首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The addition of artificial structures along urbanised shorelines is a global phenomenon. Such modifications of habitats have important consequences to the abundance of fouling organisms on primary substrata, but the influence on fouling of habitat-formers living on these structures is poorly understood. Fouling of habitat-forming kelps Ecklonia radiata on pier-pilings was compared to that on rocky reefs at three locations in Sydney Harbour. Kelps on pilings supported different assemblages of bryozoans from those on reefs. The abundances of bryozoans on kelps, inparticular of the non-indigenous species Membranipora membranacea, were significantly greater on pilings. Differences were consistent in time and space. This indicates that the addition of artificial structures also affects fouling on secondary biogenic substrata, altering biodiversity and potentially facilitating the introduction and dispersal of non-indigenous epibiota. Understanding the processes that cause these patterns is necessary to allow sensible predictions about ecological effects of built structures.  相似文献   

2.
Modified habitats influence kelp epibiota via direct and indirect effects   总被引:1,自引:0,他引:1  
Addition of man-made structures alters abiotic and biotic characteristics of natural habitats, which can influence abundances of biota directly and/or indirectly, by altering the ecology of competitors or predators. Marine epibiota in modified habitats were used to test hypotheses to distinguish between direct and indirect processes. In Sydney Harbour, kelps on pier-pilings supported greater covers of bryozoans, particularly of the non-indigenous species Membranipora membranacea, than found on natural reefs. Pilings influenced these patterns and processes directly due to the provision of shade and indirectly by altering abundances of sea-urchins which, in turn, affected covers of bryozoans. Indirect effects were more important than direct effects. This indicates that artificial structures affect organisms living on secondary substrata in complex ways, altering the biodiversity and indirectly affecting abundances of epibiota. Understanding how these components of habitats affect ecological processes is necessary to allow sensible prediction of the effects of modifying habitats on the ecology of organisms.  相似文献   

3.
Natural systems are increasingly being modified by the addition of artificial habitats which may facilitate invasion. Where invaders are able to disperse from artificial habitats, their impact may spread to surrounding natural communities and therefore it is important to investigate potential factors that reduce or enhance invasibility. We surveyed the distribution of non-indigenous and native invertebrates and algae between artificial habitats and natural reefs in a marine subtidal system. We also deployed sandstone plates as experimental 'reefs' and manipulated the orientation, starting assemblage and degree of shading. Invertebrates (non-indigenous and native) appeared to be responding to similar environmental factors (e.g. orientation) and occupied most space on artificial structures and to a lesser extent reef walls. Non-indigenous invertebrates are less successful than native invertebrates on horizontal reefs despite functional similarities. Manipulative experiments revealed that even when non-indigenous invertebrates invade vertical "reefs", they are unlikely to gain a foothold and never exceed covers of native invertebrates (regardless of space availability). Community ecology suggests that invertebrates will dominate reef walls and algae horizontal reefs due to functional differences, however our surveys revealed that native algae dominate both vertical and horizontal reefs in shallow estuarine systems. Few non-indigenous algae were sampled in the study, however where invasive algal species are present in a system, they may present a threat to reef communities. Our findings suggest that non-indigenous species are less successful at occupying space on reef compared to artificial structures, and manipulations of biotic and abiotic conditions (primarily orientation and to a lesser extent biotic resistance) on experimental "reefs" explained a large portion of this variation, however they could not fully explain the magnitude of differences.  相似文献   

4.
The relative abundance patterns of several sessile epifaunal species occurring subtidally on large artificial substrata (pilings) were examined under experimental conditions involving the manipulation of densities of the echinoid Arbacia punctulata (Lamarck). The foraging activities of this predator could denude the substratum of most species with notable exceptions including the colonial hydroid Hydractinia echinata Fleming and the sponge Xestospongia halichondroides (Wilson). Moreover, these were the only two of the twenty most common species which did not significantly change in relative abundance over the experimental period. Both species had low recruitment rates and were commonly associated with substrata which had been submerged for several years. Neither species aggressively interacted with adjacent spatial competitors but instead, appeared to employ a defensive space utilization ‘strategy’. Provision of unoccupied substrata by Arbacia was apparently the major factor favoring both recruitment and growth of Hydractinia, which covered up to 30% of the area on the oldest pilings. More recently submerged substrata were covered by species such as Schizoporella errata (Waters) which had a much higher recruitment rate but was commonly overgrown by several other species. Recruitment rate, competitive ability, and vegetative growth are discussed in terms of the size of the substratum and the possibility of biased sampling in fouling studies. The widespread introduction of large artificial substrata into the natural environment has considerably altered the structure of the natural habitat and constitutes a potentially important selective force for changes in settlement preferences, especially among species such as Hydractinia which persist and become abundant on these substrata.  相似文献   

5.
Global increases in urban development have resulted in severe habitat modification in many estuaries. Most are now dominated by artificial structures, which might have a myriad of effects on native species. The provision of extra hard substrata presents additional free space, and recent research suggests non-indigenous epifauna may be able to exploit these artificial structures (particularly pontoons) more effectively than native species. The early development of fouling assemblages was compared on settlement plates attached to fixed or moving experimental structures at depths of 0.5 m and 2 m. Invertebrate invaders as a group were disproportionately more numerous on shallow, moving plates (essentially floating surfaces) than on deeper plates, whereas native epifauna were less numerous than invaders in all treatments. Importantly, however, individual invasive species showed differing effects of movement and depth. Future management strategies should take into account the potential for shallow, moving structures to enhance invader dominance and strongly consider using fixed structures to reduce opportunities for invaders.  相似文献   

6.
Biogenic habitats have profound effects on the distribution and abundances of many organisms. Epibiota are major biogenic components of hard substrata in marine habitats, particularly on artificial structures such as pier pilings, and have the potential to influence organisms associated with these structures. This study tested hypotheses about effects of epibiota on abundances of fishes associated with pilings in Middle Harbour, Sydney. Amount of epibiota had no effect on abundances of most species of fish, suggesting that epibiota are not important resources for these species. Abundances of the hulafish, Trachinops taeniatus, were, however, found to be greater around pilings with large than pilings with small amounts of epibiota at one site, at each of two times. Experimental removals of epibiota from pilings were done to test the hypothesis that epibiota are an important resource to T. taeniatus. Despite great temporal fluctuations in abundances over the duration of the experiment, the response of T. taeniatus to the removal of epibiota from pilings was as predicted, falling to zero following removal of epibiota. Although this suggests that epibiota are an important resource for this species, this pattern was spatially and temporally variable. We suggest that variation in the amount of epibiota has minor effects on the abundances of fishes around pilings.  相似文献   

7.
The kelp Laminaria hyperborea is host for a rich fauna of mobile invertebrates. Dispersal patterns of these animals may be crucial for their availability to visual predators like fish, which are known to search for food in these productive habitats. Diurnal, horizontal and vertical dispersal within and out of the kelp forest were studied by analysing colonization of artificial substrata placed among kelps. The species composition of the fauna was different on three parts of the kelp: lamina, stipes (with epiphytes) and holdfast. The artificial substrata were colonized mainly by species associated with kelp. More species and individuals colonized the artificial substrata at night than during the day. The most abundant faunal groups on the kelps and the artificial substrata were amphipods and gastropods. Both groups dispersed at a significantly higher rate at night than during the day. Rapid horizontal dispersal out of the kelp forest was found. The artificial substrata were also colonized quickly by kelp fauna at all vertical levels inside and above the kelp forest. However, species associated with the kelp holdfast tended to disperse close to the bottom, while stipe-associated fauna moved through all parts of the kelp forest and even above the canopy layer. A high dispersal rate appears common amongst the mobile species living on kelp and seems to be advantageous, despite the risks involved in emigrating from the habitat and being exposed to predators. Higher activity at night may reduce availability to predators.  相似文献   

8.
Man-made submerged structures, including shipwrecks, offering substrata for fouling organisms and fish, have been classified secondarily as artificial reefs (ARs). The current approach in AR design is that of low-profile structures placed on the seabed and attempting to mimic natural reef (NR) communities with the aim of mitigating degraded marine ecosystems. To examine the validity of this concept, a long-term comparison of the developing AR fouling communities to those of nearby NRs is required. A survey of the fouling reefal organisms was conducted on seven shipwrecks (Red Sea, Egypt), comprising three young (ca 20 years old) and four old (?>?100 years old) unplanned ARs, in comparison to nearby NR communities. The hypothesis tested was that the age of the ARs shapes the structure of their fouling coral communities. The results demonstrated distinct differences between ARs and NRs and between young and old ARs. While the species composition on ARs may resemble that of NRs after approximately 20 years, obtaining a similar extent of coral cover may require a full century. Moreover, differences in structural features between ARs and NRs may lead to differences in species composition that persist even after 100 years.  相似文献   

9.
Man-made submerged structures, including shipwrecks, offering substrata for fouling organisms and fish, have been classified secondarily as artificial reefs (ARs). The current approach in AR design is that of low-profile structures placed on the seabed and attempting to mimic natural reef (NR) communities with the aim of mitigating degraded marine ecosystems. To examine the validity of this concept, a long-term comparison of the developing AR fouling communities to those of nearby NRs is required. A survey of the fouling reefal organisms was conducted on seven shipwrecks (Red Sea, Egypt), comprising three young (ca 20 years old) and four old (>100 years old) unplanned ARs, in comparison to nearby NR communities. The hypothesis tested was that the age of the ARs shapes the structure of their fouling coral communities. The results demonstrated distinct differences between ARs and NRs and between young and old ARs. While the species composition on ARs may resemble that of NRs after approximately 20 years, obtaining a similar extent of coral cover may require a full century. Moreover, differences in structural features between ARs and NRs may lead to differences in species composition that persist even after 100 years.  相似文献   

10.
J. PEOPLE 《Austral ecology》2006,31(2):271-281
Abstract Artificial structures, such as seawalls, pilings and pontoons, are common features of urban estuaries. They replace natural structures or add to the amount of hard substratum in an area and provide habitats for many fish and invertebrates. Previous work has concentrated on fish or on the invertebrates that occupy the primary substratum of artificial structures. Mussels often grow on different types of structures (pontoons, pilings, seawalls and natural reefs) and provide a secondary substratum for other organisms to inhabit. Counting and identifying organisms associated with mussel beds is traditionally done to species level, which is very time‐consuming. To save time, organisms in this study were identified to coarse levels of taxonomic resolution (a mix of taxa, such as class, order, family and genus), which showed similar patterns to those when particularly speciose and abundant groups were identified to species. This study tests hypotheses that the distribution and abundance of mobile and sessile organisms that inhabit mussel beds will differ among natural and various types of artificial structures. When the associated assemblages of mussel beds from different types of structures and from different locations were examined, assemblages varied according to the type of structure they inhabited and its location. Assemblages associated with mussels on pontoons differed consistently from those on other types of structures. Patterns in the assemblages were also consistent through time. These data show that the types and amounts of artificial structures added to an environment can affect the types, distribution and abundances of organisms living in biogenic habitats.  相似文献   

11.
Summary The reoccupation of artificially cleared patches in a subtidal epifaunal community was investigated in two field experiments on the pilings of Edithburgh pier, South Austrlia. In most cases, the greatest proportion of the patch was reoccupied by the vegetative extension of established sponge and tunicate colonies adjacent to it. Larval recruitment by sponges, bryozoans, tunicates and serpulids contributed to the reoccupation but resulted in only a small proportion of the mean percentage cover. The relative abundances of individual species established in any patch were shown to be a function of the (1) position in space, (2) age, (3) time of creation, (4) initial size of the patch.There was a large amount of between-patch variation in all cases. Overgrowth interactions occurred frequently within patches, and for many pairs of species, neither species consistently overgrew the other. Overgrowth interactions were tested statistically, and a large number of pairs of species were found to be competitively equivalent. This represents a possible situation additional to the alternatives recognized in the literature, namely competitive hierarchies or networks. Interactions between species should be regarded as stochastic, with a wide range of possible outcomes. The situation at Edithburgh is likely to produce greater between-patch variability than either a network or a hierarchy.Despite this large variation, super-specific taxa differ fairly consistently in capacity for overgrowth. Tunicates overgrow sponges, which overgrow bryozoans, which overgrow serpulids. The occupation of most patches was directional in the sense that bryozoans and serpulids invaded first, but tunicates and sponges excluded them and came to dominate the patch. These realtionships are used to predict patterns of abundance for substrata which are small and isolated, and these predictions are compared with the epifauna of the bivalve Pinna bicolor, which provides such substrata adjacent to the pier.  相似文献   

12.
Shenkar N  Zeldman Y  Loya Y 《Biofouling》2008,24(2):119-128
Although ascidians are conspicuous members of the fouling community not much is known regarding their recruitment patterns in coral reefs. A 1-year study was carried out along the Red Sea coast of Israel to examine the effects of season and spatial distribution on ascidian recruitment to artificial marine structures. In general, autumn and spring were characterized by higher coverage with a significantly higher percentage of cover of Didemnum granulatum in autumn and higher numbers of Herdmania momus in spring. These species contributed the most to similarity between treatments consequently setting the pattern for each group (colonial and solitary). Halocynthia spinosa had significantly higher numbers during winter and Phallusia nigra was absent in spring and winter. H. momus showed a preference for horizontal surfaces. P. nigra and Ascidia cannelata showed a preference for floating units. It is concluded that the ascidian recruitment patterns are species-specific and vary between seasons, orientation and position on the substrata and in the water column.  相似文献   

13.
Vessel hull-fouling is increasingly recognised as one of the major vectors for the transfer of marine non-indigenous species. For hundreds of years, copper (Cu) has been used as a primary biocide to prevent the establishment of fouling assemblages on ships' hulls. Some non-indigenous fouling taxa continue to be transferred via hull-fouling despite the presence of Cu antifouling biocides. In addition, several of these species appear to enjoy a competitive advantage over similar native taxa within metal-polluted environments. This metal tolerance may further assist their establishment and spread in new habitats. This review synthesises existing research on the links between Cu and the invasion of fouling species, and shows that, with respect to the vector of hull-fouling, tolerance to Cu has the potential to play a role in the transfer of non-indigenous fouling organisms. Also highlighted are the future directions for research into this important nexus between industry, ecology and environmental management.  相似文献   

14.
Many non-indigenous species have been found during recent decades in the Lagoon of Venice; many of these species are rapidly becoming both widespread and abundant. Reported here is the invasion of an accidentally introduced bryozoan Tricellaria inopinata, which dominated the Lagoon's fouling community within seven years of its initial detection. Recent declines in its population as well as those of indigenous bryozoans illustrate the importance of placing invasions in the context of the hydrological, chemical and biotic changes that occur in the Lagoon environment. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Despite its frequent use in terrestrial and freshwater systems, there is a lack of published experimental research examining the effectiveness of spray-delivered chemicals for the management of non-indigenous and/or unwanted pests in marine habitats. This study tested the efficacy of spraying acetic acid, hydrated lime and sodium hypochlorite for the control of marine fouling assemblages. The chemicals are considered relatively ‘eco-friendly’ due to their low toxicity and reduced environmental persistence compared to synthetic biocides, and they were effective in controlling a wide range of organisms. Pilot trials highlighted acetic acid as the most effective chemical at removing fouling cover, therefore it was selected for more comprehensive full-scale trials. A single spray of 5% acetic acid with an exposure time of 1 min effectively removed up to 55% of the invertebrate species present and 65% of the cover on fouled experimental plates, while one application of 10% acetic acid over 30 min removed up to 78% of species present and 95% of cover. Single-spray treatments of 5% acetic acid reduced cover of the tunicate pest species Didemnum vexillum by up to 100% depending on the exposure duration, while repeat-spraying ensured that even short exposure times (1 min) achieved ~99% mortality. Both 5 and 10% acetic acid solutions appeared equally effective at removing the majority of algal species. This technique could be used for controlling the introduction of unwanted species or preventing the spread of pests, and is applicable to use on a variety of natural and artificial substrata, or for the treatment of structures that can be removed from the water.  相似文献   

16.
Augmentative biocontrol, defined as the use of indigenous natural enemies to control pest populations, has not been explored extensively in marine systems. This study tested the potential of the anemone Anthothoe albocincta as a biocontrol agent for biofouling on submerged artificial structures. Biofouling biomass was negatively related to anemone cover. Treatments with high anemone cover (>35%) led to significant changes in biofouling assemblages compared to controls. Taxa that contributed to these changes differed among sites, but included reductions in cover of problematic fouling organisms, such as solitary ascidians and bryozoans. In laboratory trials, A. albocincta substantially prevented the settlement of larvae of the bryozoan Bugula neritina when exposed to three levels of larval dose, suggesting predation as an important biocontrol mechanism, in addition to space pre-emption. This study demonstrated that augmentative biocontrol using anemones has the potential to reduce biofouling on marine artificial structures, although considerable further work is required to refine this tool before its application.  相似文献   

17.
Artificial structures associated with shipping and boating activities provide habitats for a diverse suite of non-indigenous marine species. Little is known about the proportion of invader success in nearby waters that is attributable to these structures. Areas close to piles, wharves and piers are likely to be exposed to increasing levels of propagule pressure, enhancing the recruitment of non-indigenous species. Recruitment of non-indigenous and native marine biofouling taxa were evaluated at different distances from a large commercial shipping pier. Since artificial structures also represent a desirable habitat for fish, how predation on marine invertebrates influences the establishment of non-indigenous and native species was also evaluated. The colonisation of several non-indigenous marine species declined rapidly with distance from the structure. Little evidence was found to suggest that predators have much influence on the colonisation success of marine sessile invertebrate species, non-indigenous or otherwise. It is suggested that propagule pressure, not predation, more strongly predicts establishment success in these biofouling assemblages.  相似文献   

18.
Two widely‐recognized hypotheses propose that increases in fish abundance at artificial reefs are caused by (a) the attraction and redistribution of existing individuals, with no net increase in overall abundance and (b) the addition of new individuals by production, leading to a net increase in overall abundance. Inappropriate experimental designs have prevented many studies from discriminating between the two processes. Eight of 11 experiments comparing fish abundances on artificial reefs with those on adjacent soft bottom habitats were compromised by a lack of replication or spatial interspersion in the design itself. Only three studies featured proper controls and replicated designs with the interspersion of reef and control sites. Goodness of fit tests of abundance data for 67 species from these studies indicated that more fishes occur on reefs than on controls, particularly for species that typically occur over hard substrata. Conversely, seagrass specialists favour controls over reefs. Changes in the appearance of fish abundance trajectories driven by manipulation of sampling intervals highlight the need for adequate temporal sampling to encompass key life history events, particularly juvenile settlement. To ultimately determine whether attraction and production is responsible for increased abundances on reefs, requires two experimental features: 1) control sites, both interspersed among artificial reefs and at reef and non‐reef locations outside the test area and 2) incorporation of fish age and length data over time. Techniques such as otolith microchemistry, telemetry and stable isotope analysis can be used to help resolve feeding and movement mechanisms driving attraction and production.  相似文献   

19.
Measures taken to control the spread of non-indigenous species by human vectors may act selectively by providing effective protection against some (but not all) species. Toxic antifouling paints are used by boat owners to prevent the development of fouling assemblages on the hulls of their boats, which reduce vessel speed and maneuverability. By reducing fouling, these paints also prevent transport of non-indigenous species. Using experimental surfaces mimicking boat hulls, we evaluated the effectiveness and selectivity of (1) antifouling paints, and (2) manual, in-water hull cleaning for preventing the transport of marine sessile invertebrates by recreational vessels. Different types of antifouling paints provided effective protection only against barnacles and bivalves. Other fouling taxa occurred on experimental surfaces after a period of only 2 months. Manual hull cleaning did not remove fouling completely, and even enhanced the risk of subsequent recruitment by some fouling organisms. Up to six times more individuals and colonies recruited to boat surfaces from which the existing fouling organisms had been removed manually than to surfaces that had been sterilized or contained intact fouling assemblages. Bivalves, colonial and solitary ascidians, encrusting bryozoans, hydroids, tubiculous polychaetes, and sponges consistently recruited in greatest abundance to manually cleaned surfaces. Individual taxa responded in complex, but predictable ways to the biogenic cues left by manual cleaning, so that different suites of organisms colonized surfaces that had originally contained fouling assemblages of local or non-local origin. Our study shows that widely adopted measures to control the spread of non-indigenous species by human vectors are often highly selective and, while effective for some taxa, do not prevent the transport of others.  相似文献   

20.
Urban structures in the form of pontoons and pilings represent major coastal habitats for marine organisms and understanding the factors causing abundances of organisms to differ between these and natural habitat has been neglected in the study of coastal ecology. It has been proposed that composition of substrata explain differences previously described between subtidal assemblages of epibiota on rocky reef (sandstone) and pontoons (concrete) in Sydney Harbour, Australia. This study tested the hypothesis that differences in the composition of substratum (sandstone vs. concrete) independent of type of habitat (rocky reef vs. pontoon) affects the development of epibiotic assemblages. This was tested by experimentally providing substratum of the two types in both habitats. Epibiotic assemblages were unaffected by the composition of substratum but strongly affected by the type of habitat; demonstrating that pontoons constitute novel habitats for epibiota. This result highlights a need for determining how current ecological understanding of subtidal epibiota, which is heavily based on studies of urban structures (pilings and pontoons), relates to natural reef. Future tests of hypotheses about the nature of these differences will not only contribute to better ecological understanding of epibiota and their use of urban structures as habitats, but also to better predictions of future changes to the ecology of coastal habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号