1 ha) and the fraction of area in gaps (ca. 20%) was similar to other temperate forests. Regeneration quadrats sampled along transects, in gap centers, and on logs revealed that Sequoia regeneration is elevated at gap edges. The longevity of Sequoia and its response to gap disturbances ensure that it will remain a dominant species in the study forest. 相似文献
16.
Long-term changes in stand composition and structure were recorded in Denny Wood (New Forest, UK) by means of a permanent transect covering 2 ha. Denny is an ancient, mixed deciduous wood-pasture dominated by beech ( Fagus sylvatica), pedunculate oak ( Quercus robur) and holly ( Ilex aquifolium) whose canopy trees ranged in age from approximately 70 years to over 300 years when the study began in 1956. Individual trees, shrubs and saplings were mapped and measured at irregular intervals until 1996. During the 40 years of observations, storms and drought disrupted the stand. Considerable volumes of dead wood accumulated, and canopy gaps extended to 30% of the transect area. Small trees and saplings were severely damaged by ponies and grey squirrels. Regeneration ceased after 1964, due principally to heavy grazing and browsing by deer and ponies. Despite the disturbances, most mortality was due to competitive exclusion within well-stocked parts of the stand. Historical records from the 17th century onwards demonstrate a long-term change from oak dominance with groups of beech before 1800 to beech dominance in the late 20th century. The stand through which the transect now runs was enclosed in 1870, and this allowed beech to regenerate abundantly, but in the nearby unenclosed part of Denny Wood holly regenerated more abundantly than beech. The patterns of growth, mortality and regeneration are compared with natural temperate deciduous woodland. The long-term relationship between beech and oak is likely to involve periodic oak regeneration after major disturbances, interspersed with steady increases in the proportion of beech. The implications for managing and monitoring the “Ancient and Ornamental Woods” of the New Forest are considered. 相似文献
17.
Vegetation composition differs significantly between ancientand recent forest, due to slow colonization capacity of typical forest speciesand the higher abundance of early successional species in recent forest.However, little is known about differences in persistent seed bank compositionbetween ancient and recent forest and about the interaction between seed bankand vegetation in relation with forest age. We surveyed the seed bank and theunderstorey vegetationcomposition in transects from ancient to recent forest. Seed bank and fieldlayer vegetation characteristics and similarity between seed bank andvegetationwere analysed in relation to recent forest age and distance to the ancientforest. A total of 39 species and 14,911 seedlings germinated, whichcorresponds with a seed density of 12,426 seeds/m 2.Total seed density is significantly higher in the youngest recent forest parcel(55 years). Also the seed bank composition in the youngest forest parceldifferssignificantly from the other parcels. After a longer period of reforestation,the seed bank approaches that of the ancient forest, suggesting seed bankdepletion, although the seed bank is permanently replenished to some extent byseed bank forming species from local disturbances. Seed bank composition doesnot change significantly with distance to the ancient forest. Similaritybetween seed bank and vegetation composition, nomatter the forest age, is very low, but decreases with increasing forest age.The most frequent species in the vegetation are absent in the seed bank and vice versa. The contribution of forest species is highin the vegetation and they almost not occur in the seed bank, while species offorest edges and clearings, and species of disturbed environments are morefrequent in the seed bank. The seed bank is mainly composed of earlysuccessional species of former forest stages or species which temporary occurinsmall-scale disturbances. The seed bank may enhance the negative effects ofearlysuccessional, mainly competitive species to the forest species richness in therecent forest. In this respect, forest management should minimise forestdisturbances, to prevent germination of competitive species form buriedseeds. 相似文献
20.
Relatively easy measurable patch characteristics (especially habitat diversity measures) have proven to be valuable indicators of forest plant species richness in forest fragments of relatively undisturbed areas. Urban and suburban forest patches, however, are characterized by a specific landscape ecological context implying that specific processes may influence ecosystem functioning and hence that other abiotic indicators for plant diversity are more appropriate. We studied the relation between functional ecological plant species groups and suburban forest patch characteristics such as patch area, habitat diversity and isolation. Some components of species richness were related to the isolation of the patches. In contrast to previous similar large-scale fragmentation studies in more rural areas, further results stressed the overwhelming importance of patch area relative to habitat variables in determining species richness. This suggests (1) the occurrence of density-dependent species extinction processes in small forest patches; or (2) the existence of external deterministic factors which put a major constraint on species richness in small patches. We tend to support the latter hypothesis and propose forest disturbance and associated black cherry ( Prunus serotina Ehrh.) invasion as such a possible external factor. Small forest patches may be more sensitive to disturbance and biological invasion due to various reasons. Hence large forest patches are to be preferred for plant conservation in the suburban area. 相似文献
|