首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bovine cDNA clones containing coding sequences for growth hormone, prolactin, alpha subunit, and luteinizing hormone beta (LH beta) have been used to quantitate their respective mRNA concentrations in anterior pituitary glands isolated from ovariectomized ewes, or from ovariectomized ewes treated for three weeks with estradiol. Concentrations of mRNAs for prolactin or growth hormone remained unchanged in either physiological state. In contrast, treatment with estradiol resulted in a 98% decrease of mRNA for LH beta, relative to untreated animals. This change in mRNA was associated with a similar decrease in the concentrations of pituitary and serum LH. Administration of estradiol also led to a reduction (86%) of alpha subunit mRNA. These results suggest that estrogen regulates the expression of the genes encoding both the alpha and LH beta subunit prior to translation. Furthermore, the pronounced effect of estradiol on the concentrations of mRNAs for alpha subunit and LH beta suggest that the assembly of mature glycoprotein hormones may not be limited solely by the rate of accumulation of the beta subunit.  相似文献   

2.
To determine the direct, chronic actions of progesterone (P4) and estrogen (estradiol, E2) on anterior pituitary synthesis and release of LH, 24 western range ewes underwent hypothalamic-pituitary disconnection (HPD) and ovariectomy (OVX) during the breeding season and were pulsed with exogenous GnRH with or without steroid replacement. Sequential blood samples were collected before infusion of GnRH and on Days 7 and 14 of GnRH infusion. Silastic capsules of P4 and/or E2 were implanted s.c. on Day 7 and remained in place throughout the experiment. Control ewes received only GnRH infusion. Blood sampling was centered around three exogenous GnRH pulses. After the final blood sampling, pituitaries were collected and stored at -70 degrees C. Concentrations of LH in serum and pituitaries were determined by RIA. Relative concentrations of LH subunit mRNAs were determined by Fast Blot analysis. Simultaneous implantation of P4 and E2 lowered LH pulse amplitude 70% and mean serum levels 30% compared with controls. Neither steroid alone affected LH release. E2 alone or in combination with P4 lowered LH-beta subunit mRNA concentrations 40% compared with controls while alpha-subunit levels were unchanged. Only E2 alone altered the pituitary content of LH, causing a 60% decrease. We conclude that the combination of P4 and E2 is necessary for inhibition of GnRH-stimulated LH secretion. E2 inhibits GnRH-stimulated LH-beta subunit mRNA concentrations but does not affect alpha-subunit mRNA concentrations. The control of pituitary LH content by P4 and E2 is the result of changes in both LH-beta subunit mRNA concentrations and LH secretion.  相似文献   

3.
To test the hypothesis that the synthesis and secretion of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) are differentially regulated after depletion by oestradiol, circulating concentrations of oestradiol were maintained at approximately 30 pg/ml for 16 days in each of 35 ovariectomized ewes. Five other ovariectomized ewes that did not receive oestradiol implants served as controls. After treatment with oestradiol, implants were removed and pituitary glands were collected from each of 5 ewes at 0, 2, 4, 8, 12, 16 and 32 days thereafter and amounts of mRNA for gonadotrophin subunits and contents of LH and FSH were quantified. Before collection of pituitary glands, blood samples were collected at 10-min intervals for 6 h. Treatment with oestradiol reduced (P less than 0.05) steady-state concentrations of LH beta- and FSH beta-subunit mRNAs and pituitary and serum concentrations of these hormones. At the end of treatment the amount of mRNA for FSH beta-subunit was reduced by 52% whereas that for LH beta-subunit was reduced by 93%. Steady-state concentrations of mRNA for FSH beta-subunit returned to control values within 2 days of removal of oestradiol, but 8 days were required for concentrations of FSH in the pituitary and serum to return to control values. Steady-state concentrations of mRNA for LH beta-subunit and mean serum concentrations of LH returned to control values by Day 8, but pituitary content of LH may require as long as 32 days to return to control levels. Therefore, replenishment of FSH beta-subunit mRNA preceded increases in pituitary and serum concentrations of FSH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
To evaluate the effect of progesterone on the synthesis and secretion of gonadotropins, ovariectomized ewes either were treated with progesterone (n = 5) for 3 wk or served as controls (n = 5) during the anestrous season. After treatment for 3 wk, blood samples were collected from progesterone-treated and ovariectomized ewes. After collection of blood samples, hypothalamic and hypophyseal tissues were collected from all ewes. Half of each pituitary was used to determine the content of luteinizing hormone (LH) and follicle-stimulating hormone (FSH), and the number of receptors for gonadotropin-releasing hormone (GnRH). The amounts of mRNA for LH beta subunit, FSH beta subunit, alpha subunit, growth hormone, and prolactin were measured in the other half of each pituitary. Treatment with progesterone reduced mean serum concentrations of LH (p less than 0.001) but ot FSH (p greater than 0.05). Further, progesterone decreased (p less than 0.05) the total number of pulses of LH. We were unable to detect pulsatile release of FSH. Hypothalamic content of GnRH, number of receptors for GnRH, pituitary content of gonadotropins and mRNA for LH beta subunit, FSH beta subunit, alpha subunit, growth hormone, and prolactin were not affected (p greater than 0.05) by treatment with progesterone. Thus, after treatment with progesterone, serum concentrations of LH (but not FSH) are decreased. This effect, however, is not due to a decrease in the steady-state amount of mRNA for LH beta or alpha subunits.  相似文献   

5.
alpha-Melanocyte-stimulating hormone (alpha-MSH) was measured in the mediobasal hypothalamus (MH), median eminence (ME), preoptic-suprachiasmatic area (POA-SCN), anterior (AL), and posterior lobes (PL) of the pituitary gland during the gestational and postpartum periods in the rat. The content of alpha-MSH in the MH and POA-SCN compared to estrous levels was lower during the later days of gestation and decreased further in the MH during lactation in association with the elevated plasma prolactin (Prl). Distinct increases in the ME content of alpha-MSH compared to estrous levels occurred on Days 8 and 12 of the gestational period and Day 14 of the postpartum period. A significant increase in PL content of alpha-MSH compared to Days 5-11 and 17-20 occurred on Day 4 of gestation, and no significant changes were detected in the AP concentration of alpha-MSH throughout the period studied. In vitro, PLs and ALs from females on Day 4 of gestation secreted more alpha-MSH into the incubation medium than tissues from animals on Day 20. These results suggest that alpha-MSH of both brain and pituitary origin may play a role in mediating some of the physiological changes which occur during pregnancy and lactation.  相似文献   

6.
The essential role played by progesterone in the maintenance of pregnancy is unequivocal; however, the effects of progesterone on the secretory patterns of placental and pituitary molecules during the gestation period are not well defined. The objective of this study was to describe pregnancy-associated glycoprotein (PAG) concentrations (measured by RIA-497 and RIA-Pool) in pregnant females with progesterone concentrations lower (low-P4 group, n=20) or higher (high-P4 group, n=17) than the mean of 8.74 ng/mL on Day 21 (AI=Day 0). Luteinizing hormone (LH) and prolactin concentrations were also measured in both groups. Throughout the study period, blood samples were collected on Days 0, 21, 45, 60, and 80 from 37 females that were confirmed to be pregnant. PAG concentrations measured by both RIA-497 and RIA-Pool tended to be higher in high-P4 group than in low-P4 group from Day 30 until Day 80. On Day 80, plasma PAG concentrations that were measured using RIA-497 were observed to be higher (P<0.05) in the high-P4 group than in the low-P4 group (10.2+/-8.7 ng/mL versus 6.9+/-3.8 ng/mL). Concentrations of LH on Day 60 and prolactin on Day 80 were observed to be significantly lower (P<0.05) in the high-P4 group. There was a tendency for the concentrations of LH (Days 45 and 80) and prolactin (Days 30, 45, and 60) to be lower in cows in the high-P4 group than in the low-P4 group. Our results suggest the existence of a relationship among the concentration levels of progesterone, PAG, LH, and prolactin during early pregnancy.  相似文献   

7.
Progesterone and LH concentrations were measured in the plasma of blood samples taken from forty-eight pregnant ewes on Days 100, 120 and 134 of gestation. The ewes, in two groups of twenty-four were maintained from Day 100 until parturition on two planes of nutrition which supplied daily energy and protein intakes of about 4-1 or 2-3 Mcal metabolizable energy and either 192 or 111 g digestible crude protein per ewe. Within the groups, the ewes carried one, two or three fetuses and the feed intake was adjusted according to litter size to produce a uniform nutritional state within the group. On Day 100, litter size affected the concentration of plasma progesterone (P less than 0-001), but had no effect on Days 120 or 134 when the ewes were fed according to litter size. The low feed intake however caused a significant increase in plasma progesterone concentrations. The LH concentrations showed no major changes during late pregnancy and no effect of nutrition or little size on the plasma hormone concentration was observed. It was concluded that the effect of litter size on plasma progesterone concentration recorded on Day 100 or gestation was partly mediated by level of nutrition.  相似文献   

8.
An increase in episodic release of LH is putatively the initial event leading to the onset of postpartum ovarian cyclicity in ewes. This experiment was conducted to determine the relationship between hypothalamic release of GnRH and onset of pulsatile secretion of LH during postpartum anestrus. Control ewes (n = 7) were monitored during the postpartum period to determine when normal estrous cycles resumed. In controls, the mean interval from parturition to the first postpartum estrus as indicated by a rise in serum progesterone greater than 1 ng/mg was 25.8 +/- 0.6 days. Additional ewes (n = 4-5) at 3, 7, 14, and 21 days postpartum (+/- 1 day) were surgically fitted with cannula for collection of hypophyseal-portal blood. Hypophyseal-portal and jugular blood samples were collected over a 6- to 7-h period at 10-min intervals. The number of GnRH pulses/6 h increased (p less than 0.05) from Day 3 postpartum (2.2 +/- 0.5) to Days 7 and 14 (3.6 +/- 0.2 and 3.9 +/- 0.4, respectively). A further increase (p less than 0.05) in GnRH pulse frequency was observed at Day 21 postpartum (6.4 +/- 0.4 pulses/6 h). Changes in pulsatile LH release paralleled changes observed in pulsatile GnRH release over Days 3, 7, 14, and 21 postpartum (0.83 +/- 0.3, 2.8 +/- 0.4, 2.9 +/- 0.6, and 4.0 +/- 1.1 pulses/6 h, respectively). GnRH pulse amplitude was higher at Day 21 than at Days 3, 7, or 14 postpartum. These findings suggest that an increase in the frequency of GnRH release promotes the onset of pulsatile LH release during postpartum anestrus in ewes.  相似文献   

9.
The purpose of this experiment was to determine if pituitary stores of LH could be replenished by administration of GnRH when circulating concentrations of both progesterone and estradiol-17 beta (estradiol) were present at levels observed during late gestation. Ten ovariectomized (OVX) ewes were administered estradiol and progesterone via Silastic implants for 69 days. One group of 5 steroid-treated OVX ewes was given GnRH for an additional 42 days (250 ng once every 4 h). Steroid treatment alone reduced (p less than 0.01) the amount of LH in the anterior pituitary gland by 77%. Pulsatile administration of GnRH to steroid-treated ewes resulted in a further decrease (p less than 0.01) in pituitary content of LH. Compared to the OVX ewes, concentrations of mRNAs for alpha- and LH beta-subunits were depressed (p less than 0.01) in all steroid-treated ewes, whether or not they received GnRH. The ability of the dosage of GnRH used to induce release of LH was examined by collecting blood samples for analysis of LH at 15 days and 42 days after GnRH treatment was initiated. Two of 5 and 3 of 5 steroid-treated ewes that received pulses of GnRH responded with increased serum concentrations of LH after GnRH administration during the first and second bleedings, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Bilateral lesions of the pelvic nerve (BLPN) result in dystocia, but the processes which control this effect are not fully understood. Plasma progesterone, relaxin, and luteinizing hormone (LH) concentrations were measured in blood samples taken in the morning (AM) and evening (PM) of Days 20-23 of gestation from rats with BLPN or sham neurectomy. Ten of 11 sham-operated control animals delivered their entire litters by Day 23 of gestation, but animals with BLPN did not complete parturition by Day 23 when they were sacrificed. Progesterone concentrations were greater in rats with BLPN than in sham-operated rats on Day 20 PM and Day 21 AM, but hormone concentrations declined to minimal values by Day 22 in both groups. Relaxin concentrations were greater in rats with BLPN than in sham-operated rats on Day 21 PM. Thereafter, relaxin concentrations decreased to reach minimum values on Day 23 in both groups. LH concentrations were low throughout the period of study in rats with BLPN; however, a postpartum LH surge was detected in all sham-operated animals. Data from this study indicate that the pelvic nerve does not control parturition by modulating serum relaxin and progesterone concentrations; however, these data suggest that impulses carried by the pelvic nerve influence ovarian secretion of these hormones. In addition, these data indicate that the pelvic nerve transmits stimuli from the cervix to the hypothalamus to facilitate the postpartum LH surge.  相似文献   

11.
Finnish Landrace x Southdown ewes were ovariectomized (OVX) and subjected to daily photoperiods of 16L:8D (Group I) or 8L:16D (Group II) for 84 days. Ewes were then either adrenalectomized (ADX) (N = 5 for Group I; N = 4 for Group II) or sham ADX (N = 6 for Groups I + II). After surgery, ewes in Group I were subjected to 8L:16D for 91 days and 16L:8D for 91 days whereas ewes in Group II were exposed to 16L:8D for 91 days and 8L:16D for 91 days. Oestradiol implants were inserted into all ewes on Day 148. Sequential blood samples were taken at 28, 56, 91, 119, 147 and 168 days after surgery to determine secretory profiles of LH and prolactin. Photoperiod did not influence LH release in Group I in the absence of oestradiol. Although photoperiod influenced frequency and amplitude of LH pulses in Group II before oestradiol treatment, adrenalectomy did not prevent these changes in patterns of LH release. However, in Group II the increase in LH pulse amplitude during exposure to long days was greater (P less than 0.01) in adrenalectomized ewes than in sham-operated ewes. Mean concentrations of LH increased in ADX ewes on Days 91 (P = 0.07) and 119 (P less than 0.05). Adrenalectomy failed to influence photoperiod-induced changes in mean concentrations of LH, amplitude of LH pulses and frequency of LH pulses in the presence of oestradiol. Concentrations of prolactin were influenced by photoperiod. In Groups I and II concentrations of prolactin increased (P less than 0.01) after adrenalectomy, but the magnitude of this effect decreased over time.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
During prepubertal development in the golden hamster, there are major age-related changes in the number of testicular LH/hCG receptors. Between 22 and 35 days of age, there was greater than 10-fold increase in testicular LH/hCG receptors, followed by a decrease at Day 37. Concomitant with, but preceding slightly, the changes in receptors, were increases in plasma LH and FSH and most noticeably prolactin concentrations, between Days 10 and 20 of age. Inhibition of the increases in plasma levels of prolactin by daily injections of bromocriptine, between 14 and 31 days of age, resulted in suppressed testicular and seminal vesicle weights, and decreased content and concentration of testicular LH/hCG receptors. Similarly, the premature increase in plasma prolactin concentrations in prepubertal hamsters between 6 and 20 days of age, by means of ectopic pituitary transplants, resulted in increased testicular and seminal vesicle weights, as well as an increase in the concentration of testicular LH/hCG receptors. These results strongly suggest that increases in plasma prolactin values during development are important in enhancement of the development of testicular LH/hCG receptors.  相似文献   

13.
Primiparous crossbred does were remated on Day 1 (n = 15) or 14 (n = 25) post partum and killed on Day 10 post coitum to assess their fertility. Blood samples were taken during the pre- (0-12 h post coitum) and post- (1-10 days post coitum) ovulatory periods and plasma was assayed for luteinizing hormone (LH), prolactin, oestradiol-17 beta and progesterone. Ovulation response was significantly greater (P less than 0.01) and ovulation rate significantly lower (P less than 0.001) in does mated on Day 1 than in those mated on Day 14 post partum. Does failing to ovulate on Day 14 post partum exhibited no preovulatory LH surge and had significantly lower (P less than 0.05) premating concentrations of oestradiol-17 beta and prolactin than those ovulating at this time. No significant differences in hormone concentrations were observed during the preovulatory period between does ovulating on Days 1 and 14 post partum, with the exception of oestradiol-17 beta. Concentrations of this hormone were significantly lower (P less than 0.01) in does mated on Day 1, at 1 h post coitum. We conclude that (i) fertility was affected by the remating interval after parturition, (ii) ovulation failure was associated with an absence of the preovulatory LH surge and a reduction in premating concentrations of oestradiol-17 beta and prolactin and (iii) the lower ovulation rate in early lactation was apparently caused by a reduction in ovarian competence to respond to the gonadotrophic stimulus.  相似文献   

14.
To determine the acute and chronic effects of estradiol on synthesis and secretion of LH and FSH, ovariectomized ewes were administered estradiol via silastic capsules for 0 h, 12 h, 1 day, 2 days, 4 days, 8 days, 16 days, or 32 days (n = 5/group). Concentrations of GnRH in the median eminence began to decrease within 12 h and were lower (p less than 0.05) than in control ewes from 1 to 4 days after estradiol administration was begun. Serum concentrations of LH were decreased relative to pretreatment control levels from 1 to 10 h, elevated during a preovulatory-like surge from 11 to 22 h, and then decreased and remained below 1 ng/ml for the duration of the experiment. Serum concentrations of FSH followed a pattern similar to those for LH except that the magnitude of change was smaller. Treatment with estradiol initially (12 h) reduced (p less than 0.05) quantities of mRNA for alpha-, LH beta-, and FSH beta-subunits, after which the quantities of mRNA for the subunits returned to near or above control levels by Day 2. After 8 days of treatment the amounts of mRNAs for gonadotropin subunits were again less (p less than 0.05) than those of controls, and they remained suppressed through Day 32. Pituitary concentrations of LH and FSH decreased (p less than 0.05) during the first day of treatment and remained suppressed for the duration of the experiment. Thus, estradiol had a triphasic effect on secretion of gonadotropins and steady-state levels of mRNA for the gonadotropin subunits, but not on pituitary content of gonadotropins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
With advancing pregnancy in the ewe there was a marked decline in plasma LH concentrations and pituitary LH-RH responsiveness (integrated LH release) and a marked increase in plasma prolactin values and pituitary TRH responsiveness (integrated prolactin release). In lactating ewes plasma LH levels and pituitary LH-RH responsiveness had returned to values found in the luteal phase of the normal cycle by 21 days post partum, whereas at 42 days post partum prolactin levels were still high. No interaction between TRH and LH-RH on prolactin and LH release in dioestrous ewes was detected. In non-pregnant ewes plasma prolactin levels were significantly higher in June than in January but TRH responsiveness was similar. It is concluded that, in sheep, pituitary LH secretion recovers more rapidly from the chronic negative feedback effect of oestrogens and progesterone in pregnancy than prolactin secretion recovers from the chronic positive feedback effects of oestrogens. This finding may be a contributory factor in the resistance to resumption of breeding activity.  相似文献   

16.
FSH beta, as well as LH beta, and alpha-subunit mRNA levels were examined in the pituitary glands of male rats after sex steroid replacement at various times (7, 28, or 90 days) after orchiectomy. Testosterone propionate, dihydrotestosterone propionate, or 17 beta-estradiol benzoate (E) were administered daily for 7 days before killing, to assess the role of different gonadal steroids on gonadotropin subunit mRNA levels. Subunit mRNAs were determined by blot hybridization using rat FSH beta genomic DNA, and alpha and LH beta cDNAs. At all time points, alpha and LH beta mRNAs increased after gonadectomy and fell toward normal levels with either androgen or estrogen replacement. FSH beta mRNA levels increased variably postcastration: 4-fold at 7 days, 2-fold at 28 days, and 4- to 5-fold at 90 days. Although E replacement uniformly suppressed FSH beta mRNAs, neither testosterone propionate nor dihydrotestosterone propionate administration suppressed FSH beta mRNA levels at any time point after orchiectomy. These data demonstrate that there is a relative lack of negative regulation of FSH beta mRNA levels by androgens in a paradigm in which E administration results in marked negative regulation of FSH beta mRNA levels. Thus, in the male rat, estrogens negatively regulate all three gonadotropin subunit mRNA levels while androgens negative regulate LH beta and alpha-subunit but fail to suppress FSH beta mRNAs.  相似文献   

17.
Changes in the frequency of GnRH and LH pulses have been shown to occur between the luteal and preovulatory periods in the ovine estrous cycle. We examined the effect of these different frequencies of GnRH pulses on pituitary concentrations of LH and FSH subunit mRNAs. Eighteen ovariectomized ewes were implanted with progesterone to eliminate endogenous GnRH release during the nonbreeding season. These animals then received 3 ng/kg body weight GnRH in frequencies of once every 4, 1, or 0.5 h for 4 days. These frequencies represent those observed during the luteal and follicular phases, and the preovulatory LH and FSH surge of the ovine estrous cycle, respectively. On day 4, the ewes were killed and their anterior pituitary glands were removed for measurements of pituitary LH, FSH, and their subunit mRNAs. Pituitary content of LH and FSH, as assessed by RIA, did not change (P greater than 0.10) in response to the three different GnRH pulse frequencies. However, subunit mRNA concentrations, assessed by solution hybridization assays and expressed as femtomoles per mg total RNA, did change as a result of different GnRH frequencies. alpha mRNA concentrations were higher (P less than 0.05) when the GnRH pulse frequency was 1/0.5 h and 1 h, whereas LH beta and FSH beta mRNA concentrations were maximal (P less than 0.05) only at a pulse frequency of 1/h. Additionally, pituitary LH and FSH secretory response to GnRH on day 4 was maximal (P = 0.05) when the pulse infusion was 1/h.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The effect of incubation with LHRH and its agonist [D-Trp6, des-Gly-NH2(10)]LHRH ethylamide has been measured on the concentrations of mRNAs for the common alpha-subunit of glycoprotein hormones and beta-LH in rat anterior pituitary cells in primary culture. After incubation, total RNA was analyzed by Northern blot or dot blot hybridization with alpha- and LH beta 32P-labeled cRNA probes and mRNA levels were quantified by autoradiography. Short-term treatment (4-6 h) of pituitary cells with 100 nM LHRH led to a marked stimulation of LH release but no effect was observed on alpha-subunit or LH beta mRNA levels. Longer (24-72 h) incubation periods with LHRH led to complete desensitization of the LH response to the neurohormone and induced 2- to 3-fold increases in alpha-mRNA cell content while LH beta mRNA levels remained unchanged. Maximal induction of alpha mRNA accumulation was observed with an LHRH concentration as low as 0.1 nM. Incubation with the LHRH agonist [D-Trp6, des-Gly-NH2(10)]LHRH ethylamide for 24-72 h also increased alpha mRNA but did not modify LH-beta mRNA levels. It is concluded that long-term exposure of anterior pituitary cells to LHRH or to an LHRH agonist positively regulates alpha-subunit gene expression in the absence of change in LH beta mRNA levels. This observation can provide an explanation for the high plasma levels of free alpha-subunits found in patients treated chronically with LHRH agonists.  相似文献   

19.
Two experiments were conducted to examine the effect of treatment with human chorionic gonadotropin (hCG) or ovine luteinizing hormone (LH) on the number and size distribution of steroidogenic luteal cells. In Experiment I, 27 ewes were assigned to one of three groups: 1) hCG (300 IU, i.v.) administered on Days 5 and 7.5 of the estrous cycle (Day 0 = Estrus); 2) LH (120 micrograms, i.v.) administered at 6-h intervals from Days 5 to 10 of the cycle; 3) saline (i.v.) administered as in the LH treatment group. Blood samples were drawn daily from the jugular vein for quantification of progesterone. On Day 10, corpora lutea were collected, decapsulated, weighed, and dissociated into single cell suspensions. Cells were fixed, stained for 3 beta-hydroxysteroid dehydrogenase (3 beta HSD) activity, and the size distribution of 3 beta HSD-positive cells was determined. Treatment with hCG, but not LH, increased (p less than 0.05) concentrations of progesterone in serum and the weight of corpora lutea. Treatment with either hCG of LH increased the proportion of cells greater than 22 micron in diameter and decreased the proportion of cells less than or equal to 22 micron (p less than 0.01). The ratio of small to large luteal cells decreased after treatment with either hCG or LH (p less than 0.05). In Experiment II, 9 ewes were assigned to one of two groups: 1) LH (120 micrograms, i.v.) administered at 6-h intervals from Days 5 to 10 of the estrous cycle, and 2) saline (i.v.) administered as in the LH treatment group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The preovulatory gonadotropin surge in the sheep was recently characterized by a divergent pattern of LH beta and FSH beta mRNAs immediately preceding this event. It is not clear whether this pattern is due to estradiol (E2), inhibin or other effectors. In this study, to determine if E2 may be involved in the divergent beta mRNA patterns seen during the surge, gonadotropin surges were induced in anestrous ewes (An) by E2 (An + E2) and several parameters were then measured. These included the amounts of alpha, LH beta, and FSH beta mRNAs, as assessed by solution hybridization assays, plus pituitary and serum gonadotropin concentrations. The values were compared with those observed in control, An ewes, to assess the effect of E2. The E2 treatment resulted in LH and FSH surges that appeared to be similar to the normal surges seen during the breeding season. Concomitantly, the E2 treatment lowered pituitary concentrations of FSH (P less than 0.05), while LH amounts did not change. Although the effect of E2 on gonadotropin subunit mRNA amounts varied depending upon the individual subunit, the changes that were observed paralleled changes reported during the preovulatory surge of the cycle. Specifically, alpha mRNA amounts increased significantly (P less than 0.001) while FSH beta mRNA amounts fell dramatically (P less than 0.001). Moreover, LH beta mRNA amounts were slightly increased, although not significantly by E2. These results demonstrate that E2 effects changes in the amounts of the gonadotropin subunit mRNAs during an induced gonadotropin surge in An ewes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号