首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N-syndecan deficiency impairs neural migration in brain   总被引:2,自引:0,他引:2       下载免费PDF全文
N-syndecan (syndecan-3) is a transmembrane proteoglycan that is abundantly expressed in the major axonal pathways and in the migratory routes of the developing brain. When ligated by heparin-binding (HB) growth-associated molecule (GAM; pleiotrophin), N-syndecan mediates cortactin-Src kinase-dependent neurite outgrowth. However, the functional role of N-syndecan in brain development remains unexplored. In this study, we show that N-syndecan deficiency perturbs the laminar structure of the cerebral cortex as a result of impaired radial migration. In addition, neural migration in the rostral migratory stream is impaired in the N-syndecan-null mice. We suggest that the migration defect depends on impaired HB-GAM-induced Src kinase activation and haptotactic migration. Furthermore, we show that N-syndecan interacts with EGF receptor (EGFR) at the plasma membrane and is required in EGFR-induced neuronal migration.  相似文献   

2.
目的:探讨小鼠胎肝间充质干细胞(flMSCs)在缺血脑组织中迁移的机制。方法:分离和培养小鼠flMSCs,制备小鼠脑缺血再灌注模型,RT-PCR方法检测小鼠flMSCs表达的趋化因子受体及其唯一配体基质细胞来源因子1α(SDF-1α)在缺血损伤脑组织中的n1RNA表达;Westernblot检测SDF-1α蛋白在缺血损伤脑组织中的表达;免疫组织化学检测SDF-1α在缺血损伤脑组织中的表达和分布;Boydenchamber法进行SDF-1α诱导flMSCs迁移的体外实验。结果:flMSCs经RT-PCR检测表达趋化因子受体CR1,CR3,CXCR1,CXCR2,CXCR3,CXCR4。脑缺血损伤侧脑组织SDF-1αmRNA表达显著增高,与正常脑组织SDF-1αmRNA比,具有显著差异(P〈0.01),Westernblot检测显示缺血侧脑组织SDF-1α蛋白表达量在12、24、48h分别为0.35±0.05,0.88±0.04,0.74±0.07,与正常脑组织SDF-1α蛋白(0.22±0.04)比,差异有显著性(P〈0.01)。免疫组织化学检测显示,缺血损伤后24h,缺血侧脑皮质,海马等缺血边缘区SDF-1α表达显著增高,缺血对侧及正常脑组织未见明显SDF-1α表达。体外迁移实验显示SDF—1α体外可以趋化flMSCs发生迁移,CXCR4阻断抗体可以阻断SDF—1α诱导flMSCs发生的迁移。结论:SDF-1α可以诱导flMSCs发生迁移,趋化因子受体CXCR4及其配体SDF-1α的相互作用是flMSCs在缺血损伤脑组织中迁移的机制之一.  相似文献   

3.
Brain metabolism is an energy intensive phenomenon involving a wide spectrum of chemical intermediaries. Various injury states have a detrimental effect on the biochemical processes involved in the homeostatic and electrophysiological properties of the brain. The biochemical markers of brain injury are a recent addition in the armamentarium of neuro-clinicians and are being increasingly used in the routine management of neuropathological entities such as traumatic brain injury, stroke, subarachnoid haemorrhage and intracranial space occupying lesions. These markers are increasingly being used in assessing severity as well as in predicting the prognostic course of neuro-pathological lesions. S-100 protein, neuron specific enolase, creatinine phosphokinase isoenzyme BB and myelin basic protein are some of the biochemical markers which have been proven to have prognostic and clinical value in the brain injury. While S-100, glial fibrillary acidic protein and ubiquitin C terminal hydrolase are early biomarkers of neuronal injury and have the potential to aid in clinical decisionmaking in the initial management of patients presenting with an acute neuronal crisis, the other biomarkers are of value in predicting long-term complications and prognosis in such patients. In recent times cerebral microdialysis has established itself as a novel way of monitoring brain tissue biochemical metabolites such as glucose, lactate, pyruvate, glutamate and glycerol while small non-coding RNAs have presented themselves as potential markers of brain injury for future.  相似文献   

4.

Background

Neural stem/progenitor cells (NSPCs) reside within a complex and dynamic extracellular microenvironment, or niche. This niche regulates fundamental aspects of their behavior during normal neural development and repair. Precise yet dynamic regulation of NSPC self-renewal, migration, and differentiation is critical and must persist over the life of an organism.

Scope of review

In this review, we summarize some of the major components of the NSPC niche and provide examples of how cues from the extracellular matrix regulate NSPC behaviors. We use proteoglycans to illustrate the many diverse roles of the niche in providing temporal and spatial regulation of cellular behavior.

Major conclusions

The NSPC niche is comprised of multiple components that include; soluble ligands, such as growth factors, morphogens, chemokines, and neurotransmitters, the extracellular matrix, and cellular components. As illustrated by proteoglycans, a major component of the extracellular matrix, the NSPC, niche provides temporal and spatial regulation of NSPC behaviors.

General significance

The factors that control NSPC behavior are vital to understand as we attempt to modulate normal neural development and repair. Furthermore, an improved understanding of how these factors regulate cell proliferation, migration, and differentiation, crucial for malignancy, may reveal novel anti-tumor strategies. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.  相似文献   

5.
6.
7.
8.
Neurotransmitters are signal substances that have traditionally been regarded as mere mediators of signal states between cells in the nervous system. Whereas the mechanisms of this "classic" neurotransmitter regulation are well understood, only recently has new evidence come to light elucidating the modulatory role of neurotransmitters in immune function, and in the regulation of migration of leukocytes and tumor cells. The migration of leukocytes is, among other things, of primary importance for an anti-tumor immune response, whereas the migration of tumor cells is a prerequisite for invasion and the development of metastases. We here clarify and consolidate the latest tumor biological findings on the role of these neurotransmitters, which bind to serpentine receptors, and which are involved in leukocyte migration, tumor growth, invasion and metastasis. This review thus accentuates the complex, interactive involvement of neurotransmitters in the regulation of migration of both leukocytes and tumor cells.  相似文献   

9.
In traumatic brain injury (TBI), the primary, irreversible damage associated with the moment of impact consists of cells dying from necrosis. This contributes to fuelling a chronic central nervous system (CNS) inflammation with increased formation of proinflammatory cytokines, enzymes and reactive oxygen species (ROS). ROS promote oxidative stress, which leads to neurodegeneration and ultimately results in programmed cell death (secondary injury). Since this delayed, secondary tissue loss occurs days to months following the primary injury it provides a therapeutic window where potential neuroprotective treatment could alleviate ongoing neurodegeneration, cell death and neurological impairment following TBI. Various neuroprotective drug candidates have been described, tested and proven effective in pre-clinical studies, including glutamate receptor antagonists, calcium-channel blockers, and caspase inhibitors. However, most of the scientific efforts have failed in translating the experimental results into clinical trials. Despite intensive research, effective neuroprotective therapies are lacking in the clinic, and TBI continues to be a major cause of morbidity and mortality.This paper provides an overview of the TBI pathophysiology leading to cell death and neurological impairment. We also discuss endogenously expressed neuroprotectants and drug candidates, which at this stage may still hold the potential for treating brain injured patients.  相似文献   

10.
Hypoxic-ischemic injury is a prototype for insults characterized by extensive tissue loss. Seeding neural stem cells (NSCs) onto a polymer scaffold that was subsequently implanted into the infarction cavities of mouse brains injured by hypoxia-ischemia allowed us to observe the multiple reciprocal interactions that spontaneously ensue between NSCs and the extensively damaged brain: parenchymal loss was dramatically reduced, an intricate meshwork of many highly arborized neurites of both host- and donor-derived neurons emerged, and some anatomical connections appeared to be reconstituted. The NSC-scaffold complex altered the trajectory and complexity of host cortical neurites. Reciprocally, donor-derived neurons were seemingly capable of directed, target-appropriate neurite outgrowth (extending axons to the opposite hemisphere) without specific external instruction, induction, or genetic manipulation of host brain or donor cells. These "biobridges" appeared to unveil or augment a constitutive reparative response by facilitating a series of reciprocal interactions between NSC and host, including promoting neuronal differentiation, enhancing the elaboration of neural processes, fostering the re-formation of cortical tissue, and promoting connectivity. Inflammation and scarring were also reduced, facilitating reconstitution.  相似文献   

11.
12.
Regenerative mechanisms that regulate intramuscular motor innervation are thought to reside in the spatiotemporal expression of axon-guidance molecules. Our previous studies proposed a heretofore unexplored role of resident myogenic stem cell (satellite cell)-derived myoblasts as a key presenter of a secreted neural chemorepellent semaphorin 3A (Sema3A); hepatocyte growth factor (HGF) triggered its expression exclusively at the early-differentiation phase. In order to verify this concept, the present study was designed to clarify a paracrine source of HGF release. In vitro experiments demonstrated that activated anti-inflammatory macrophages (CD206-positive M2) produce HGF and thereby promote myoblast chemoattraction and Sema3A expression. Media from pro-inflammatory macrophage cultures (M1) did not show any significant effect. M2 also enhanced the expression of myoblast-differentiation markers in culture, and infiltrated predominantly at the early-differentiation phase (3–5 days post-injury); M2 were confirmed to produce HGF as monitored by in vivo/ex vivo immunocytochemistry of CD11b/CD206/HGF-positive cells and by HGF in situ hybridization of cardiotoxin- or crush-injured tibialis anterior muscle, respectively. These studies advance our understanding of the stage-specific activation of Sema3A expression signaling. Findings, therefore, encourage the idea that M2 contribute to spatiotemporal up-regulation of extracellular Sema3A concentrations by producing HGF that, in turn, stimulates a burst of Sema3A secretion by myoblasts that are recruited to site of injury. This model may ensure a coordinated delay in re-attachment of motoneuron terminals onto damaged fibers early in muscle regeneration, and thus synchronize the recovery of muscle-fiber integrity and the early resolution of inflammation after injury.  相似文献   

13.
14.
15.
The lymphokine interleukin-2 (IL-2) promotes division and maturation of oligodendrocytes in culture (1). We now report that a IL-2-like activity was present in injured rat brain. The ion-exchange properties of this activity were similar to those of splenocyte IL-2 but its apparent molecular weight was higher. Brain IL-2-like activity was highest in the tissue immediately adjacent to the injury, reaching a maximal activity of about 8000 U/g tissue after 10 days postlesion. The mitogenic activity of injured-brain extracts on astrocytes and CTLL thymocytes was partially inhibited by monoclonal antibodies to murine IL-2 receptor. However, pure human IL-2 did not have mitogenic activity for cultured rat astrocytes. Purified astrocytes, alone or stimulated in a variety or ways, did not produce IL-2-like activity.  相似文献   

16.
Cell migration is a highly orchestrated cellular event that involves physical interactions of diverse subcellular components. The nucleus as the largest and stiffest organelle in the cell not only maintains genetic functionality, but also actively changes its morphology and translocates through dynamic formation of nucleus-bound contractile stress fibers. Nuclear motion is an active and essential process for successful cell migration and nucleus self-repairs in response to compression and extension forces in complex cell microenvironment. This review recapitulates molecular regulators that are crucial for nuclear motility during cell migration and highlights recent advances in nuclear deformation-mediated rupture and repair processes in a migrating cell.  相似文献   

17.
We have in recent years described several endothelial-specific genes that mediate cell migration. These include Robo4 (roundabout 4), CLEC14A (C-type lectin 14A) and ECSCR (endothelial cell-specific chemotaxis regulator) [formerly known as ECSM2 (endothelial cell-specific molecule 2)]. Loss of laminar shear stress induces Robo4 and CLEC14A expression and an endothelial 'tip cell' phenotype. Low shear stress is found not only at sites of vascular occlusion such as thrombosis and embolism, but also in the poorly structured vessels that populate solid tumours. The latter probably accounts for strong expression of Robo4 and CLEC14A on tumour vessels. The function of Robo4 has, in the past, aroused controversy. However, the recent identification of Unc5B as a Robo4 ligand has increased our understanding and we hypothesize that Robo4 function is context-dependent. ECSCR is another endothelial-specific protein that promotes filopodia formation and migration, but, in this case, expression is independent of shear stress. We discuss recent papers describing ECSCR, including intracellular signalling pathways, and briefly contrast these with signalling by Robo4.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号