首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a conservation and sustainable management perspective, we identify the ecological, climatic, and demographic factors responsible for the genetic diversity patterns of the European silver fir (Abies alba Mill.) at its southwestern range margin (Pyrenees Mountains, France, Europe). We sampled 45 populations throughout the French Pyrenees and eight neighboring reference populations in the Massif Central, Alps, and Corsica. We genotyped 1,620 individuals at three chloroplast and ten nuclear microsatellite loci. We analyzed within‐ and among‐population genetic diversity using phylogeographic reconstructions, tests of isolation‐by‐distance, Bayesian population structure inference, modeling of demographic scenarios, and regression analyses of genetic variables with current and past environmental variables. Genetic diversity decreased from east to west suggesting isolation‐by‐distance from the Alps to the Pyrenees and from the Eastern to the Western Pyrenees. We identified two Pyrenean lineages that diverged from a third Alpine–Corsica–Massif Central lineage 0.8 to 1.1 M years ago and subsequently formed a secondary contact zone in the Central Pyrenees. Population sizes underwent contrasted changes, with a contraction in the west and an expansion in the east. Glacial climate affected the genetic composition of the populations, with the western genetic cluster only observed in locations corresponding to the coldest past climate and highest elevations. The eastern cluster was observed over a larger range of temperatures and elevations. All demographic events shaping the current spatial structure of genetic diversity took place during the Mid‐Pleistocene Transition, long before the onset of the Holocene. The Western Pyrenees lineage may require additional conservation efforts, whereas the eastern lineage is well protected in in situ gene conservation units. Due to past climate oscillations and the likely emergence of independent refugia, east–west oriented mountain ranges may be important reservoir of genetic diversity in a context of past and ongoing climate change in Europe.  相似文献   

2.
Here, we investigated the origin and genetic diversity of four alpine plant species co-occurring in the Spanish Sierra Nevada and other high mountains in south-western Europe by analysis of amplified fragment length polymorphisms (AFLPs). In Kernera saxatilis, Silene rupestris and Gentiana alpina we found intraspecific phylogroups corresponding to mountain regions as predicted by the vicariance hypothesis. Moreover, genetic distances between Sierra Nevada and Pyrenees populations were always higher than those between populations from the Pyrenees and the south-western Alps/Massif Central. This suggests successive disruption of gene exchange between mountain ranges as postglacial climatic warming proceeded from south to north. In Papaver alpinum, our data indicate that a central Pyrenean population arose via long-distance dispersal from the Sierra Nevada, and that vicariant separation events between the Sierra Nevada and the Pyrenees and between the Pyrenees and the south-western Alps occurred simultaneously. Overall, Sierra Nevada populations of all species investigated here preserve unexpectedly high (or not exceptionally reduced) genetic diversity. This testifies to the important influence of long-term isolation, i.e. vicariance, on genetic diversity through fostering the accumulation of new mutations and/or the fixation of ancestral ones.  相似文献   

3.
Mountain species have evolved important genetic differentiation due to past climatic fluctuations. The genetic uniqueness of many of these lineages is now at risk due to global warming. Here, we analyse allozyme polymorphisms of 1306 individuals (36 populations) of the mountain butterfly Erebia manto and perform Species Distribution Models (SDMs). As a consensus of analyses, we obtained six most likely genetic clusters: (i) Pyrenees with Massif Central; (ii) Vosges; (iii–v) Alps including the Slovakian Carpathians; (vi) southern Carpathians. The Vosges population showed the strongest genetic split from all other populations, being almost as strong as the split between E. manto and its sister species Erebia eriphyle. The distinctiveness of the Pyrenees‐Massif Central group and of the southern Carpathians group from all other groups is also quite high. All three groups are assumed to have survived more than one full glacial–interglacial cycle close to their current distributions with up‐hill and down‐slope shifts conforming climatic conditions. In contrast with these well‐differentiated groups, the three groups present in the Alps and the Slovakian Carpathians show a much shallower genetic structure and thus also should be of a more recent origin. As predicted by our SDM projections, rising temperatures will strongly impact the distribution of E. manto. While the populations in the Alps are predicted to shrink, the survival of the three lineages present here should not be at risk. The situation of the three other lineages is quite different. All models predict the extinction of the Vosges lineage in the wake of global warming, and also the southern Carpathians and Pyrenees‐Massif Central lineages might be at high risk to disappear. Thus, albeit global warming will therefore be unlikely to threaten E. manto as a species, an important proportion of the species’ intraspecific differentiation and thus uniqueness might be lost.  相似文献   

4.
A new species of Alchemilla L. (Rosaceae), A. reflexa Frost‐Ols., is described and illustrated. A. reflexa is characterized by deflexed indumentum on petioles and stems, orbicular leaves with imbricate basal lobes and crimson‐magenta coloured basal stipules. It is distributed in the Massif Central, France, where it is widespread, and in northeastern Pyrenees (déps. Ariège and Aude). A. reflexa is compared with two species previously recorded from the Massif Central with doubt, A. exigua Buser and A. strigosula Buser and with A. filicaulis Buser that can be misidentified as A. reflexa in the field. An introduction to past treatments of Alchemilla in the Massif Central is provided as well as a discussion of some morphological elements used for delimiting Alchemilla taxa.  相似文献   

5.
The distributions of European high mountain species are often characterised by small and geographically isolated populations and, in many cases, have highly complex biogeographic histories. The butterfly genus Erebia represents one of the best examples for small-scale diversification in the European high mountain systems and therefore to understand speciation processes and associated range dynamics of high mountain species. In this study, we analysed 17 polymorphic allozyme loci of 1731 individuals from 49 populations representing four species, one of which has three subspecies: Erebia nivalis; Erebia tyndarus; Erebia ottomana; and Erebia cassioides cassioides, Erebia cassioides arvernensis, and Erebia cassioides neleus. Samples were collected in the high mountain systems of Europe (i.e. Pyrenees, Massif Central, Alps, Apennines, Carpathians, Balkan high mountains). Genetic analyses supported all previously accepted species. However, the genetic differentiation within E. cassioides sensu lato into three geographically delimited groups is justifying species rank: E. arvernensis distributed in the Pyrenees, Massif Central and western Alps; E. cassioides sensu stricto in the eastern Alps and Apennines; and E. neleus in the Balkan mountains and the south-western Carpathians. While the differentiation between western Alps and Massif Central as well as eastern Alps and Apennines was low, the Pyrenees as well as the south-western Carpathians were significantly differentiated from the other regions within the respective taxon. In general, the differentiation among the populations of E. neleus was stronger than between populations of the other taxa. Within E. cassioides, we found a west-east gradient of genetic similarity over the eastern Alps. Based on the obtained genetic structures, we are able to delineate glacial refugia and interglacial range modifications. Based on the genetic structures and genetic diversity patterns, we conclude that, triggered by the glacial-interglacial cycles, repeated range modifications have taken place with subsequent differentiation and speciation in the region of the Alps and Balkans. Colonisations to Pyrenees (E. arvernensis pseudomurina, E. arvernensis pseudocarmenta), Massif Central (E. ottomana tardenota, E. a. arvernensis) and Apennines (E. cassioides majellana) appear to be recent and most probably not older than the last interglacial period.  相似文献   

6.
Aim We investigated the Quaternary history of the pine processionary moth, Thaumetopoea pityocampa, an oligophagous insect currently expanding its range. We tested the potential role played by mountain ranges during the post‐glacial recolonization of western Europe. Location Western Europe, with a focus on the Pyrenees, Massif Central and western Alps. Methods Maternal genetic structure was investigated using a fragment of the mitochondrial cytochrome c oxidase subunit I (COI) gene. We analysed 412 individuals from 61 locations and performed maximum likelihood and maximum parsimony phylogenetic analyses and hierarchical analysis of molecular variance, and we investigated signs of past expansion. Results A strong phylogeographic pattern was found, with two deeply divergent clades. Surprisingly, these clades were not separated by the Pyrenees but rather were distributed from western to central Iberia and from eastern Iberia to the Italian Peninsula, respectively. This latter group consisted of three shallowly divergent lineages that exhibited strong geographic structure and independent population expansions. The three identified lineages occurred: (1) on both sides of the Pyrenean range, with more genetically diverse populations in the east, (2) from eastern Iberia to western France, with a higher genetic diversity in the south, and (3) from the western Massif Central to Italy. Admixture areas were found at the foot of the Pyrenees and Massif Central. Main conclusions The identified genetic lineages were geographically structured, but surprisingly the unsuitable high‐elevation areas of the main mountainous ranges were not responsible for the spatial separation of genetic groups. Rather than acting as barriers to dispersal, mountains appear to have served as refugia during the Pleistocene glaciations, and current distributions largely reflect expansion from these bottlenecked refugial populations. The western and central Iberian clade did not contribute to the northward post‐glacial recolonization of Europe, yet its northern limit does not correspond to the Pyrenees. The different contributions of the identified refugia to post‐glacial expansion might be explained by differences in host plant species richness. For example, the Pyrenean lineage could have been trapped elevationally by tracking montane pines, while the eastern Iberian lineage could have expanded latitudinally by tracking thermophilic lowland pine species.  相似文献   

7.
The octoploidFestuca curvula Gaudin (F. ovina agg.) is new for the Austrian flora. Epidermal structures indicate relationships toF. pallens. Its distribution ranges from the Pyrenees and French Massif Central through the Alps to western Austria.
  相似文献   

8.
Phlebotomus ariasi is one of the two sandflies transmitting the causative agent of zoonotic leishmaniasis, Leishmania infantum, in France and Iberia, and provides a rare case study of the postglacial re-colonization of France by a Mediterranean species. Four DNA sequences were analysed—mitochondrial cytochrome b (cyt b), nuclear elongation factor-1α (EF-1α) and two anonymous nuclear loci—for 14–15 French populations and single populations from northeast Spain, northwest Spain, Portugal and Morocco. The presence of cryptic sibling species was not revealed by phylogenetic analyses and testing for reproductive isolation between sympatric populations defined by the two most divergent cyt b haplogroups. No locus was shown to be under positive directional or balancing selection and, therefore, molecular variation was explained demographically. Each nuclear locus showed shallow isolation by distance from Portugal to the French Pyrenees, but for both cyt b and EF-1α there was then a step change to the upland Massif Central, where leading-edge populations showed low diversity at all loci. Multiple genetic divergences and population expansions were detected by analyses of cyt b and dated to the Pleistocene. Endemicity of one cyt b sub-lineage suggested the presence of a refuge north of the Pyrenees during the last glacial period. Monopolization of the Massif Central by genetically differentiated populations of P. ariasi might possibly hinder the northwards spread of leishmaniasis.  相似文献   

9.
The genetic structure, diversity and phylogeography of the moss species Campylopus oerstedianus in Europe was studied, based on the ITS region of the nrDNA of nine selected European populations. Although this species is only known in sterile stage, long-distance dispersal and gene flow among populations seem to be present within Europe. High levels of genetic differentiation between the investigated Greek population and the western European populations indicate a long lasting isolation. The populations from France and Switzerland root together and supposedly have a common origin. From the French populations, the one from the Pyrenees is the most basal one and the populations in the Massif Central and the Vosges Mts can be derived from it. This indicates relatively recent dispersal of the species from the Mediterranean to the north, in spite of the lack of sporophytes and the fact that the type of the dispersed propagules and their vectors are not obvious.  相似文献   

10.
Phylogeographical studies frequently detect range shifts, both expansions (including long-distance dispersal) and contractions (including vicariance), in the studied taxa. These processes are usually inferred from the patterns and distribution of genetic variation, with the potential pitfall that different historical processes may result in similar genetic patterns. Using a combination of DNA sequence data from the plastid genome, AFLP fingerprinting, and rigorous phylogenetic and coalescence-based hypothesis testing, we show that Androsace halleri (currently distributed disjunctly in the northwestern Iberian Cordillera Cantábrica, the eastern Pyrenees, and the French Massif Central and Vosges), or its ancestor, was once more widely distributed in the Pyrenees. While there, it hybridized with Androsace laggeri and Androsace pyrenaica, both of which are currently allopatric with A. halleri. The common ancestor of A. halleri and the north Iberian local endemic Androsace rioxana probably existed in the north Iberian mountain ranges with subsequent range expansion (to the French mountain ranges of the Massif Central and the Vosges) and allopatric speciation (A. rioxana, A. halleri in the eastern Pyrenees, A. halleri elsewhere). We have thus been able to use the reticulate evolution in this species group to help elucidate its phylogeographical history, including evidence of range contraction.  相似文献   

11.
The chamois provides an excellent model for exploring the effect of historical and evolutionary events on diversification. We investigate cytochrome b (cytb) sequences in the 10 recognized subspecies of Rupicapra classified within 2 species: Rupicapra pyrenaica, with the subspecies parva, pyrenaica, and ornata, and Rupicapra rupicapra, with cartusiana, rupicapra, tatrica, carpatica, balcanica, asiatica, and caucasica. A fragment of 349 bp of the cytb was sequenced in 189 individuals. We identified 3 cytb lineages: Clade West in Iberia and Western Alps; Clade Central in the Apennines and the Massif of Chartreuse; and Clade East present in populations to the east of the Alps. The 2 proposed species were polyphyletic; the clades West and Central are represented in both, whereas the Clade East is restricted to R. rupicapra. In contrast to the current systematic, cytb phylogenies suggest the classification of the 10 subspecies of chamois into a single species, R. rupicapra. Phylogeny and geographical distribution of the 3 lineages show the effects of limited latitudinal range expansions, contractions, and hybridizations among highly divergent lineages, along with a major role of the glacial ice sheets of the Alps and the Pyrenees as barriers to gene flow, on the diversification of extant taxa.  相似文献   

12.
Examination of 1492 specimens of Ch. limbata (Fabricius, 1775) from the entire distribution range resulted in the discrimination of six subspecies: limbata (West Europe excluding the Apennine Peninsula, the Crimea, north and south of European Russia, the Great Caucasus, Northern Kazakhstan, and southern West Siberia), discipennis (Ménétriés, 1848) (southeast of European Russia, Western Kazakhstan), hochhuthii (Suffrian, 1851) (south of East Siberia, Eastern Kazakhstan, Mongolia, Northern China), luigionii (Depoli, 1936) (the Apennines, the Alps, Herzegovina, the Mediterranean coast of France); russiella ssp. n. (deciduous forests, forest-steppe and steppe of European Russia and Ukraine); volodi ssp. n. (alpine regions of the Lesser Caucasus and eastern Turkey). Ch. limbata findelii (Suffrian, 1851) is a new junior synonym of Ch. limbata limbata.  相似文献   

13.
Repeated Quaternary glaciations have significantly shaped the present distribution and diversity of several European species in aquatic and terrestrial habitats. To study the phylogeography of freshwater invertebrates, patterns of intraspecific variation have been examined primarily using mitochondrial DNA markers that may yield results unrepresentative of the true species history. Here, population genetic parameters were inferred for a montane aquatic caddisfly, Thremma gallicum, by sequencing a 658‐bp fragment of the mitochondrial CO1 gene, and 12,514 nuclear RAD loci. T. gallicum has a highly disjunct distribution in southern and central Europe, with known populations in the Cantabrian Mountains, Pyrenees, Massif Central, and Black Forest. Both datasets represented rangewide sampling of T. gallicum. For the CO1 dataset, this included 352 specimens from 26 populations, and for the RAD dataset, 17 specimens from eight populations. We tested 20 competing phylogeographic scenarios using approximate Bayesian computation (ABC) and estimated genetic diversity patterns. Support for phylogeographic scenarios and diversity estimates differed between datasets with the RAD data favouring a southern origin of extant populations and indicating the Cantabrian Mountains and Massif Central populations to represent highly diverse populations as compared with the Pyrenees and Black Forest populations. The CO1 data supported a vicariance scenario (north–south) and yielded inconsistent diversity estimates. Permutation tests suggest that a few hundred polymorphic RAD SNPs are necessary for reliable parameter estimates. Our results highlight the potential of RAD and ABC‐based hypothesis testing to complement phylogeographic studies on non‐model species.  相似文献   

14.
15.
16.
17.
Understanding the impact of postglacial recolonization on genetic diversity is essential in explaining current patterns of genetic variation. The central–marginal hypothesis (CMH) predicts a reduction in genetic diversity from the core of the distribution to peripheral populations, as well as reduced connectivity between peripheral populations. While the CMH has received considerable empirical support, its broad applicability is still debated and alternative hypotheses predict different spatial patterns of genetic diversity. Using microsatellite markers, we analysed the genetic diversity of the adder (Vipera berus) in western Europe to reconstruct postglacial recolonization. Approximate Bayesian Computation (ABC) analyses suggested a postglacial recolonization from two routes: a western route from the Atlantic Coast up to Belgium and a central route from the Massif Central to the Alps. This cold‐adapted species likely used two isolated glacial refugia in southern France, in permafrost‐free areas during the last glacial maximum. Adder populations further from putative glacial refugia had lower genetic diversity and reduced connectivity; therefore, our results support the predictions of the CMH. Our study also illustrates the utility of highly variable nuclear markers, such as microsatellites, and ABC to test competing recolonization hypotheses.  相似文献   

18.
Interdisciplinary research was carried out in mid-level mountain areas in France with the aim of documenting historical mining and smelting activities by means of pollen and geochemical analyses. These investigations were made on cores collected in French peatlands in the Morvan (northern Massif Central), at Mont Lozère (southern Massif Central) and in the Basque Country (Pyrénées). Different periods of mining were recognised from Prehistory to modern times through the presence of anthropogenic lead in peat. Some of these were already known from archaeological dates or historical archives, especially for mediaeval and modern periods. However prehistoric ancient mining activities, as early as the Middle Bronze Age (ca. 1700 b.c.), were also discovered. They had all led to modifications in plant cover, probably related in part to forest clearance necessary to supply energy for mining and smelting.  相似文献   

19.
The grasshopper Podisma pedistris occurs in two chromosome races, which have XO/XX and neo-XY sex chromosome systems. We have studied chromosomal and electrophoretic variation in populations where these two races meet and hybridize, in an area near the town of Seyne, Alpes Maritimes, southern France. Allozyme variation, at 21 loci in 11 populations, does not seem to show any relationship to the underlying cline in the frequency of the two chromosome types. This indicates that the chromosomal cline does not offer a strong barrier to the flow of genes at other loci. The XO/XX race in this area occurs on a single plateau, isolated from other populations with the same karyotype. It is suggested that this form is only able to persist here because the introgression of neo-XY chromosomes is inhibited by steep cliffs, which tend to keep the two races apart.  相似文献   

20.
Three species of the arcto-boreal, large gastropod Neptunea , described by Linnaeus in 1758 and 1771, occur in large numbers over wide areas of the inshore North Atlantic and adjacent Arctic seas and are conspicuous among Pliocene and Pleistocene molluscs in the Icelandic, North Sea, and western Mediterranean basins. Selections of lectotypes for these species from shells in the collection of the Linnean Society of London, and designations of their type localities, establish the identity of Linnaeus' neptunes and more accurately determine their geographic and geologic distribution. The geographic range of Neptunea (Neptunea) antiqua (L.), the type species, now extends from southern Norway to the northern Biscay coast of France and from the westernmost Baltic Sea to southwestern Ireland; this species also occurs in Pliocene-Holocene marine deposits in West and East Germany, Sweden, the Netherlands, England and France. Its type locality is determined to be the North Sea. N. (Neptunea) despecta (L.) lives in the eastern Canadian Arctic, off southern Greenland, the Barents Sea, and North Atlantic as far south as Massachusetts and Portugal; it also occurs in Pliocene-Holocene strata of eastern Canada, east-central Greenland, Norway (including Svalbard), the Soviet Union, Sweden and England. Its type locality is determined to be the postglacial deposits at Uddevalla in southwestern Sweden. N. (Sulcosipho) contraria (L.) now extends from the southern Biscay coast of France to Cape Spartel, Morocco; this species also occurs in Pleistocene and lower Holocene sequences of the western Mediterranean. Its type locality is determined to be Vigo Bay, Spain. A closely related fossil species, N. (S.) angulata (S. V. Wood), occurs in Pliocene and Pleistocene deposits of the North Sea basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号