首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Cytoplasmic recognition of pathogen virulence effectors by plant NB‐LRR proteins leads to strong induction of defence responses termed effector triggered immunity (ETI). In tomato, a protein complex containing the NB‐LRR protein Prf and the protein kinase Pto confers recognition of the Pseudomonas syringae effectors AvrPto and AvrPtoB. Although structurally unrelated, AvrPto and AvrPtoB interact with similar residues in the Pto catalytic cleft to activate ETI via an unknown mechanism. Here we show that the Prf complex is oligomeric, containing at least two molecules of Prf. Within the complex, Prf can associate with Pto or one of several Pto family members including Fen, Pth2, Pth3, or Pth5. The dimerization surface for Prf is the novel N‐terminal domain, which also coordinates an intramolecular interaction with the remainder of the molecule, and binds Pto kinase or a family member. Thus, association of two Prf N‐terminal domains brings the associated kinases into close promixity. Tomato lines containing Prf complexed with Pth proteins but not Pto possessed greater immunity against P. syringae than tomatoes lacking Prf. This demonstrates that incorporation of non‐Pto kinases into the Prf complex extends the number of effector proteins that can be recognized.  相似文献   

2.
Immunity in tomato (Solanum lycopersicum) to Pseudomonas syringae bacteria expressing the effector proteins AvrPto and AvrPtoB requires both Pto kinase and the NBARC-LRR (for nucleotide binding domain shared by Apaf-1, certain R gene products, and CED-4 fused to C-terminal leucine-rich repeats) protein Prf. Pto plays a direct role in effector recognition within the host cytoplasm, but the role of Prf is unknown. We show that Pto and Prf are coincident in the signal transduction pathway that controls ligand-independent signaling. Pto and Prf associate in a coregulatory interaction that requires Pto kinase activity and N-myristoylation for signaling. Pto interacts with a unique Prf N-terminal domain outside of the NBARC-LRR domain and resides in a high molecular weight recognition complex dependent on the presence of Prf. In this complex, both Pto and Prf contribute to specific recognition of AvrPtoB. The data suggest that the role of Pto is confined to the regulation of Prf and that the bacterial effectors have evolved to target this coregulatory molecular switch.  相似文献   

3.
The Pto gene of tomato (Solanum lycopersicum) confers specific recognition of the unrelated bacterial effector proteins AvrPto and AvrPtoB. Pto resides in a constitutive molecular complex with the nucleotide binding site-leucine rich repeats protein Prf. Prf is absolutely required for specific recognition of both effectors. Here, using stable transgenic lines, we show that expression of Pto from its genomic promoter in susceptible tomatoes was sufficient to complement recognition of Pseudomonas syringae pv. tomato (Pst) bacteria expressing either avrPto or avrPtoB. Pto kinase activity was absolutely required for specific immunity. Expression of the Pto N-myristoylation mutant, pto(G2A), conferred recognition of Pst (avrPtoB), but not Pst (avrPto), although bacterial growth in these lines was intermediate between resistant and susceptible lines. Overexpression of pto(G2A) complemented recognition of avrPto. Transgenic tomato plants overexpressing wild-type Pto exhibited constitutive growth phenotypes, but these were absent in lines overexpressing pto(G2A). Therefore, Pto myristoylation is a quantitative factor for effector recognition in tomato, but is absolutely required for overexpression phenotypes. Native expression of Pto in the heterologous species Nicotiana benthamiana did not confer resistance to P. syringae pv. tabaci (Pta) expressing avrPto or avrPtoB, but recognition of both effectors was complemented by Prf co-expression. Thus, specific resistance conferred solely by Pto in N. benthamiana is an artefact of overexpression. Finally, pto(G2A) did not confer recognition of either avrPto or avrPtoB in N. benthamiana, regardless of the presence of Prf. Thus, co-expression of Prf in N. benthamiana complements many but not all aspects of normal Pto function.  相似文献   

4.
Resistance to Pseudomonas syringae bacteria in tomato (Solanum lycopersicum) is conferred by the Prf recognition complex, composed of the nucleotide-binding leucine-rich repeats protein Prf and the protein kinase Pto. The complex is activated by recognition of the P. syringae effectors AvrPto and AvrPtoB. The N-terminal domain is responsible for Prf homodimerization, which brings two Pto kinases into close proximity and holds them in inactive conformation in the absence of either effector. Negative regulation is lost by effector binding to the catalytic cleft of Pto, leading to disruption of its P+1 loop within the activation segment. This change is translated through Prf to a second Pto molecule in the complex. Here we describe a schematic model of the unique Prf N-terminal domain dimer and its interaction with the effector binding determinant Pto. Using heterologous expression in Nicotiana benthamiana, we define multiple sites of N domain homotypic interaction and infer that it forms a parallel dimer folded centrally to enable contact between the N and C termini. Furthermore, we found independent binding sites for Pto at either end of the N-terminal domain. Using the constitutively active mutant ptoL205D, we identify a potential repression site for Pto in the first ∼100 amino acids of Prf. Finally, we find that the Prf leucine-rich repeats domain also binds the N-terminal region, highlighting a possible mechanism for transfer of the effector binding signal to the NB-LRR regulatory unit (consisting of a central nucleotide binding and C-terminal leucine-rich repeats).  相似文献   

5.
Elicitation of hypersensitive cell death and induction of plant disease resistance by Pseudomonas syringae pv. tomato (Pst) is dependent on activity of the Pst Hrp secretion system and the gene-for-gene interaction between the tomato resistance gene Pto and the bacterial avirulence gene avrPto. AvrPto was expressed transiently in resistant or susceptible plant lines via a potato virus X (PVX) vector. We found that while PVX is normally virulent on tomato, a PVX derivative expressing avrPto was only capable of infecting plants lacking a functional Pto resistance pathway. Mutations in either the Pto or Prf genes allowed systemic spread of the recombinant virus. These results indicate that recognition of AvrPto by Pto in resistant plant lines triggers a plant defense response that can confer resistance to a viral as well as a bacterial pathogen.  相似文献   

6.
Resistance to bacterial speck disease in tomato is activated by the physical interaction of the host Pto kinase with either of the sequence-dissimilar type III effector proteins AvrPto or AvrPtoB (HopAB2) from Pseudomonas syringae pv. tomato. Pto-mediated immunity requires Prf, a protein with a nucleotide-binding site and leucine-rich repeats. The N-terminal 307 amino acids of AvrPtoB were previously reported to interact with the Pto kinase, and we show here that this region (AvrPtoB(1-307)) is sufficient for eliciting Pto/Prf-dependent immunity against P. s. pv. tomato. AvrPtoB(1-307) was also found to be sufficient for a virulence activity that enhances ethylene production and increases growth of P. s. pv. tomato and severity of speck disease on susceptible tomato lines lacking either Pto or Prf. Moreover, we found that residues 308-387 of AvrPtoB are required for the previously reported ability of AvrPtoB to suppress pathogen-associated molecular patterns-induced basal defenses in Arabidopsis. Thus, the N-terminal region of AvrPtoB has two structurally distinct domains involved in different virulence-promoting mechanisms. Random and targeted mutagenesis identified five tightly clustered residues in AvrPtoB(1-307) that are required for interaction with Pto and for elicitation of immunity to P. s. pv. tomato. Mutation of one of the five clustered residues abolished the ethylene-associated virulence activity of AvrPtoB(1-307). However, individual mutations of the other four residues, despite abolishing interaction with Pto and avirulence activity, had no effect on AvrPtoB(1-307) virulence activity. None of these mutations affected the basal defense-suppressing activity of AvrPtoB(1-387). Based on sequence alignments, estimates of helical propensity, and the previously reported structure of AvrPto, we hypothesize that the Pto-interacting domains of AvrPto and AvrPtoB(1-307) have structural similarity. Together, these data support a model in which AvrPtoB(1-307) promotes ethylene-associated virulence by interaction not with Pto but with another unknown host protein.  相似文献   

7.
Resistance to bacterial speck disease in tomato (Solanum lycopersicum) is activated upon recognition by the host Pto kinase of either one of two sequence-unrelated effector proteins, AvrPto or AvrPtoB, from Pseudomonas syringae pv tomato (Pst). Pto induces Pst immunity by acting in concert with the Prf protein. The recently reported structure of the AvrPto-Pto complex revealed that interaction of AvrPto with Pto appears to relieve an inhibitory effect of Pto, allowing Pto to activate Prf. Here, we present the crystal structure of the Pto binding domain of AvrPtoB (residues 121 to 205) at a resolution of 1.9Å and of the AvrPtoB121-205–Pto complex at a resolution of 3.3 Å. AvrPtoB121-205 exhibits a tertiary fold that is completely different from that of AvrPto, and its conformation remains largely unchanged upon binding to Pto. In common with AvrPto-Pto, the AvrPtoB-Pto complex relies on two interfaces. One of these interfaces is similar in both complexes, although the primary amino acid sequences from the two effector proteins are very different. Amino acid substitutions in Pto at the other interface disrupt the interaction of AvrPtoB-Pto but not that of AvrPto-Pto. Interestingly, substitutions in Pto affecting this unique interface also cause Pto to induce Prf-dependent host cell death independently of either effector protein.  相似文献   

8.
The tomato—Pseudomonas syringae pv. tomato (Pst)—pathosystem is one of the best understood models for plant-pathogen interactions. Certain wild relatives of tomato express two closely related members of the same kinase family, Pto and Fen, which recognize the Pst virulence protein AvrPtoB and activate effector-triggered immunity (ETI). AvrPtoB, however, contains an E3 ubiquitin ligase domain in its carboxyl terminus which causes degradation of Fen and undermines its ability to activate ETI. In contrast, Pto evades AvrPtoB-mediated degradation and triggers ETI in response to the effector. It has been reported recently that Pto has higher kinase activity than Fen and that this difference allows Pto to inactivate the E3 ligase through phosphorylation of threonine-450 (T450) in AvrPtoB. Here we show that, in contrast to Fen which can only interact with a single domain proximal to the E3 ligase of AvrPtoB, Pto binds two distinct domains of the effector, the same site as Fen and another N-terminal domain. In the absence of E3 ligase activity Pto binds to either domain of AvrPtoB to activate ETI. However, the presence of an active E3 ligase domain causes ubiquitination of Pto that interacts with the domain proximal to the E3 ligase, identical to ubiquitination of Fen. Only when Pto binds its unique distal domain can it resist AvrPtoB-mediated degradation and activate ETI. We show that phosphorylation of T450 is not required for Pto-mediated resistance in vivo and that a kinase-inactive version of Pto is still capable of activating ETI in response to AvrPtoB. Our results demonstrate that the ability of Pto to interact with a second site distal to the E3 ligase domain in AvrPtoB, and not a higher kinase activity or T450 phosphorylation, allows Pto to evade ubiquitination and to confer immunity to Pst.  相似文献   

9.
Specific recognition of the Pseudomonas syringae effector proteins AvrPto and AvrPtoB in tomato is mediated by Pto kinase resulting in induction of defense responses, including hypersensitive cell death via a signaling pathway requiring the nucleotide-binding leucine-rich repeats protein Prf. Pto is a myristoylated protein, and N-myristoylation is required for signaling. Here we demonstrated a role for N-myristoylation in controlling Pto kinase activity. A myristoylated peptide corresponding to Pto residues 2-10 significantly impaired the kinase activity of N-truncated Pto. We show that kinase inhibition was specific to the myristoylated form of the peptide and that free myristate supplied in trans was a potent suppressor of Pto kinase activity. Thus, myristate, but not Pto residues 2-10, contributes to suppression of kinase activity in vitro. Accordingly, elimination of the in vivo myristoylation potential of Pto de-repressed kinase activity. The increased potency of free myristate relative to the myristoylated N-peptide inhibitor suggested that the peptide moiety is antagonistic to repression by myristate. Suppression of related protein kinases by myristate declined with similarity to Pto, and the inhibitory activity could be attributed to hydrophobicity. We present evidence that inhibition of Pto by the myristoylated N-peptide is mediated through a previously identified surface regulatory patch. The data show a role for negative regulation of Pto by N-myristoylation, in addition to the previously demonstrated positive role, and are consistent with a model in which the acylated N terminus is sequestered in the catalytic cleft prior to release by Pto activation.  相似文献   

10.
The Pto kinase mediates resistance to bacterial speck disease in tomato by activating host defenses upon recognition of Pseudomonas syringae pv. tomato strains expressing the AvrPto or AvrPtoB proteins. Previous gene-silencing experiments have indicated that mitogen activated protein kinase (MAPK) cascades play a key role downstream of the Pto kinase to activate host defense responses. Here we use biochemical methods to demonstrate that two tomato MAPKs, LeMPK2 and LeMPK3, are activated in leaves in a Pto-specific manner upon expression of AvrPto and AvrPtoB. We show that these same MAPKs are activated upon overexpression of LeMAPKKKalpha, a protein previously demonstrated to be involved in Pto-mediated immunity. We identified two phylogenetically unrelated MAPK kinases (LeMKK2 and LeMKK4) that when overexpressed in leaves elicit cell death and activate LeMPK2 and LeMPK3. In vitro analysis demonstrated that LeMKK2 and LeMKK4 each phosphorylate the same subset of three MAPKs. Together these data provide biochemical evidence for the involvement of MAPK cascades in Pto-mediated resistance.  相似文献   

11.
The AvrPtoB type III effector protein is conserved among diverse genera of plant pathogens suggesting it plays an important role in pathogenesis. Here we report that Pseudomonas AvrPtoB acts inside the plant cell to inhibit programmed cell death (PCD) initiated by the Pto and Cf9 disease resistance proteins and, remarkably, the pro-apoptotic mouse protein Bax. AvrPtoB also suppressed PCD in yeast, demonstrating that AvrPtoB functions as a cell death inhibitor across kingdoms. Using truncated AvrPtoB proteins, we identified distinct N- and C-terminal domains of AvrPtoB that are sufficient for host recognition and PCD inhibition, respectively. We also identified a novel resistance phenotype, Rsb, that is triggered by an AvrPtoB truncation disrupted in the anti-PCD domain. A Pseudomonas syringae pv. tomato DC3000 strain with a chromosomal mutation in the AvrPtoB C-terminus elicited Rsb-mediated immunity in previously susceptible tomato plants and disease was restored when full-length AvrPtoB was expressed in trans. Thus, our results indicate that a type III effector can induce plant susceptibility to bacterial infection by inhibiting host PCD.  相似文献   

12.
AvrPto was introduced into three tomato genotypes with two biotic agents to study its role in compatible interactions. avrPto enhanced the capacity of the Pseudomonas syringae pv. tomato strain T1 to induce necrotic symptoms on tomato plants that lacked either Pto or Prf genes. The enhanced necrosis correlated with a small increase in bacterial growth. In planta expression of avrPto in isolation did not elicit necrosis in the absence of a functional Prf gene.  相似文献   

13.
The molecular basis underlying the ability of pathogens to infect certain plant species and not others is largely unknown. Pseudomonas syringae is a useful model species for investigating this phenomenon because it comprises more than 50 pathovars which have narrow host range specificities. Tomato (Solanum lycopersicum) is a host for P. syringae pv. tomato, the causative agent of bacterial speck disease, but is considered a nonhost for other P. syringae pathovars. Host resistance in tomato to bacterial speck disease is conferred by the Pto protein kinase which acts in concert with the Prf nucleotide-binding lucine-rich repeat protein to recognize P. syringae pv. tomato strains expressing the type III effectors AvrPto or AvrPtoB (HopAB2). The Pto and Prf genes were isolated from the wild tomato species S. pimpinellifolium and functional alleles of both of these genes now are known to exist in many species of tomato and in other Solanaceous species. Here, we extend earlier reports that avrPto and avrPtoB genes are widely distributed among pathovars of P. syringae which are considered nonhost pathogens of tomato. This observation prompted us to examine the possibility that recognition of these type III effectors by Pto or Prf might contribute to the inability of many P. syringae pathovars to infect tomato species. We show that 10 strains from presumed nonhost P. syringae pathovars are able to grow and cause pathovar-unique disease symptoms in tomato leaves lacking Pto or Prf, although they did not reach the population levels or cause symptoms as severe as a control P. syringae pv. tomato strain. Seven of these strains were found to express avrPto or avrPtoB. The AvrPto- and AvrPtoB-expressing strains elicited disease resistance on tomato leaves expressing Pto and Prf. Thus, a gene-for-gene recognition event may contribute to host range restriction of many P. syringae pathovars on tomato species. Furthermore, we conclude that the diverse disease symptoms caused by different Pseudomonas pathogens on their normal plant hosts are due largely to the array of virulence factors expressed by each pathovar and not to specific molecular or morphological attributes of the plant host.  相似文献   

14.
Kim YJ  Lin NC  Martin GB 《Cell》2002,109(5):589-598
The Pto serine/threonine kinase of tomato confers resistance to speck disease by recognizing strains of Pseudomonas syringae that express the protein AvrPto. Pto and AvrPto physically interact, and this interaction is required for activation of host resistance. We identified a second Pseudomonas protein, AvrPtoB, that interacts specifically with Pto and is widely distributed among plant pathogens. AvrPtoB is delivered into the plant cell by the bacterial type III secretion system, and it elicits Pto-specific defenses. AvrPtoB has little overall sequence similarity with AvrPto. However, AvrPto amino acids, which are required for interaction with Pto, are present in AvrPtoB and required for its interaction with Pto. Thus, two distinct bacterial effectors activate plant immunity by interacting with the same host protein kinase through a similar structural mechanism.  相似文献   

15.
16.
The Pseudomonas syringae pv. tomato protein AvrPtoB is translocated into plant cells via the bacterial type III secretion system. In resistant tomato leaves, AvrPtoB acts as an avirulence protein by interacting with the host Pto kinase and eliciting the host immune response. Pto-mediated immunity requires Prf, a Pto-interacting protein with a putative nucleotide-binding site and a region of leucine-rich repeats. In susceptible tomato plants, which lack either Pto or Prf, AvrPtoB acts as a virulence protein by promoting P. syringae pv. tomato growth and enhancing symptoms associated with bacterial speck disease. The N-terminal 307 amino acids of AvrPtoB (designated AvrPtoB(1-307)) are sufficient for these virulence activities and for Pto-mediated avirulence. We report that AvrPtoB is phosphorylated by a Pto- and Prf-independent kinase activity that is conserved in several plant species, including tomato (Solanum lycopersicum), Nicotiana benthamiana, and Arabidopsis thaliana. AvrPtoB(1-307) was phosphorylated in tomato protoplasts, and mass spectrometry identified serine 258 as the major in vivo phosphorylation site of this protein. An alanine substitution of Ser(258) resulted in the loss of virulence and the diminution of avirulence activity of AvrPtoB(1-307), whereas a phosphomimetic S258D mutant had activities similar to wild type AvrPtoB(1-307). These observations suggest that AvrPtoB has evolved to mimic a substrate of a conserved plant kinase, leading to enhancement of its virulence and avirulence activities in the host cell.  相似文献   

17.
Pto kinase of tomato (Lycopersicon esculentum) confers resistance to bacterial speck disease caused by Pseudomonas syringae pv. tomato expressing avrPto or avrPtoB. Pto interacts directly with these type-III secreted effectors, leading to induction of defence responses including the hypersensitive response (HR). Signalling by Pto requires the nucleotide-binding site-leucine-rich repeat (NBS-LRR) protein Prf. Little is known of how Pto is controlled prior to or during stimulation, although kinase activity is required for Avr-dependent activation. Here we demonstrate a role for the N-terminus in signalling by Pto. N-terminal residues outside the kinase domain were required for induction of the HR in Nicotiana benthamiana. The N-terminus also contributed to both AvrPto-binding and phosphorylation abilities. Pto residues 1-10 comprise a consensus motif for covalent attachment of myristate, a hydrophobic 14-carbon saturated fatty acid, to the Gly-2 residue. Several lines of evidence indicate that this motif is important for Pto function. A heterologous N-myristoylation motif complemented N-terminal deletion mutants of Pto for Prf-dependent signalling. Signalling by wild-type and mutant forms of Pto was strictly dependent on the Gly-2 residue. The N-myristoylation motif of Pto complemented the cognate motif of AvrPto for avirulence function and membrane association. Furthermore, Pto was myristoylated in vivo dependent on the presence of Gly-2. The subcellular localization of Pto was independent of N-myristoylation, indicating that N-myristoylation is required for some function other than membrane affinity. Consistent with this idea, AvrPtoB was also found to be a soluble protein. The data indicate an important role(s) for the myristoylated N-terminus in Pto signalling.  相似文献   

18.
19.
Rose LE  Michelmore RW  Langley CH 《Genetics》2007,175(3):1307-1319
Disease resistance to the bacterial pathogen Pseudomonas syringae pv. tomato (Pst) in the host species Lycopersicon esculentum, the cultivated tomato, and the closely related L. pimpinellifolium is triggered by the physical interaction between the protein products of the host resistance (R) gene Pto and the pathogen avirulence genes AvrPto and AvrPtoB. Sequence variation at the Pto locus was surveyed in natural populations of seven species of Lycopersicon to test hypotheses of host-parasite coevolution and functional adaptation of the Pto gene. Pto shows significantly higher nonsynonymous polymorphism than 14 other non-R-gene loci in the same samples of Lycopersicon species, while showing no difference in synonymous polymorphism, suggesting that the maintenance of amino acid polymorphism at this locus is mediated by pathogen selection. Also, a larger proportion of ancestral variation is maintained at Pto as compared to these non-R-gene loci. The frequency spectrum of amino acid polymorphisms known to negatively affect Pto function is skewed toward low frequency compared to amino acid polymorphisms that do not affect function or silent polymorphisms. Therefore, the evolution of Pto appears to be influenced by a mixture of both purifying and balancing selection.  相似文献   

20.
Disease resistance to the bacterial pathogen Pseudomonas syringae pv. tomato (Pst) in the cultivated tomato, Lycopersicon esculentum, and the closely related L. pimpinellifolium is triggered by the physical interaction between plant disease resistance protein, Pto, and the pathogen avirulence protein, AvrPto. To investigate the extent to which variation in the Pto gene is responsible for naturally occurring variation in resistance to Pst, we determined the resistance phenotype of 51 accessions from seven species of Lycopersicon to isogenic strains of Pst differing in the presence of avrPto. One-third of the plants displayed resistance specifically when the pathogen expressed AvrPto, consistent with a gene-for-gene interaction. To test whether this resistance in these species was conferred specifically by the Pto gene, alleles of Pto were amplified and sequenced from 49 individuals and a subset (16) of these alleles was tested in planta using Agrobacterium-mediated transient assays. Eleven alleles conferred a hypersensitive resistance response (HR) in the presence of AvrPto, while 5 did not. Ten amino acid substitutions associated with the absence of AvrPto recognition and HR were identified, none of which had been identified in previous structure-function studies. Additionally, 3 alleles encoding putative pseudogenes of Pto were isolated from two species of Lycopersicon. Therefore, a large proportion, but not all, of the natural variation in the reaction to strains of Pst expressing AvrPto can be attributed to sequence variation in the Pto gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号