首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The motor nerve of the bi-articular rectus femoris muscle is generally split from the femoral nerve trunk into two sub-branches just before it reaches the distal and proximal regions of the muscle. In this study, we examined whether the regional difference in muscle activities exists within the human rectus femoris muscle during maximal voluntary isometric contractions of knee extension and hip flexion. Surface electromyographic signals were recorded from the distal, middle, and proximal regions. In addition, twitch responses were evoked by stimulating the femoral nerve with supramaximal intensity. The root mean square value of electromyographic amplitude during each voluntary task was normalized to the maximal compound muscle action potential amplitude (M-wave) for each region. The electromyographic amplitudes were significantly smaller during hip flexion than during knee extension task for all regions. There was no significant difference in the normalized electromyographic amplitude during knee extension among regions within the rectus femoris muscle, whereas those were significantly smaller in the distal than in the middle and proximal regions during hip flexion task. These results indicate that the bi-articular rectus femoris muscle is differentially controlled along the longitudinal direction and that in particular the distal region of the muscle cannot be fully activated during hip flexion.  相似文献   

2.
Compartmentalization of skeletal muscle by multiple motor nerve branches, named as neuromuscular compartment (NMC), has been demonstrated in animals as well as humans. While different functional roles among individual NMCs were reported in the animal studies, no studies have clarified the region-specific functional role within a muscle related with NMCs arrangement in human skeletal muscle. It was reported that the rectus femoris (RF) muscle is innervated by two nerve branches attached at proximal and distal parts of the muscle. The purpose of the present study is to clarify the possible region-specific functional role in the human RF muscle. Multi-channel surface electromyography (SEMG) were recorded from the RF muscle by using 128 electrodes during two different submaximal isometric contractions that the muscle contributes, i.e. isometric knee extension and hip flexion, at 20%, 40%, 60% and 80% of maximal voluntary contraction (MVC). Results indicated that the central locus activation for the amplitude map of SEMG during hip flexion located at more proximal region compared with that during knee extension. Significant higher normalized root mean square (RMS) values were observed at the proximal region during the hip flexion in comparison to those at middle and distal regions at 60% and 80% of MVC (p<0.05). In while, significant higher normalized RMS values were demonstrated at the distal region comparing with that at the proximal region at 80% of MVC (p<0.05). The results of the present study suggest possible region-specific functional role in the human RF muscle.  相似文献   

3.
This study sought to examine the shear modulus (i.e., an force index) of three quadriceps muscles [i.e., vastus medialis (VM), vastus lateralis (VL), and rectus femoris (RF)] during passive stretching to determine whether epimuscular myofascial force transmission occurs across muscles. Secondly, this study compared the shear modulus between the quadriceps muscles, in both proximal and distal regions. Twelve healthy individuals were assessed during a passive knee flexion maneuver between 0° and 90° of knee flexion with the hip in two positions: flexed (80°) vs. neutral (0°). Muscle electrical activity was also assessed during the testing. No differences were observed between the hip testing positions for myoelectric activity (p > 0.43), and for VL and VM shear modulus (p = 0.12–0.98). Similarly, there were no differences between the proximal and distal regions for all muscles (p = 0.42–0.93). RF showed a higher shear modulus with the hip in the neutral position (p = 0.004). With the hip flexed, the VL showed the greatest shear modulus among the tested muscles (p < 0.025); while with the hip in the neutral position, no differences were observed for shear modulus between VL and RF (p = 0.817). These findings suggest that epimuscular myofascial force transmission (at a muscle belly level) does not occur between the quadriceps muscles when passively flexing the knee until 90°. Whether epimuscular myofascial force transmission occurs in the quadriceps muscles bellies with greater muscle stretch (either through knee flexion or hip extension) remains to be examined.  相似文献   

4.
ObjectiveExternally applied abduction and rotational loads are major contributors to the knee joint injury mechanism; yet, how muscles work together to stabilize the knee against these loads remains unclear. Our study sought to evaluate lower limb functional muscle synergies in healthy young adults such that muscle activation can be directly related to internal knee joint moments.MethodsConcatenated non-negative matrix factorization extracted muscle and moment synergies of 22 participants from electromyographic signals and joint moments elicited during a weight-bearing force matching protocol.ResultsTwo synergy sets were extracted: Set 1 included four synergies, each corresponding to a general anterior, posterior, medial, or lateral force direction. Frontal and transverse moments were coupled during medial and lateral force directions. Set 2 included six synergies, each corresponding to a moment type (extension/flexion, ab/adduction, internal/external rotation). Hamstrings and quadriceps dominated synergies associated with respective flexion and extension moments while quadriceps-hamstring co-activation was associated with knee abduction. Rotation moments were associated with notable contributions from hamstrings, quadriceps, gastrocnemius, and hip ab/adductors, corresponding to a general co-activation muscle synergy.ConclusionOur results highlight the importance of muscular co-activation of all muscles crossing the knee to support it during injury-inducing loading conditions such as externally applied knee abduction and rotation. Functional muscle synergies can provide new insight into the relationship between neuromuscular control and knee joint stability by directly associating biomechanical variables to muscle activation.  相似文献   

5.
Patient selection for lateral retinacular release (LRR) and its efficacy are controversial. Iatrogenic medial subluxation can occur with inappropriate LRR. The aim of this study was to determine the reduction in patellofemoral stability with progressively more extensive LRR. The force required to displace the patella 10 mm medially and laterally in nine cadaveric knees was measured with and without loading of the quadriceps and iliotibial band. The knee was tested intact, then after progressive release beginning proximal to the patella (PR), the mid-level between the proximal and distal limit of the patella (MR) where the fibres are more transverse, then distally till Gerdy's tubercle (DR) and finally the joint capsule (CR). Both medial and lateral stability decreased with progressive releases, larger for the medial. The MR caused a significant reduction of lateral stability between 30° and 90° of knee flexion. There was an 8% reduction in medial stability at 0° flexion with a complete LRR (DR). A comparable reduction in medial stability in the loaded knee at 20° and 30° flexion was obtained with MR alone, with no further reduction after DR. A capsular release caused a further reduction in medial stability at 0° and 20° and this was marked in the unloaded knee. In extension, the main lateral restraint was the joint capsule. At 30° flexion, the transverse fibres were the main contributor to the lateral restraint.  相似文献   

6.
目的:探讨人体脊柱松质骨骨骼显微结构和力学性能的区域性差异,为松质骨三维结构采样部位的选取提供参考。方法:显微CT扫描6块颈6椎体标本获得三维图像,依据椎体内解剖位置的不同,将松质骨划分为6个位置组:外侧、内侧、腹侧、背侧、头侧和尾侧。利用显微结构参数骨体积分数(Bone volume to tissue volume,BV/TV)、骨表面积和骨体积的比值(Bone surface to bone volume,BS/BV)、骨小梁数量(Trabecular number,Tb.N)、骨小梁厚度(Trabecular thickness,Tb.Th)、骨小梁分离度(Trabecular separation,Tb.Sp)和个体化骨小梁分割方法(Individual trabeculae segmentation,ITS)分析6个位置组内松质骨显微结构,并利用有限元分析,获得6个位置组内松质骨的力学性能参数表观弹性模量和表观剪切模量。分别两两对比外侧和内侧,腹侧和背侧,头侧和尾侧松质骨的显微结构参数(BV/TV、BS/BV、Tb.N、Tb.Th、Tb.Sp和个体化骨小梁分割得到的参数)和力学性能参数(表观弹性模量和表观剪切模量)。结果:头侧和尾侧的主要显微结构参数BV/TV、Tb.Th、Tb.N等和表观弹性模量均存在显著差异(P0.05)。腹侧和背侧、内侧和外侧的主要显微结构参数BV/TV、Tb.Th、Tb.N等无显著差异。外侧和内侧的表观弹性模量在非主方向即内外方向和腹背放上上存在显著差异(P0.05),在主方向即头尾上无显著差异。结论:在实验中采集椎体松质骨样本以及临床上利用高分辨率CT分析椎体松质骨结构时,感兴趣区域要同时涵盖头侧和尾侧。  相似文献   

7.
Misalignment and soft-tissue imbalance in total knee arthroplasty (TKA) can cause discomfort, pain, inadequate motion and instability that may require revision surgery. Balancing can be defined as equal collateral ligament tensions or equal medial and lateral compartmental forces during the flexion range. Our goal was to study the effects on balancing of linear femoral component misplacements (proximal, distal, anterior, posterior); and different component rotations in mechanical alignment compared to kinematic alignment throughout the flexion path. A test rig was constructed such that the position of a standard femoral component could be adjusted to simulate the linear and rotational positions. With the knee in neutral reference values of the collateral tensions were adjusted to give anatomic contact force patterns, measured with an instrumented tibial trial. The deviations in the forces for each femoral component position were then determined. Compartmental forces were significantly influenced by 2 mm linear errors in the femoral component placement. However, the errors were least for a distal error, equivalent to undercutting the distal femur. The largest errors mainly increase the lateral condyle force, occurred for proximal and posterior component errors. There were only small contact force differences between kinematic and mechanical alignment. Based on these results, surgeons should avoid overcutting the distal femur and undercutting the posterior femur. However, the 2–3 degrees varus slope of the joint line as in kinematic alignment did not have much effect on balancing, so mechanical or kinematic alignment were equivalent.  相似文献   

8.
The object of this study is to develop a three-dimensional mathematical model of the patello-femoral joint, which is modelled as two rigid bodies representing a moving patella and a fixed femur. Two-point contact was assumed between the femur and patella at the medial and lateral sides and in the analysis, the femoral and patellar articular surfaces were mathematically represented using Coons' bicubic surface patches. Model equations include six equilibrium equations and eleven constraints: six contact conditions, four geometric compatibility conditions, and the condition of a rigid patellar ligament; the model required the solution of a system of 17 nonlinear equations in 17 unknowns, its response describing the six-degress-of-freedom patellar motions and the forces acting on the patella. Patellar motions are described by six motion parameters representing the translations and rotations of the patella with respect to the femur. The forces acting on the patella include the medial and lateral component of patello-femoral contact and the patellar ligament force, all of which were represented as ratios to the quadriceps tendon force. The model response also includes the locations of the medial and lateral contact points on the femur and the patella. A graphical display of its response was produced in order to visualize better the motion of the components of the extensor mechanism.Model calculations show good agreement with experimental results available from the literature. The patella was found to move distally and posteriorly on the femoral condyles as the knee was flexed from full extension. Results indicate that the relative orientation of the patellar ligament with respect to the patella remains unchanged during this motion. The model also predicts a patellar flexion which always lagged knee flexion.Our calculations show that as the angle of knee flexion increased, the lateral contact point moved distally on the femur without moving significantly either medially or laterally. The medial contact point also moved distally on the femur but moved medially from full extension to about 40° of knee flexion, then laterally as the knee flexion angle increased. The lateral contact point on the patella did not change significantly in the medial and lateral direction as the knee was flexed; however, this point moved proximally toward the basis of the patella with knee flexion. The medial contact point also moved proximally on the patella with knee flexion, and in a similar manner the medial contact point on the patella moved distally with flexion from full extension to about 40° of flexion. However, as the angle of flexion increased, the medial contact point did not move significantly in the medial-lateral direction.Model calculations also show that during the simulated knee extension exercise, the ratio of the force in the patellar ligament to the force in the quadriceps tendon remains almost unchanged for the first 30° of knee flexion, then decreases as the angle of knee flexion increases. Furthermore, model results show that the lateral component of the patello-femoral contact force is always greater than the medial component, both components increasing with knee flexion.  相似文献   

9.
A strain transducer was developed which employs a magnetic field sensing device to detect linear displacement. The transducer was attached to the medial collateral ligament (MCL) of human autopsy specimens, minimally influencing their physiologic behavior. A strain 'map' of the MCL as a function of knee flexion (full extension to 120 degrees) both with and without abduction force was obtained. Our investigation revealed consistent differences in the strain patterns between proximal, middle and distal segments of the anterior and posterior borders of the MCL. Anatomic variations in the pattern of collagen fibers within the MCL, interactions between posterior oblique capsular fibers and the MCL, and the skeletal configuration may account for these varied strain patterns.  相似文献   

10.
Osteochondrosis dissecans (OD) is a process of subchondral bone necrosis occurring predominantly in young individuals at specific sites. The aetiology of this disease remains controversial with mechanical processes due to trauma and/or ischaemic factors being proposed. This study aims at explaining the aetiology of OD in the knee joint as a result of the particular deformation of the condyles. A finite element analysis of the distal third of the femur was performed. A three-dimensional model was developed based on computed tomography scans of a normal femur, consisting of cortical bone, cancellous bone and articular cartilage. This model was subjected to physiological loads at 0, 30, 60 and 90 degrees of knee flexion. A complex deformation was found within each condyle as well as between the two condyles. Both medial and lateral condyles are deformed in the medio-lateral direction and at the same time compressed between the patella and the tibia in the antero-posterior direction. This effect is highest at 60 degrees of knee flexion. In both planes, the medial condyle is distorted more than the lateral one. Strain concentration in the subchondral bone facing the patella varies with flexion, especially for angles exceeding 60 degrees. The deformation of the femur in the predominant locus of OD in the medial condyle exceeds that of the lateral condyle considerably. The analysis shows that repeated vigorous exercise including extreme knee flexion may produce rapidly changing strains which in turn could ultimately be responsible for local subchondral bone collapse.  相似文献   

11.
This study sought to resolve a longstanding debate of the function of anconeus. Intramuscular and surface electromyography electrodes recorded muscle activity from two regions of anconeus and from typical elbow flexion and extension muscles. Eleven participants performed pronation–supination around the medial and lateral axes of the forearm, elbow flexion–extension in pronation, supination and neutral positions of the forearm, and gripping. Maximal voluntary contractions (MVC) and submaximal (10% MVC) force-matching tasks were completed. Activity varied between longitudinal (AL) and transverse (AT) segments of anconeus. Although both muscle regions were active across multiple directions (including opposing directions), AL was more active during pronation than supination, whereas AT showed no such difference. During pronation, activity of AL and AT was greatest about the lateral forearm axis. AT was more active during elbow extension with the forearm in pronation, whereas AL did not differ between pronated and neutral forearm alignment. These findings are consistent with the proposal that AL makes a contribution to control of abduction of the ulna during forearm pronation. Different effects of forearm position on AL and AT activity during elbow extension may be explained by the anatomical differences between the regions. These data suggest anconeus performs multiple functions at the elbow and forearm and this varies between anatomically distinct regions of the muscle.  相似文献   

12.
The role of the intrinsic finger flexor muscles was investigated during finger flexion tasks. A suspension system was used to measure isometric finger forces when the point of force application varied along fingers in a distal-proximal direction. Two biomechanical models, with consideration of extensor mechanism Extensor Mechanism Model (EMM) and without consideration of extensor mechanism Flexor Model (FM), were used to calculate forces of extrinsic and intrinsic finger flexors. When the point of force application was at the distal phalanx, the extrinsic flexor muscles flexor digitorum profundus, FDP, and flexor digitorum superficialis, FDS, accounted for over 80% of the summed force of all flexors, and therefore were the major contributors to the joint flexion at the distal interphalangeal (DIP), proximal interphalangeal (PIP), and metacarpophalangeal (MCP) joints. When the point of force application was at the DIP joint, the FDS accounted for more than 70% of the total force of all flexors, and was the major contributor to the PIP and MCP joint flexion. When the force of application was at the PIP joint, the intrinsic muscle group was the major contributor for MCP flexion, accounting for more than 70% of the combined force of all flexors. The results suggest that the effects of the extensor mechanism on the flexors are relatively small when the location of force application is distal to the PIP joint. When the external force is applied proximally to the PIP joint, the extensor mechanism has large influence on force production of all flexors. The current study provides an experimental protocol and biomechanical models that allow estimation of the effects of extensor mechanism on both the extrinsic and intrinsic flexors in various loading conditions, as well as differentiating the contribution of the intrinsic and extrinsic finger flexors during isometric flexion.  相似文献   

13.
Muscle fibre composition was compared among the proximal (25%), middle (50%) and distal (75%) regions of the muscle length to investigate whether compensatory overload by removal of synergists induces region-specific changes of fibre types in rat soleus and plantaris muscles. In addition, we evaluated fibre cross-sectional area in each region to examine whether fibre recruitment pattern against functional overload is nonuniform in different regions. Increases in muscle mass and fibre area confirmed a significant hypertrophic response in the overloaded soleus and plantaris muscles. Overloading increased the percentage of type I fibres in both muscles and that of type IIA fibres in the plantaris muscle, with the greater changes being found in the middle and distal regions. The percentage of type I fibres in the proximal region was higher than that of the other regions in the control soleus muscle. In the control plantaris muscle, the percentage of type I and IIA fibres in the middle region were higher than that of the proximal and distal regions. With regard to fibre size, type IIB fibre area of the middle and distal regions in the plantaris increased by 51% and 57%, respectively, with the greater changes than that of the proximal region (37%) after overloading. These findings suggest that compensatory overload promoted transformation of type II fibres into type I fibres in rat soleus and plantaris muscles, with the greater changes being found in the middle and distal regions of the plantaris muscle.  相似文献   

14.
Mechanical properties of the rabbit patellar tendon.   总被引:4,自引:0,他引:4  
The mechanical and structural properties of the patellar tendon fascicle-bone units of rabbit knees were determined by tensile tests, particularly focusing on their local differences. There were no significant differences in the strains measured by a video dimension analyzer among the proximal, middle, and distal regions of the central portion of tendon. The mechanical properties of the medial portion agreed well with those of the central portion. However, significant differences were observed in the tensile strength between the lateral and the other two portions: the tensile strength of the lateral portion was about 16 percent larger than those in the other portions.  相似文献   

15.
A primary source of measurement error in gait analysis is soft-tissue artefact. Hip and knee angle measurements, regularly used in clinical decision-making, are particularly prone to pervasive soft tissue on the femur. However, despite several studies of thigh marker artefact it remains unclear how lateral thigh marker height affects results using variants of the Conventional Gait Model. We compared Vicon Plug-in Gait hip and knee angle estimates during gait using a proximal and distal thigh marker placement for ten healthy subjects. Knee axes were estimated by optimizing thigh rotation offsets to minimize knee varus-valgus range during gait. Relative to the distal marker, the proximal marker produced 37% less varus-valgus range and 50% less hip rotation range (p < 0.001), suggesting that it produced less soft-tissue artefact in knee axis estimates. The thigh markers also produced different secondary effects on the knee centre estimate. Using whole gait cycle optimization, the distal marker showed greater minimum and maximum knee flexion (by 6° and 2° respectively) resulting in a 4° reduction in range. Mid-stance optimization reduced distal marker knee flexion by 5° throughout, but proximal marker results were negligibly affected. Based on an analysis of the Plug-in Gait knee axis definition, we show that the proximal marker reduced sensitivity to soft-tissue artefact by decreasing collinearity between the points defining the femoral frontal plane and reducing anteroposterior movement between the knee and thigh markers. This study suggests that a proximal thigh marker may be preferable when performing gait analysis using the Plug-in Gait model.  相似文献   

16.
To elucidate neural mechanisms underlying walking and jumping in insects, motor neurons supplying femoral muscles have been identified mainly in locusts and katydids, but not in crickets. In this study, the motor innervation patterns of the metathoracic flexor and extensor tibiae muscles in the cricket, Gryllus bimaculatus were investigated by differential back-fills and nerve recordings. Whereas the extensor tibiae muscle has an innervation pattern similar to that of other orthopterans, the flexor has an innervation unique to this species. The main body of the flexor muscle is divided into the proximal, middle and distal regions, which receive morphologically unique terminations from almost non-overlapping sets of motor neurons. The proximal region is innervated by about 12 moderate-sized excitatory motor neurons and two inhibitory neurons while the middle and distal regions are innervated by three and four large excitatory motor neurons, respectively. The most-distally located accessory flexor muscle, inserting on a common flexor apodeme with the main muscle, is innervated by at least four small excitatory (slow-type) and two common inhibitory motor neurons. The two excitatory and two inhibitory motor neurons that innervate the accessory flexor muscle also innervate the proximal bundles of the main flexor muscle. This suggests that the most proximal and distal parts of the flexor muscle participate synergistically in fine motor control while the rest participates in powerful drive of tibial flexion movement.  相似文献   

17.
During development, the imaginal wing disc of Drosophila is subdivided along the proximal-distal axis into different territories that will give rise to body wall (notum and mesothoracic pleura) and appendage (wing hinge and wing blade). Expression of the Iroquois complex (Iro-C) homeobox genes in the most proximal part of the disc defines the notum, since Iro-C(-) cells within this territory acquire the identity of the adjacent distal region, the wing hinge. Here we analyze how the expression of Iro-C is confined to the notum territory. Neither Wingless signalling, which is essential for wing development, nor Vein-dependent EGFR signalling, which is needed to activate Iro-C, appear to delimit Iro-C expression. We show that a main effector of this confinement is the TGFbeta homolog Decapentaplegic (Dpp), a molecule known to pattern the disc along its anterior-posterior axis. At early second larval instar, the Dpp signalling pathway functions only in the wing and hinge territories, represses Iro-C and confines its expression to the notum territory. Later, Dpp becomes expressed in the most proximal part of the notum and turns off Iro-C in this region. This downregulation is associated with the subdivision of the notum into medial and lateral regions.  相似文献   

18.
We studied the role of different leg and trunk muscle groups in the generation of anticipatory postural adjustments (APAs) prior to lateral and rotational perturbations associated with predictable and self-triggered postural perturbations during standing. Postural perturbations were induced by a variety of manipulations including catching and releasing a load with the right hand extended either in front of the body or to the right side, performing bilateral fast shoulder movements in different directions, and applying brief force pulses with a hand against the wall. Perturbations in a frontal plane ("lateral perturbations") were associated with significant asymmetries in APAs seen in the right and left distal (soleus and tibialis anterior) muscles; these asymmetries dependent on the direction of the perturbation. Rotational perturbations about the vertical axis of the body generated by fast movements of the two shoulders in the opposite directions were also associated with direction-dependent asymmetries in the APAs in soleus muscles. However, rotational perturbations generated by an off-body-midline force pulse application were accompanied by direction-dependent asymmetries in proximal muscle groups, but not in the distal muscles. We conclude that muscles controlling the ankle joint play an important role in the compensation of lateral and rotational perturbations. The abundance of muscles participating in maintaining vertical posture allows the control system to use different task-dependent strategies during the generation of APAs in anticipation of rotational perturbation.  相似文献   

19.
The aim of our study was to develop a 3-D MR-based technique for the analysis of meniscal and femoral translations during flexion of the knee, and under the influence of antagonistic muscle forces in healthy subjects. In an open MR system, 5 knees were examined at 30 degrees and 90 degrees flexion using a T1-weighted 3-D gradient echo sequence. A force of 30 Newtons, first in the extending and then in the flexing direction, was applied to the distal lower leg. After three-dimensional reconstruction, the minimal distances between the centre of the tibial plateau and the posterior edge of the menisci and femoral condyles were determined. At 30 degrees flexion, the minimum distance for the meniscus was larger medially than laterally (23.2 +/- 1.8 mm vs. 16.2 +/- 3.3 mm), and this also applied to the condyles (25.1 +/- 1.5 vs. 19.0 +/- 3.0 mm). During flexion to 90 degrees, a posterior translation of 0.5 +/- 0.2 mm was observed for the lateral, and of 3.4 +/- 1.2 mm for the medial, meniscus. The condyles demonstrated a different posterior translation (lateral 2.2 +/- 0.56 mm; medial 1.8 +/- 1.9 mm). No obvious differences were found between extension and flexion muscle activity for the different positions of the knee. In the present study, a new 3-D technique is presented for the analysis of the femoral and meniscal translation at various positions of the knee, and under muscle activity. The results suggest different translation for the menisci and condyles.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号