首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Native cellulose model films containing both amorphous and crystalline cellulose I regions were prepared by spin-coating aqueous cellulose nanofibril dispersions onto silica substrates. Nanofibrils from wood pulp with low and high charge density were used to prepare the model films. Because the low charged nanofibrils did not fully cover the silica substrates, an anchoring substance was selected to improve the coverage. The model surfaces were characterized using atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The effect of nanofibril charge density, electrolyte concentration, and pH on swelling and surface interactions of the model film was studied by quartz crystal microbalance with dissipation (QCM-D) and AFM force measurements. The results showed that the best coverage for the low charged fibrils was achieved by using 3-aminopropyltrimethoxysilane (APTS) as an anchoring substance and hence it was chosen as the anchor. The AFM and XPS measurements showed that the fibrils are covering the substrates. Charge density of the fibrils affected the morphology of the model surfaces. The low charged fibrils formed a network structure while the highly charged fibrils formed denser film structure. The average thickness of the films corresponded to a monolayer of fibrils, and the average rms roughness of the films was 4 and 2 nm for the low and high charged nanofibril films, respectively. The model surfaces were stable in QCM-D swelling experiments, and the behavior of the nanofibril surfaces at different electrolyte concentrations and pHs correlated with other studies and the theories of Donnan. The AFM force measurements with the model surfaces showed well reproducible results, and the swelling results correlated with the swelling observed by QCM-D. Both steric and electrostatic forces were observed and the influence of steric forces increased as the films were swelling due to changes in pH and electrolyte concentration. These films differ from previous model cellulose films due to their chemical composition (crystalline cellulose I and amorphous regions) and fibrillar structure and hence serve as excellent models for the pulp fiber surface.  相似文献   

7.
8.
9.
10.

Background

The incidence of esophageal adenocarcinoma (EAC) has risen rapidly in the U.S. and western world. The aim of the study was to begin the investigation of this rapid rise by developing, calibrating, and validating a mathematical disease simulation model of EAC using available epidemiologic data.

Methods

The model represents the natural history of EAC, including the essential biologic health states from normal mucosa to detected cancer. Progression rates between health states were estimated via calibration, which identified distinct parameter sets producing model outputs that fit epidemiologic data; specifically, the prevalence of pre-cancerous lesions and EAC cancer incidence from the published literature and Surveillance, Epidemiology, and End Results (SEER) data. As an illustrative example of a clinical and policy application, the calibrated and validated model retrospectively analyzed the potential benefit of an aspirin chemoprevention program.

Results

Model outcomes approximated calibration targets; results of the model''s fit and validation are presented. Approximately 7,000 cases of EAC could have been prevented over a 30-year period if all white males started aspirin chemoprevention at age 40 in 1965.

Conclusions

The model serves as the foundation for future analyses to determine a cost-effective screening and management strategy to prevent EAC morbidity and mortality.  相似文献   

11.
Pyridoxal 5'-phosphate labeled to the extent of 90% with 13C in the 4' (aldehyde) and 5' (methylene) positions has been synthesized. 13C NMR spectra of this material and of natural abundance pyridoxal 5'-phosphate are reported, as well as 13C NMR spectra of the Schiff base formed by reaction of pyridoxal 5'-phosphate with n-butylamine, the secondary amine formed by reduction of this Schiff base, the thiazolidine formed by reaction of pyridoxal 5'-phosphate with cysteine, the hexahydropyrimidine formed by reaction of pyridoxal 5'-phosphate with 1,3-diaminobutane, and pyridoxamine 5'-phosphate. The range of chemical shifts for carbon 4' in these compounds is more than 100 ppm, and thus this chemical shift is expected to be a sensitive indicator of structure in enzyme-bound pyridoxal 5'-phosphate. The chemical shift of carbon 5', on the other hand, is insensitive to these structure changes. 13C NMR spectra have been obtained at pH 7.8 and 9.4 for D-serine dehydratase (Mr = 46,000) containing natural abundance pyridoxal 5'-phosphate and containing 13C-enriched pyridoxal 5'-phosphate. The enriched material contains two new resonances not present in the natural abundance material, one at 167.7 ppm with a linewidth of approximately 24 Hz, attributed to carbon 4' of the Schiff base in the bound coenzyme, and one at 62.7 Hz with a linewidth of approximately 48 Hz attributed to carbon 5' of the bound Schiff base. A large number of resonances due to individual amino acids are assigned. The NMR spectrum changes only slightly when the pH is raised to 9.4. The widths of the two enriched coenzyme resonances indicate that the coenzyme is rather rigidly bound to the enzyme but probably has limited motional freedom relative to the protein. 13C NMR spectra have been obtained for L-glutamate decarboxylase containing natural abundance pyridoxal 5'-phosphate and 13C-enriched pyridoxal 5'-phosphate. Under conditions where the two enriched 13C resonances are clearly visible in D-serine dehydratase, no resonances are visible in enriched L-glutamate decarboxylase, presumably because the coenzyme is rigidly bound to the protein and the 300,000 molecular weight of this enzyme produces very short relaxation times for the bound coenzyme and thus very broad lines.  相似文献   

12.
13.
Cometabolic biodegradation prcesses are important for bioremediation of hazardous waste sites. However, these proceeses are not well understood and have not been modeled thoroughly. Traditional Michaelis-Menten kinetics models often are used, but toxic effects and bacterial responses to toxicity may cause changes in enzyme levels, rendering such models inappropriate. In this article, a conceptual and mathematical model of cometabolic enzyme kinetics i described. Model derivation is based on enzyme/growth-substrate/nongrowth-substrate interaction and incorporates enzyme inhibition (caused by the presence of a cometabolic compound), inactivation (resulting from toxicity of a cometabolic product), and recovery (associated with bacterial synthesis of new enbzyme in response to inactivation). The mathematical model consists of a system of two, nonlinear ordinary differential equations that can be solved implicitly using numerical methods, providing estimates of model parameters. Model analysis shows that growth substraate adn nongrowth substrate oxidation rates are related by a dimensionless constant. Reliability of tehy model solution prcedure is verifiedl by abnalyzing data ses, containing random error, from simulated experimentss with trichhloroethyylene (TCE) degradation by ammonia-oxidizing bacterialunder various conditions. Estimation of the recovery rate contant is deterimined to be sensitive to intial TCE concentration. Model assumptions are evaluated in a companion article using data from TCE degradation experiments with amoniaoxidizing bacteria. (c) 1995 John Wiley & Sons, Inc.  相似文献   

14.
This study describes the further extension of the resonant recognition model for the analysis and prediction of protein--protein and protein--DNA structure/function dependencies. The model is based on the significant correlation between spectra of numerical presentations of the amino acid or nucleotide sequences of proteins and their coded biological activity. According to this physico-mathematical method, it is possible to define amino acids in the sequence which are predicted to be the most critical for protein function. Using sperm whale myoglobin, human hemoglobin and hen egg white lysozyme as model protein examples, sets of predicted amino acids, or so-called 'hot spots', have been identified within the tertiary structure. It was found for each protein that the predicted 'hot spots', which are distributed along the primary sequence, are spatially grouped in a dome-like arrangement over the active site. The identified amino acids did not correspond to the amino acid residues which are involved in the chemical reaction site of these proteins. It is thus proposed that the resonant recognition model helps to identify amino acid residues which are important for the creation of the molecular structure around the catalytic active site and also the associated physical field conditions required for biorecognition, docking of the specific substrate and full biological activity.  相似文献   

15.
Citizen science projects have the potential to advance science by increasing the volume and variety of data, as well as innovation. Yet this potential has not been fully realized, in part because citizen science data are typically not widely shared and reused. To address this and related challenges, we built CitSci.org (see www.citsci.org), a customizable platform that allows users to collect and generate diverse datasets. We hope that CitSci.org will ultimately increase discoverability and confidence in citizen science observations, encouraging scientists to use such data in their own scientific research.  相似文献   

16.
17.
树干径流模型   总被引:4,自引:1,他引:4  
以红松代表针叶树,栎树代表阔叶树,通过模拟实验研究树干径流过程,根据实验结果从机理上构造了模型。树干径流模型为一个方程组用“辗转迭代法”求出了数值解。该方程组基本上揭示了树干径流的规律,从实验与模拟结果对比分析中得到了佐证。  相似文献   

18.
An electrokinetic model was developed to calculate the time course of electrical parameters, ion fluxes, and intracellular ion activities for experiments performed in airway epithelial cells. Model variables included cell [Na], [K], [Cl], volume, and membrane potentials. The model contained apical membrane Cl, Na, and K conductances, basolateral membrane K conductance, Na/K/2 Cl and Na/Cl symport, and 3 Na/2 K ATPase, and a paracellular conductance. Transporter permeabilities and ion saturabilities were determined from reported ion flux data and membrane potentials in intact canine trachea. Without additional assumptions, the model predicted accurately the measured short-circuit current (Isc), cellular conductances, voltage-divider ratios, open-circuit potentials, and the time course of cell ion composition in ion substitution experiments. The model was used to examine quantitatively: (a) the effect of transport inhibitors on Isc and membrane potentials, (b) the dual role of apical Cl and basolateral K conductance in cell secretion, (c) whether the basolateral symporter requires K, and (d) the regulation of apical Cl conductance by cAMP and Ca-dependent signaling pathways. Model predictions gave improved understanding of the interrelations among transporting systems and in many cases gave surprising predictions that were not obvious without a detailed model. The model developed here has direct application to secretory or absorptive epithelial cells in the kidney thick ascending limb, cornea, sweat duct, and intestine in normal and pathophysiological states such as cystic fibrosis and cholera.  相似文献   

19.
20.
Model misspecification and multipoint linkage analysis.   总被引:9,自引:0,他引:9  
Pairwise linkage analysis is robust to genetic model misspecification provided dominance is correctly specified, the primary effect being inflation of the recombination fraction. By contrast, we show that multipoint analysis under misspecified models is not robust when a putative disease locus is placed between close flanking markers, with potentially spuriously negative multipoint lod scores being produced. The problem is due to incorrect attribution of segregation of a disease allele and the consequent conclusion of (unlikely) double crossovers between flanking markers. As a possible solution, we propose the use of high disease allele frequencies, as this allows probabilistically for nonsegregation (through parental homozygosity or dual matings). We show analytically and through analysis of pedigree data simulated under a two-locus heterogeneity model that using a disease allele frequency of 0.05 in the dominant case and 0.25 in the recessive case is quite robust in producing positive multipoint lod scores with close flanking markers across a broad range of conditions including varying allele frequencies, epistasis, genetic heterogeneity and phenocopies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号