首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photosynthetic capacity on area (P Nmaxa ) and mass bases (P Nmaxm ) and specific leaf mass (SLM) were determined in twenty adult woody species of Cerrado under field conditions. The mean values obtained for P Nmaxa [11.4 μmol(CO2) m-2 s-1], P Nmaxm [78 μmol(CO2) kg-1 s-1] and SLM (150 g m-2) were compared with mean values found for deciduous and evergreen sclerophyllous species growing also under field conditions. P Nmaxm and SLM were statistically different among deciduous, Cerrado and evergreen sclerophyllous species. There was a gradual decrease of P Nmaxm and an increase of SLM from deciduous to evergreen sclerophyllous species. Woody species of Cerrado showed mean values of P Nmaxm and SLM between deciduous and evergreen species indicating its brevideciduousness. The comparison using mean values of P Nmaxm and SLM belonging to deciduous, Cerrado and evergreen sclerophyllous species was suitable to confirm the interdependence among leaf life span, structure and physiological attributes of leaf. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

2.
The function of chloroplast ferredoxin quinone reductase (FQR)-dependent flow was examined by comparing a wild type tobacco and a tobacco transformant (ΔndhB) in which the ndhB gene had been disrupted with their antimycin A (AA)-fed leaves upon exposure to chilling temperature (4 °C) under low irradiance (100 μmol m−2 s−1 photon flux density). During the chilling stress, the maximum photochemical efficiency of photosystem (PS) 2 (Fv/Fm) decreased markedly in both the controls and AA-fed leaves, and P700+ was also lower in AA-fed leaves than in the controls, implying that FQR-dependent cyclic electron flow around PS1 functioned to protect the photosynthetic apparatus from chilling stress under low irradiance. Under such stress, non-photochemical quenching (NPQ), particularly the fast relaxing NPQ component (qf) and the de-epoxidized ratio of the xanthophyll cycle pigments, (A+Z)/(V+A+Z), formed the difference between AA-fed leaves and controls. The lower NPQ in AA-fed leaves might be related to an inefficient proton gradient across thylakoid membranes (ΔpH) because of inhibiting an FQR-dependent cyclic electron flow around PS1 at chilling temperature under low irradiance.  相似文献   

3.
Primary leaves of young plants of common bean (Phaseolus vulgaris cv. Carioca and Negro Huasteco) and cowpea (Vigna unguiculata Walp cv. Epace 10) were exposed to high irradiance (HI) of 2 000 μmol m−2 s−1 for 10, 20, and 30 min. The initial fluorescence (F0) was nearly constant in response to HI in each genotype except for Carioca. A distinct reduction of maximum fluorescence (Fm) was clearly observed in stressed genotypes of beans after 20 min followed by a slight recovery for the longer stress times. In common bean, the maximum quantum yield (Fv/Fm) was reduced slowly from 10 to 30 min of HI. In cowpea, only a slight reduction of Fv/Fm was observed at 20 min followed by recovery to normal values at 30 min. HI resulted in changes in the photochemical (qP) and non-photochemical (qN) quenching in both species, but to a different extent. In cowpea plants, more efficiency in the use of the absorbed energy under photoinhibitory conditions was related to increase in qP and decrease in qN. In addition, lipid peroxidation changed significantly in common bean genotypes with an evident increase after 20 min of HI. Hence the photosynthetic apparatus of cowpea was more tolerant to HI than that of common bean and the integrity of cowpea cell membranes was apparently maintained under HI.  相似文献   

4.
Over-expression of chloroplastic glycerol-3-phosphate acyltransferase gene (LeGPAT) increased unsaturated fatty acid contents in phosphatidylglycerol (PG) of thylakoid membrane in tomato. The effect of this increase on the xanthophyll cycle and chloroplast antioxidant enzymes was examined by comparing wild type (WT) tomato with the transgenic (TG) lines at chilling temperature (4 °C) under low irradiance (100 μmol m−2 s−1). Net photosynthetic rate and the maximal photochemical efficiency of photosystem (PS) 2 (Fv/Fm) in TG plants decreased more slowly during chilling stress and Fv/Fm recovered faster than that in WT plants under optimal conditions. The oxidizable P700 in both WT and TG plants decreased during chilling stress under low irradiance, but recovered faster in TG plants than in the WT ones. During chilling stress, non-photochemical quenching (NPQ) and the de-epoxidized ratio of xanthophyll cycle in WT plants were lower than those of TG tomatoes. The higher activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX) in TG plants resulted in the reduction of O2 −· and H2O2 contents during chilling stress. Hence the increase in content of unsaturated fatty acids in PG by the over-expression of LeGPAT could alleviate photoinhibition of PS2 and PS1 by improving the de-epoxidized ratio of xanthophyll cycle and activities of SOD and APX in chloroplast.  相似文献   

5.
To elucidate whether dipterocarp species, dominant late-successional species of tropical forests in Southeast Asia, actually have a disadvantage when planted on open site in terms of their photosynthetic characteristics, we investigated photosynthesis in dipterocarp seedlings planted in the open on degraded sandy soils in southern Thailand. These species were compared with seedlings of Acacia mangium Willd., a fast-growing tropical leguminous tree, which is often planted on degraded open site in Southeast Asia. The dipterocarp seedlings had an irradiance-saturated net photosynthetic rate (P N), stomatal conductance (g s), carboxylation efficiency, and photosynthetic capacity comparable to or superior to those of A. mangium. In particular, seedlings of Dipterocarpus obtusifolius Teijsm. ex Miq. showed an irradian-ce-saturated P N of 21 μmol m−2 s−1, a value higher than any previously reported for a dipterocarp species, accompanied by high g s (0.7 mol m−2 s−1) and high photosynthetic capacity. Thus dipterocarp species do not necessarily have a disadvantage in terms of their photosynthetic characteristics on open sites with degraded sandy soils.  相似文献   

6.
We studied changes in the chlorophyll (Chl) fluorescence components in chilling-stressed sweet potato (Ipomoea batatas L. Lam) cv. Tainung 57 (TN57, chilling-tolerant) and cv. Tainung 66 (TN66, chilling-susceptible). Plants under 12-h photoperiod and 400 μmol m−2 s−1 irradiance at 24/20 °C (day/night) were treated by a 5-d chilling period at 7/7 °C. Compared to TN66, TN57 exhibited a significantly greater basic Chl fluorescence (F0), maximum fluorescence (Fm), maximum fluorescence yield during actinic irradiation (Fm′ ), and the quantum efficiency of electron transport through photosystem 2, PS2 (ΦPS2). Chilling stress resulted in decrease in the potential efficiency of PS2 (Fv/Fm), ΦPS2, non-photochemical fluorescence quenching (NPQ), non-photochemical quenching (qN), and the occurrence of chilling injury in TN66. Chilling increased the likelihood of photoinhibition, characterized by a decline in the Chl fluorescence of both cultivars, and photoinhibition during low temperature stress generally occurred more rapidly in TN66.  相似文献   

7.
The effect of drought stress (DS) on photosynthesis and photosynthesis-related enzyme activities was investigated in F. pringlei (C3), F. floridana (C3–C4), F. brownii (C4-like), and F. trinervia (C4) species. Stomatal closure was observed in all species, probably being the main cause for the decline in photosynthesis in the C3 species under ambient conditions. In vitro ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) and stromal fructose 1,6-bisphosphatase (sFBP) activities were sufficient to interpret the net photosynthetic rates (P N), but, from the decreases in P N values under high CO2 (C a = 700 μmol mol− 1) it is concluded that a decrease in the in vivo rate of the RuBPCO reaction may be an additional limiting factor under DS in the C3 species. The observed decline in the photosynthesis capacity of the C3–C4 species is suggested to be associated both to in vivo decreases of RuBPCO activity and of the RuBP regeneration rate. The decline of the maximum P N observed in the C4-like species under DS was probably attributed to a decrease in maximum RuBPCO activity and/or to decrease of enzyme substrate (RuBP or PEP) regeneration rates. In the C4 species, the decline of both in vivo photosynthesis and photosynthetic capacity could be due to in vivo inhibition of the phosphoenolpyruvate carboxylase (PEPC) by a twofold increase of the malate concentration observed in mesophyll cell extracts from DS plants.  相似文献   

8.
Kao  Wen-Yuan  Tsai  Hung-Chieh 《Photosynthetica》1999,37(3):405-412
Kandelia candel (L.) Druce is the dominant mangrove species on the west coast of northern Taiwan. We have measured the net photosynthetic rate (P N) and chlorophyll (Chl) a fluorescence of seedlings grown at combinations of two nitrogen (0.01 and 0.1 mM) and two NaCl (250 and 430 mM NaCl) controls. With the same nitrogen level, seedlings grown at higher salinity (HS) had a significantly lower P N and stomatal conductance (g s) than those at lower salinity (LS). An increase in nitrogen availability significantly elevated P N and g s of the LS-grown seedlings. Compared to dark adapted leaves, the maximum quantum yield of photosystem 2 (PS2) (Fv/Fm) of leaves exposed to PFDs of 1200 and 1600 μmol m-2 s-1 for 2 h was significantly reduced. The degree of Fv/Fm reduction differed among leaves of the four types of treated plants. Chl fluorescence quenching analysis revealed differences among the examined plants in coefficients of non-photochemical and photochemical quenching. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
Seasonal reproduction in some Arctic Laminariales coincides with increased UV-B radiation due to stratospheric ozone depletion and relatively high water temperatures during polar spring. To find out the capacity to cope with different spectral irradiance, the kinetics of photosynthetic recovery was investigated in zoospores of four Arctic species of the order Laminariales, the kelps Saccorhiza dermatodea, Alaria esculenta, Laminaria digitata, and Laminaria saccharina. The physiology of light harvesting, changes in photosynthetic efficiency and kinetics of photosynthetic recovery were measured by in vivo fluorescence changes of Photosystem II (PSII). Saturation irradiance of freshly released spores showed minimal I k values (photon fluence rate where initial slope intersects horizontal asymptote of the curve) values ranging from 13 to 18 μmol photons m−2 s−1 among species collected at different depths, confirming that spores are low-light adapted. Exposure to different radiation spectra consisting of photosynthetically active radiation (PAR; 400–700 nm), PAR+UV-A radiation (UV-A; 320–400 nm), and PAR+ UV-A+UV-B radiation (UV-B; 280–320 nm) showed that the cumulative effects of increasing PAR fluence and the additional effect of UV-A and UV-B radiations on photoinhibition of photosynthesis are species specific. After long exposures, Laminaria saccharina was more sensitive to the different light treatments than the other three species investigated. Kinetics of recovery in zoospores showed a fast phase in S. dermatodea, which indicates a reduction of the photoprotective process while a slow phase in L. saccharina indicates recovery from severe photodamage. This first attempt to study photoinhibition and kinetics of recovery in zoospores showed that zoospores are the stage in the life history of seaweeds most susceptible to light stress and that ultraviolet radiation (UVR) effectively delays photosynthetic recovery. The viability of spores is important on the recruitment of the gametophytic and sporophytic life stages. The impact of UVR on the zoospores is related to the vertical depth distribution of the large sporophytes in the field.  相似文献   

10.
The effect of prolonged illumination (60 min) with photosynthetically active monochromatic radiation of low intensity (3 μmol m−2 s−1) and high intensity (60 μmol m−2 s−1), corresponding to the physiological conditions and light stress conditions, respectively, was studied in the algae Nitellopsis obtusa. Illumination of Nitellopsis obtusa cells with strong light was associated with activation of the xanthophyll cycle, manifested by the deepoxidation of violaxanthin and accumulation of antheraxanthin and zeaxanthin. At the same time, the efficient singlet excitation quenching in the photosynthetic apparatus was activated, as demonstrated by the decrease in the intensity of the chlorophyll a fluorescence emission by ca 50 %. The difference of the fluorescence excitation spectra recorded before and after the light treatment match the difference absorption spectrum of the xanthophyll cycle pigments. The illumination with low light intensity resulted also in the chlorophyll a fluorescence quenching but the effect was very small (less than 10 %). The fluorescence quenching is interpreted in terms of the energy transfer between the Qy energy level of chlorophyll a and the 21 Ag energy level of zeaxanthin. The singlet energy levels of carotenoids, corresponding to the green spectral region, are also taken into consideration in the interpretation of the excitation energy exchange between the carotenoids and chlorophylls. Possible molecular mechanisms involved in the activation of the strong and the weak excitation quenching, including violaxanthin isomerization, and possible physiological functions of such pathways of energy transfer are discussed.  相似文献   

11.
We analyzed the physiological response of the Mediterranean evergreen species (Arbutus unedo L., Cistus incanus L., Erica arborea L., Erica multiflora L., Phillyrea latifolia L., Pistacia lentiscus L., Quercus ilex L., and Rosmarinus officinalis L.) to winter low air temperatures. In occasion of two cold events, in February 2005 (T min = 1.8 °C), and January 2006 (T min = 3.1 °C and minimum T air = −0.40 °C during the nights preceding the measurements), R. officinalis, C. incanus, and E. multiflora had the highest net photosynthetic rate (P N) decrease (73 %, mean value) with respect to the winter P N maximum, followed by A. unedo (62 %), P. latifolia and P. lentiscus (54 %, mean value), E. arborea (49 %), and Q. ilex (44 %). Among the considered species, Q. ilex was able to maintain P N near the maximum for 150 min during the day, A. unedo, P. lentiscus, E. arborea, P. latifolia, E. multiflora, and R. officinalis for 60 min, and C. incanus for 30 min. The calculated mean winter daily P N ranged from 7.9±0.6 (Q. ilex) to 2.8±0.5 (R. officinalis) μmol(CO2) m−2 s−1. During the study period, chlorophyll (Chl) content decreased by 36 % on an average in the two cold events, and the carotenoid (Car) to Chl ratio increased by 133 % in Q. ilex, having the highest value in January 2006. Principal component analysis underlined the highest cold resistance of Q. ilex by high P N and high Car/Chl ratio. On the contrary, R. officinalis and C. incanus had the lowest cold resistance by the highest P N decrease and the lowest Car/Chl (C. incanus). Thus, winter stress could be an additional limitation to Mediterranean evergreen species production, and the capacity of the species to maintain P N near 90–100 % during winter is determinant for biomass accumulation.  相似文献   

12.
Seedlings of eight forest maple (Acer L.) species were grown outdoors through a full season under two irradiation treatments: (a) “gap edge” with a photosynthetic photon flux density of 30 μmol m-2 s-1 and a red:far-red ratio of 0.55, and (b) “gap centre” with 400 μmol m-2 s-1 and a red:far-red ratio of 1.12. Area-based leaf nitrogen concentration was greater in gap centre-grown seedlings, whereas, except for A. saccharum, area-based chlorophyll (Chl) (a+b) was higher in gap edge-grown plants. There was also a significantly lower Chl a/b ratio in gap edge-grown plants. Maximum photosynthetic rate (P max ) was 60 % higher in the gap-centre treatment. These results are consistent with the functional expectation that shade-acclimated plants will increase their radiant-energy harvesting capacity as a result of limited photon input while gap-acclimated plants will operate more efficiently under bright irradiance by increasing their carboxylation capacity. This inverse relationship between the capacity of the light-harvesting component and the carboxylation component is, however, only partially supported by Chl fluorescence measurements of intact leaves. Compared to gap centre-grown plants, the lower total fluorescence quenching in gap edge-grown plants indicated a lower carboxylation capacity that was in accord with the observed P max . However, edge-grown seedlings did not show the expected improvement in light-harvesting efficiency and reduction in electron transport of photosystem 2 inferred from their marginally greater t1/2 and lower Fv/Fm, respectively. Hence while maples acclimated to different irradiation levels by adjusting leaf N and Chl contents, they showed limited acclimation potential at the photosystem level. Variations in the leaf traits examined had only minor effect on low irradiance photosynthesis and sunfleck utilization. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
Koblížek  M.  Ciscato  M.  Komenda  J.  Kopencký  J.  Šiffel  P.  Masojídek  J. 《Photosynthetica》1999,37(2):307-323
The dark-adapted cells of the green alga Spongiochloris sp. were exposed to "white light" of 1000 μmol(photon) m−2 s−1 for 2 h and then dark adapted for 1.5 h. Changes of photochemical activities during photoadaptation were followed by measurement of chlorophyll (Chl) fluorescence kinetics, 77 K emission spectra, photosynthetic oxygen evolution, and pigment composition. We observed a build-up of slowly-relaxing non-photochemical quenching which led to a decrease of the Fv/Fm parameter and the connectivity. In contrast to the depression of Fv/Fm (35 %) and the rise of non-photochemical quenching (∼ 1.6), we observed an increase in effective absorption cross-section (20 %), Hill reaction (30 %), photosynthetic oxygen evolution (80 %), and electron transport rate estimated from the Chl fluorescence analysis (80 %). We showed an inconsistency in the presently used interpretation schemes, and ascribe the discrepancy between the increase of effective absorption cross-section and the photosynthetic activities on one side and the effective non-photochemical quenching on the other side to the build-up of a quenching mechanism which dissipates energy in closed reaction centres. Such a type of quenching changes the ratio between thermal dissipation and fluorescence without any effect on photochemical yield. In this case the Fv/Fm ratio cannot be used as a measure of the maximum photochemical yield of PS2. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
In sunflower (Helianthus annuus L.) grown under controlled conditions and subjected to drought by withholding watering, net photosynthetic rate (P N) and stomatal conductance (g s) of attached leaves decreased as leaf water potential (Ψw) declined from −0.3 to −2.9 MPa. Although g s decreased over the whole range of Ψw, nearly constant values in the intercellular CO2 concentrations (C i) were observed as Ψw decreased to −1.8 MPa, but C i increased as Ψw decreased further. Relative quantum yield, photochemical quenching, and the apparent quantum yield of photosynthesis decreased with water deficit, whereas non-photochemical quenching (qNP) increased progressively. A highly significant negative relationship between qNP and ATP content was observed. Water deficit did not alter the pyridine nucleotide concentration but decreased ATP content suggesting metabolic impairment. At a photon flux density of 550 μmol m−2 s−1, the allocation of electrons from photosystem (PS) 2 to O2 reduction was increased by 51 %, while the allocation to CO2 assimilation was diminished by 32 %, as Ψw declined from −0.3 to −2.9 MPa. A significant linear relationship between mean P N and the rate of total linear electron transport was observed in well watered plants, the correlation becoming curvilinear when water deficit increased. The maximum quantum yield of PS2 was not affected by water deficit, whereas qP declined only at very severe stress and the excess photon energy was dissipated by increasing qNP indicating that a greater proportion of the energy was thermally dissipated. This accounted for the apparent down-regulation of PS2 and supported the protective role of qNP against photoinhibition in sunflower.  相似文献   

15.
A yellow leaf colouration mutant (named ycm) generated from rice T-DNA insertion lines was identified with less grana lamellae and low thylakoid membrane protein contents. At weak irradiance [50 μmol(photon) m−2 s−1], chlorophyll (Chl) contents of ycm were ≈20 % of those of WT and Chl a/b ratios were 3-fold that of wild type (WT). The leaf of ycm showed lower values in the actual photosystem 2 (PS2) efficiency (ΦPS2), photochemical quenching (qP), and the efficiency of excitation capture by open PS2 centres 1 (Fv′/Fm′) than those of WT, except no difference in the maximal efficiency of PS2 photochemistry (Fv/Fm). With progress in irradiance [100 and 200 μmol(photon) m−2 s−1], there was a change in the photosynthetic pigment stoichiometry. In ycm, the increase of total Chl contents and the decrease in Chl a/b ratio were observed. ΦPS2, qP, and Fv′/Fm′ of ycm increased gradually along with the increase of irradiance but still much less than in WT. The increase of xanthophyll ratio [(Z+A)/(V+A+Z)] associated with non-photochemical quenching (qN) was found in ycm which suggested that ycm dissipated excess energy through the turnover of xanthophylls. No significant differences in pigment composition were observed in WT under various irradiances, except Chl a/b ratio that gradually decreased. Hence the ycm mutant developed much more tardily than WT, which was caused by low photon energy utilization independent of irradiance.  相似文献   

16.
Winter wheat (Triticum aestivum L.) cultivars Yangmai 9 (water-logging tolerant) and Yumai 34 (water-logging sensitive) were subjected to water-logging (WL) from 7 d after anthesis to determine the responses of photosynthesis and anti-oxidative enzyme activities in flag leaf. At 15 d after treatment (DAT), net photosynthetic rate under WL was only 3.7 and 8.9 μmol(CO2) m−2 s−1 in Yumai 34 and Yangmai 9, respectively, which was much lower than in the control. Ratios of variable to maximum and variable to initial fluorescence, actual photosynthetic efficiency, and photochemical quenching were much lower, while initial fluorescence and non-photochemical quenching were much higher under WL than in control, indicating damage to photosystem 2. WL decreased activities of superoxide dismutase and catalase in both cultivars, and activity of peroxidase (POD) in Yumai 34, while POD activity in Yangmai 9 was mostly increased. The obvious decrease in the amount of post-anthesis accumulated dry matter, which was redistributed to grains, also contributed to the grain yield loss under WL.  相似文献   

17.
Quercus ilex plants grown on two different substrates, sand soil (C) and compost (CG), were exposed to photosynthetic photon flux densities (PPFD) at 390 and 800 μmol(CO2) mol−1 (C390 and C800). At C800 both C and CG plants showed a significant increase of net photosynthetic rate (P N) and electron transport rate (ETR) in response to PPFD increase as compared to C390. In addition, at C800 lower non-photochemical quenching (NPQ) values were observed. The differences between C390 and C800 were related to PPFD. The higher P N and ETR and the lower dissipative processes found in CG plants at both CO2 concentrations as compared to C plants suggest that substrate influences significantly photosynthetic response of Q. ilex plants. Moreover, short-term exposures at elevated CO2 decreased nitrate photo-assimilation in leaves independently from substrate of growth.  相似文献   

18.
Photosynthetic CO2 uptake and chlorophyll (Chl) a fluorescence of C4 perennial grasses, Miscanthus floridulus (Labill) Warb and M. transmorrisonensis Hayata, from altitudes in central Taiwan of 390 and 2700 m, respectively, were studied at 10 and 25 °C to find if the species differ in their photosynthetic responses to a low temperature, and whether their photosystems 2 become more susceptible to the photoinhibition at low temperatures. For both species, the maximum photosynthetic rate (Pmax) was reduced when the leaves were exposed to 10 °C. At irradiances higher than 400 μmol m-2 s-1, the values of Fv/Fm were reduced in both species at 10 °C but not at 25 °C, which indicated the photoinhibition at 10 °C. Reductions in Pmax and the values of Fv/Fm at 10 °C were lesser in M. transmorrisonensis than in M. floridulus. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
During an open-top chamber experiment performed in a mountain stand of young (12-year-old) Norway spruce (Picea abies [L.] Karst.), the trees were exposed to one of two CO2 concentrations (ambient CO2, AC, or AC + 350 μmol mol-1 = elevated CO2, EC) continuously over three growing seasons. To evaluate the EC influence, measurements of the relations between the rate of net CO2 uptake (P N ) and incidental photosynthetically active photon flux density (PPFD), as well as the content of photosynthetic pigments and chlorophyll (Chl) a fluorescence were taken in the third growing season. The short-term response to EC was evident mainly on ribulose-1,5-bisphosphate carboxylase/oxygenase kinetics without any significant change to the utilization of radiant energy. The long-term effect of EC was responsible for a decrease in P N , content of Chl a + b, Fv/Fm ratio, quantum yield of fluorescence, and photochemical quenching. Changes of stoichiometry between the electron transport, Calvin cycle and the end-product synthesis were confirmed for responses to the long-term import of EC and led to a definition of the photosynthetic acclimation to EC in Norway spruce. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
Thick sun leaves have a larger construction cost per unit leaf area than thin shade leaves. To re-evaluate the adaptive roles of sun and shade leaves, we compared the photosynthetic benefits relative to the construction cost of the leaves. We drew photosynthetically active radiation (PAR)-response curves using the leaf-mass-based photosynthetic rate to reflect the cost. The dark respiration rates of the sun and shade leaves of mulberry (Morus bombycis Koidzumi) seedlings did not differ significantly. At irradiances below 250 μmol m−2 s−1, the shade leaves tended to have a significantly larger net photosynthetic rate (P N) than the sun leaves. At irradiances above 250 μmol m−2 s−1, the P N did not differ significantly. The curves indicate that plants with thin shade leaves have a larger daily CO2 assimilation rate per construction cost than those with thick sun leaves, even in an open habitat. These results are consistently explained by a simple model of PAR extinction in a leaf. We must target factors other than the effective assimilation when we consider the adaptive roles of thick sun leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号