首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Cochliobolus heterostrophus, a heterothallic Ascomycete, has a single mating type locus with two alternate forms called MAT-1 and MAT-2. MAT-1 was cloned by complementing a MAT-2 strain using a cosmid library from a MAT-1 strain and screening for a homothallic transformant. The cosmid recovered from this transformant was able to re-transform a MAT-2 strain to homothallism and MAT identity was proven by restriction fragment length polymorphism and conventional genetic mapping. All homothallic transformants could mate with either MAT-1 or MAT-2 strains, although the number of ascospores produced by self matings or crosses to MAT-2 strains was low. Progeny of selfed homothallic transformants were themselves homothallic. MAT-2 was cloned by probing a cosmid library from a MAT-2 strain with a fragment of insert DNA from the MAT-1 cosmid. A 1.5 kb subclone of either MAT-containing cosmid was sufficient to confer mating function in transformants. Examination of the DNA sequence of these subclones revealed that MAT-1 and MAT-2 contain 1297 by and 1171 bp, respectively, of completely dissimilar DNA flanked by DNA common to both mating types. Putative introns were found (one in each MAT gene) which, when spliced out, would yield open reading frames (ORFs) that occupied approximately 90% of the dissimilar DNA sequences. Translation of the MAT-1 ORF revealed similarity to the Neurospora crassa MATA, Podospora anserina mat?, and Saccharomyces cerevisiae MATα1 proteins; translation of the MAT-2 ORF revealed similarity to the N. crassa MATa, P. anserina mat+, and Schizosaccharomyces pombe mat-Mc proteins. These gene products are all proven or proposed DNA binding proteins. Those with similarity to MAT-2 are members of the high mobility group.  相似文献   

7.
Long-term antibiotic use generates pan-resistant super pathogens. Anti-infective compounds that selectively disrupt virulence pathways without affecting cell viability may be used to efficiently combat infections caused by these pathogens. A candidate target pathway is quorum sensing (QS), which many bacterial pathogens use to coordinately regulate virulence determinants. The Pseudomonas aeruginosa MvfR-dependent QS regulatory pathway controls the expression of key virulence genes; and is activated via the extracellular signals 4-hydroxy-2-heptylquinoline (HHQ) and 3,4-dihydroxy-2-heptylquinoline (PQS), whose syntheses depend on anthranilic acid (AA), the primary precursor of 4-hydroxy-2-alkylquinolines (HAQs). Here, we identified halogenated AA analogs that specifically inhibited HAQ biosynthesis and disrupted MvfR-dependent gene expression. These compounds restricted P. aeruginosa systemic dissemination and mortality in mice, without perturbing bacterial viability, and inhibited osmoprotection, a widespread bacterial function. These compounds provide a starting point for the design and development of selective anti-infectives that restrict human P. aeruginosa pathogenesis, and possibly other clinically significant pathogens.  相似文献   

8.
The author tried in a somewhat limited work to quantitatively correlate the electronic and steric intramolecular interactions of substituents on the amino group (influencing the enzymatic reactions of aromatic amines) and the mutagenic event. It was assumed that there is a correlation between these biotransformations and the electronic state of aromatic amines at the ionic dissociation equilibrium. The approach is rather empirical and arbitrary but the overall agreement between experimental mutagenic potencies and the values calculated was encouraging and led the author to further developments. It is hoped that the concepts used in this work may be applied to other aromatic molecules bearing an amino group.  相似文献   

9.

Background

Cochliobolus heterostrophus is a dothideomycete that causes Southern Corn Leaf Blight disease. There are two races, race O and race T that differ by the absence (race O) and presence (race T) of ~ 1.2-Mb of DNA encoding genes responsible for the production of T-toxin, which makes race T much more virulent than race O. The presence of repetitive elements in fungal genomes is considered to be an important source of genetic variability between different species.

Results

A detailed analysis of class I and II TEs identified in the near complete genome sequence of race O was performed. In total in race O, 12 new families of transposons were identified. In silico evidence of recent activity was found for many of the transposons and analyses of expressed sequence tags (ESTs) demonstrated that these elements were actively transcribed. Various potentially active TEs were found near coding regions and may modify the expression and structure of these genes by acting as ectopic recombination sites. Transposons were found on scaffolds carrying polyketide synthase encoding genes, responsible for production of T-toxin in race T. Strong evidence of ectopic recombination was found, demonstrating that TEs can play an important role in the modulation of genome architecture of this species. The Repeat Induced Point mutation (RIP) silencing mechanism was shown to have high specificity in C. heterostrophus, acting only on transposons near coding regions.

Conclusions

New families of transposons were identified. In C. heterostrophus, the RIP silencing mechanism is efficient and selective. The co-localization of effector genes and TEs, therefore, exposes those genes to high rates of point mutations. This may accelerate the rate of evolution of these genes, providing a potential advantage for the host. Additionally, it was shown that ectopic recombination promoted by TEs appears to be the major event in the genome reorganization of this species and that a large number of elements are still potentially active. So, this study provides information about the potential impact of TEs on the evolution of C. heterostrophus.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-536) contains supplementary material, which is available to authorized users.  相似文献   

10.
The mechanisms by which pathogenic fungi evolve are poorly understood. Production of the host-selective cyclic peptide HC-toxin is controlled by a complex locus, TOX2, in the plant pathogen Cochliobolus carbonum. Crosses between toxin-producing (Tox2+) and toxin-nonproducing (Tox2-) isolates, as well as crosses between isolates in which the TOX2 genes were on chromosomes of different size, yielded progeny that had lost one or more copies of one or more of the TOX2 genes. Of approximately 200 progeny analyzed, eight (4%) had lost at least one TOX2 gene. All of them still had at least one functional copy of all of the known genes required for HC-toxin production (HTS1, TOXA, TOXC, and TOXE). Most deletion strains could be explained by simple chromosome breaks resulting in the loss of major contiguous portions (0.8 to 1.4 Mb) of the 3.5-Mb TOX2 chromosome, whereas others had more complicated patterns. All deletion strains had normal growth and were fertile, indicating that the 1.4 Mb of DNA contained no essential housekeeping genes. Most strains were also still virulent (Tox2+), but two had a novel phenotype of reduced virulence (RV), characterized by smaller lesions that expanded at a reduced rate and an inability to colonize plants systemically. Although the RV strains made no detectable HC-toxin in culture, the RV phenotype was dependent on the presence of a functional copy of HTS1, which encodes the central enzyme in HC-toxin biosynthesis. We propose that the RV strains still make a low level of HC-toxin, at least in planta, and that this is due to the loss of one or more genes that contribute to, but are not absolutely required for, HC-toxin synthesis.  相似文献   

11.
A large number of diamides and diamines were synthesized using 6-amino chrysene and 1-amino pyrene as starting materials. A structure activity study with cis-platinum as internal control against animal and human tumor lines was carried out in vitro. This study indicated that the in vitro cytotoxicity toward these lines depends on the functionality present in the molecules. The diamino compounds were found to be more potent than the diamides, and these were equally active irrespective of the end heterocyclic group, whereas the activity of the diamides was strongly dependent on the terminal unit. In general, the diamides containing chrysene as the chromophore were more active than those with a pyrene ring. The size of the end heterocyclic ring, along with the nature of the spacer connecting the polycyclic ring to the heterocyclic ring, seemed to affect the biological activity in certain cell lines. Hemolysis experiments on a lead compound established that it had activities similar to those described for membrane-stabilizing agents. This agent also demonstrated the capacity to produce differentiation in leukemia cell lines.  相似文献   

12.
Pathogenicity mitogen-activated protein kinases (MAPKs), related to yeast FUS3/KSS1, are essential for virulence in fungi, including Cochliobolus heterostrophus, a necrotrophic pathogen causing Southern corn leaf blight. We compared the phenotypes of mutants in three MAPK genes: HOG1, MPS1, and CHK1. The chk1 and mps1 mutants show autolytic appearance, light pigmentation, and dramatic reduction in virulence and conidiation. Similarity of mps1 and chk1 mutants is reflected by coregulation by these two MAPKs of several genes. Unlike chk1, mps1 mutants are female-fertile and form normal-looking appressoria. HOG1 mediates resistance to hyperosmotic and, to a lesser extent, oxidative stress, and is required for stress upregulation of glycerol-3-phosphate phosphatase, transaldolase, and a monosaccharide transporter. Hog1, but not Mps1 or Chk1, was rapidly phosphorylated in response to increased osmolarity. The hog1 mutants have smaller appressoria and cause decreased disease symptoms on maize leaves. Surprisingly, loss of MPS1 in a wild-type or hog1 background improved resistance to some stresses. All three MAPKs contribute to the regulation of central developmental functions under normal and stress conditions, and full virulence cannot be achieved without appropriate input from all three pathways.  相似文献   

13.
Quinoxaline derivatives presented good inhibitor activity of growth of Trypanosoma cruzi in in vitro assays. The 50% inhibitory doses were of the same order of that of Nifurtimox. Derivative 13, a quinoxaline N,N'-dioxide derivative, and the reduced derivatives 19 and 20 were the most cytotoxic compounds against the protozoan. Structural requirements for optimal activity were studied by computational methods. From statistical analysis we could establish a multiple correlation between activity and lipophilic properties and LUMO energy.  相似文献   

14.
The novel trichothecene 12-deoxytrichodermin (3) was isolated from the fungus Trichoderma sp. 1212-03, and included with other known natural trichothecenes in a structure-activity relationship investigation against a human colon cancer cell line (COLO201) and filamentous fungus Cochliobolus miyabeanus. This revealed that the 12-epoxide functionality is critical for the cytotoxicity of simple trichothecenes trichodermin (4) and deoxynivalenol (2), while not critical for the cytotoxicity of roridin J (6) and epiisororidin E (8). In contrast, 12-epoxide is essential for the antifungal activity.  相似文献   

15.
The inhibitory effects on poly(U)-directed polyphenylalanine synthesis of cryptopleurine and a number of structurally related analogs have been compared in a yeast cell-free system. Results suggest that the quinolidine structure by itself does not promote biological activity, and for an inhibitory effect it must be condensed with a phenanthrene or another related compound such as naphthalene. The results are presented and possible relationships between structure and activity for the compounds emetine, tubolosine, tylophora alkaloids, and various cryptopleurine analogs are considered.  相似文献   

16.
We performed a phylogenetic analysis of heavy-metal ATPases (HMAs) in fungi and found that HMAs can be divided into three groups, A, B, and C. Group A is predicted to deliver copper ions to copper-containing proteins, while Groups B and C are thought to function as cell-membrane copper-efflux pumps. Furthermore, Groups B and C consist of fungal-specific HMAs, while Group A consists of fungal orthologues that have been well conserved in eukaryotes. We also cloned and characterized a Group A-type HMA gene (i.e., ChCcc2) of the filamentous plant pathogen, Cochliobolus heterostrophus. Mutation of ChCcc2 severely affected growth, pigmentation, conidiation, and colonial morphology. Activity of the copper-containing protein, laccase, was also lost in ChCcc2 mutants, suggesting that ChCCC2 plays an important role in growth and morphology by activating various copper-containing proteins in C. heterostrophus.  相似文献   

17.
Genes at two unlinked loci (Tox1A and Tox1B) are required for production of the polyketide T-toxin by Cochliobolus heterostrophus race T, a pathogenic fungus that requires T-toxin for high virulence to maize with T-cytoplasm. Previous work indicated that Tox1A encodes a polyketide synthase (PKS1) required for T-toxin biosynthesis and for high virulence. To identify genes at Tox1B, a wild-type race T cDNA library was screened for genes missing in the genome of a Tox1B deletion mutant. The library was probed, first with a 415-kb NotI restriction fragment from the genome of the Tox1B mutant, then with the corresponding 560-kb fragment from the genome of wild type. Two genes, DEC1 (similar to acetoacetate decarboxylase-encoding genes) and RED1 (similar to genes encoding members of the medium-chain dehydrogenase/reductase superfamily), were recovered. Targeted disruption of DEC1 drastically reduced both T-toxin production and virulence of race T to T-cytoplasm maize, whereas specific inactivation of RED1 had no apparent effect on T-toxin production (as determined by bioassay) or on virulence. DEC1 and RED1 map within 1.5 kb of each other on Tox1B chromosome 6;12 and are unique to the genome of race T, an observation consistent with the hypothesis that these genes were acquired by C. heterostrophus via a horizontal transfer event.  相似文献   

18.
19.
Phenylcyclohexenes (PCHs) [e.g., trans-4-nitro-5-(2,3,4-trimethoxyphenyl)cyclohexene, 2d] were found to bind weakly to the colchicine site of bovine tubulin, but are the first mimics of colchicine found to have high activity towards plant cells. Structure-activity relationships for PCHs and biphenyl AC-ring analogues of colchicine (e.g., 2,3,4,4'-tetramethoxy-2'-methyl-1,1'-biphenyl, 3e) are discussed.  相似文献   

20.
Antimicrobial activities of two azafluorenones, four 1-azaanthraquinones, five 2-azaanthraquinones, and one 2-azaquinone were tested. Several azaanthraquinones possessed broad, potent activity, while the azafluorenones demonstrated weak activity. The following structure-activity relationship was postulated: (1) activity decreased in the order 2-azaanthraquinones>1-azaanthraquinones>azafluorenones; and (2) a hydroxyl group at the peri-carbonyl group enhanced activity. In addition, correlations among reduction potential, hydrophobic parameter, and antimicrobial activity were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号