首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A key for stages of development of the pea (Pisum sativum)   总被引:3,自引:0,他引:3  
  相似文献   

2.
Summary The most striking internal feature of the suspensor cells inPisum is the abundant occurrence of a plastid containing spherical bodies consisting of intertwined bundles of tubules. These tubular complexes are not typical prolamellar bodies and they are not converted into grana. Cytochemical reactions indicate that they are proteinaneous. The participation of this plastid in the possible nutritional function of the suspensor is discussed but it is pointed out that critical experimental evidence is needed before the role of the suspensor and its contents in embryogenesis can be understood.Supported by a grant from the Australian Research Grants Committee.  相似文献   

3.
Book reviewed in this article: The Way Ahead in Plant Breeding. Proceedings of the Sixth Congress of Eucarpia. Edited by F. G. H. Lupton , G. Jenkins and R. Johnson . Basic Electron Microscope Techniques. By M. A. Hayat . The Logit Transformation (with special reference to its uses in bioassay). By W. D. Ashton . Families of Frequency Distributions. By J. K. Ord .  相似文献   

4.
A wilt disease of garden pea (Pisum sativum) caused by Verticillium dahliae is described and the range of pathogenicity of the isolate investigated. It is pathogenic to potato, sweet pea, antirrhinum and broad bean and isolates of V. dahliae from potato, lucerne and sweet pea and V. albo-atrum from lucerne are pathogenic to pea. Since the most common disease symptoms, acropetal progression of chlorosis and necrosis of the leaves followed by premature defoliation are indistinguishable from natural senescence, it is probable that disease and senescence symptoms are confused in the field. The premature defoliation results in marked reduction in green leaf area, leaf dry weight and pod yield.  相似文献   

5.
N. Harris  N. J. Chaffey 《Planta》1985,165(2):191-196
Plasmatubules are tubular evaginations of the plasmalemma. They have previously been found at sites where high solute flux between apoplast and symplast occurs for a short period and where wall proliferations of the transfer cell type have not been developed (Harris et al. 1982, Planta 156, 461–465). In this paper we describe the distribution of plasmatubules in transfer cells of the leaf minor veins of Pisum sativum L. Transfer cells are found in these veins associated both with phloem sieve elements and with xylem vessels. Plasmatubules were found, in both types of transfer cell and it is suggested that the specific distribution of the plasmatubules may reflect further membrane amplification within the transfer cell for uptake of solute from apoplast into symplast.  相似文献   

6.
Plastocyanin is soluble at high concentrations (greater than 3 M) of (NH4)2SO4 but under these conditions will adsorb tightly to unsubstituted Sepharose beads. This observation was utilized to purify plastocyanin from pea (Pisum sativum) in two chromatographic steps. Sepharose-bound plastocyanin was eluted with low-ionic-strength buffer and subsequently purified to homogeneity by DEAE-cellulose chromatography.  相似文献   

7.
8.
9.
10.
Boron alleviates aluminum toxicity in pea (Pisum sativum)   总被引:3,自引:0,他引:3  
One important target of boron (B) deficiency and aluminum (Al) toxicity is cell wall. Thus we studied the hypothesis that B is capable of alleviating Al toxicity in pea (Pisum sativum). Short-term and prolonged Al exposure to pea roots at different B levels was carried out on uniform seedlings pre-cultured at a low B level. When seedlings with a low B level were supplied with or without B for 1 and 2 days before 24 h Al exposure, roots were longer while root diameter was thinner after B addition especially for 2 days even with exposure to Al; root elongation was inhibited while root diameter was enlarged by Al exposure. Callose induction by Al toxicity was higher with B added, but this was reversed after the removal of the cotyledons. Hematoxylin staining was lighter in the root tips given B, and Al content in the root tips and cell walls dropped after exposure to B. This indicates that B alleviated Al toxicity in the root tips during short-term Al exposure by decreasing Al binding in root cell walls. An increase in chlorophyll and biomass and reduced chlorosis were found at the higher level of B during prolonged Al treatment, which was coincided with the decreased Al contents, indicating that B alleviated Al toxicity to shoots. B supplementation alleviates some of the consequences of Al toxicity by limiting some Al binding in cell walls, resulting in less injury to the roots as well as less injury to the shoots.  相似文献   

11.
Enzymatic activity responsible for the conversion of fatty acids to alkanes catalyzed by pea leaf homogenate was found to be mainly in the microsomal fraction. This particulate preparation catalyzed alkane formation from n-C18, n-C22, and n-C24 acids at rates comparable to that observed with n-C32 acid with O2 and ascorbate as required cofactors. In each case the major alkane contained two carbon atoms less than the precursor acid. Since the preparation also catalyzed alpha-oxidation, it was suspected that some alpha-oxidation intermediate, with one less carbon atom than the substrate acid, might lose another carbon to generate the alkane. Thin-layer and radio-gas-liquid chromatographic analysis of the products generated from [U-14C]stearic acid by the particulate preparation after different periods of incubation showed that, at all time periods, alpha-hydroxy C18 acid, C17 aldehyde, and C17 acid were the major products. Since C16 alkane was the major product even after short periods of reaction, the C17 aldehyde might have been the immediate precursor of the alkane. Exogenous labeled C18 and C24 aldehyde were converted to alkanes. The alkane-synthesizing activity was solubilized from the microsomal preparation using Triton X-100. The solubilized preparation was retarded in a Sepharose 6-B column, but the hydrocarbon-forming activity was not resolved from alpha-oxidation. The solubilized preparation produced alkane with two carbon atoms less than the parent acid in a time- and protein-dependent manner. The soluble preparation also required O2 and ascorbate and, like the microsomal preparation, was inhibited by dithioerythritol and metal ion chelating agents.  相似文献   

12.
Cell suspension cultures were established from germinating pea (Pisum sativum L.) seeds. This cell culture, which accumulated pisatin, consisted mostly of single cells containing a few cell aggregates. The cells responded to treatment with a yeast glucan preparation with transient accumulation of pisatin in both cells and culture media. Addition of pisatin to cell cultures resulted in increased synthesis of pisatin. Phenylalanine ammonia-lyase, chalcone synthase and isoflavone reductase activities were present in untreated cells. Upon treatment with an elicitor preparation the activities of the first two enzymes showed a rapid, transient increase up to 20 hours after treatment. Isoflavone reductase showed a major and minor peak at 16 and 36 h, respectively, after elicitor treatment. The time course of the enzyme activity and pisatin accumulation is consistent with an elicitor-mediated response.Abbreviations CHS chalcone synthase - 2,4-D 2,4-dichlorophenoxyacetic acid - IBA indole-3-butyric acid - IFR isoflavone reductase - 2iP 6-(dimethylallylamino)-purine - MS Murashige & Skoog basal salt medium - PAL phenylalanine ammonia-lyase - PMSF phenylmethylsulfonyl fluoride - POPOP 1,4-bis-2-(4-methyl-5-phenyloxazolyl)-benzene - PPO 2,5-diphenyloxazole  相似文献   

13.
Qualitative and quantitative estimation of phenolic compounds was done through high performance liquid chromatography (HPLC) in different parts of pea (Pisum sativum) after treatment with two plant growth-promoting rhizobacteria (PGPR), viz., Pseudomonas fluorescens (strain Pf4) and Pseudomonas aeruginosa (referred to here as Pag) and infection by Erysiphe pisi. The phenolic compounds detected were tannic, gallic, ferulic, and cinnamic acids on the basis of their retention time in HPLC. In all the treated plants, synthesis of phenolic compounds was enhanced. The induction of gallic, ferulic, and cinnamic acids was manyfold more than those in the control. Maximum accumulation of phenolic compounds was observed in plants raised from PGPR-treated seeds and infection with E. pisi. Under pathogenic stress, Pag performed better because a relatively higher amount of phenolics was induced compared with plants treated with Pf4. Received: 20 August 2001 / Accepted: 20 September 2001  相似文献   

14.
A particulate enzyme preparation made from epicotyls of 1-week-old etiolated pea (Pisum sativum) seedlings was shown to incorporate glucuronic acid from UDP-D-[U-14C]glucuronic acid into a hemicellulosic polysaccharide. Optimum conditions for the incorporation include the presence of Mn2+ ions at between 4 and 10 mmol/litre and a pH between 5 and 6. UDP-D-xylose at 1 mmol/litre allows incorporation to continue for at least 8 h. In its absence, the reaction stops within 30 min. Analysis of the product by partial and total acid hydrolysis, followed by paper chromatography or electrophoresis, indicates that the polysaccharide produced is a glucuronoxylan.  相似文献   

15.
A sequential indole-3-acetic acid (IAA)-zeatin treatment was applied to Pisum sativum hypocotyl explants, resulting in shoot formation from 50% of the explants. Shoots were easily rooted and transplantable plants could be obtained in 3 months. The method has been applicable to the 5 cultivars tested. Histological examination of explants suggests the shoots to be of de novo origin, which would make the system suitable for transformation experiments.  相似文献   

16.
17.
When [1-14C]indol-3yl-acetic acid ([1-14C]IAA) was applied to the upper surface of a mature foliage leaf of garden pea (Pisum sativum L. cv. Alderman), 14C effluxed basipetally but not acropetally from 30-mm-long internode segments excised 4 h after the application of [1-14C]IAA. This basipetal efflux was strongly inhibited by the inclusion of 3.10–6 mol· dm3 N-1-naphthylphthalamic acid (NPA) in the efflux buffer. In contrast, when [14C] sucrose was applied to the leaf, the efflux of label from stem segments excised subsequently was neither polar nor sensitive to NPA. The [1-14C]IAA was initially exported from mature leaves in the phloem — transport was rapid and apolar; label was recovered from aphids feeding on the stem; and label was recovered in exudates collected from severed petioles in 20 mM ethylenediaminetetraacetic acid. No 14C was detected in aphids feeding on the stems of plants to which [1-14C]IAA had been applied apically, even though the internode on which they were feeding transported considerable quantities of label. Localised applications of NPA to the stem strongly inhibited the basipetal transport of apically applied [1-14C]IAA, but did not affect transport of [1-14C]IAA in the phloem. These results demonstrate for the first time that IAA exported from leaves in the phloem can be transferred into the extravascular polar auxin transport pathway but that reciprocal transfer probably does not occur. In intact plants, transfer of foliar-applied [1-14C]IAA from the phloem to the polar auxin transport pathway was confined to immature tissues at the shoot apex. In plants in which all tissues above the fed leaf were removed before labelling, a limited transfer of IAA occurred in more mature regions of the stem.Abbreviations IAA indol-3yl-acetic acid - EDTA ethylenediaminetetraacetic acid - NPA N-1-naphthylphthalamic acid We are grateful to the Nuffield Foundation for supporting this research under the NUF-URB95 scheme and for the provision of a bursary to A.J.C. We thank Professor Dennis A. Baker for constructive comments on a draft of this paper and Mrs. Rosemary Bell for her able technical assistance.  相似文献   

18.
Pea (Pisum sativum L.) seedlings were grown in half strength Hoagland solution and exposed to 0, 10, 25 mM NaCl and 2.5% PEG 6000 for 1 week (pre-treatment). Thereafter plants were exposed to 0 and 80 mM NaCl for 2 weeks (main treatment). The control plants were maintained in half strength Hoagland solution without NaCl. Various physiological parameters were recorded from control, pretreated and non-pretreated plants. There was no negative effect of the pre-treatments on growth (total fresh and dry matter production), and plants pre-treated with 10 mM NaCl had biomass accumulation equal to control plants. The beneficial effect of salt acclimation was also evident in the prevention of K+ leakage and Na+ accumulation, primary in roots, suggesting that here the physiological processes play the major role. 2.5% PEG 6000 was not as efficient as salt in enhancing salt tolerance and acclimation appears to be more related to ion-specific rather than osmotic component of stress. We also recorded an increase of the xylem K/Na in the salt acclimated plants. Therefore, the present study reveals that short-term exposure of the glycophyte P. sativum species activates a set of physiological adjustments enabling the plants to withstand severe saline conditions, and while acclimation takes place primary in the root tissues, control of xylem ion loading and efficient Na+ sequestration in mesophyll cells are also important components of this process.  相似文献   

19.
20.
To study membrane lipid synthesis during the life-span of a dicotyledon leaf, the second oldest leaf of 10-40-d-old plants of garden pea (Pisum sativum L.) was labelled with [1-(14)C]acetate and the distribution of radioactivity between the major membrane lipids was followed for 3 d. In the expanding second oldest leaf of 10-d-old plants, acetate was primarily allocated into phosphatidylcholine (PC) during the first 4 h of labelling. During the following 3 d, labelling of PC decreased and monogalactosyldiacylglycerol (MGDG) became the most radioactive lipid. In the fully expanded second oldest leaf of older plants, acetate was predominantly allocated into phosphatidylglycerol (PG), which remained the major radiolabelled lipid during the 3 d studied. The proportion of radioactivity recovered in MGDG decreased with increasing plant age up to 20 d, suggesting that, in expanded leaves, MGDG is more stable and requires renewal to a lower extent than PG. When the second oldest leaf approached senescence, labelling of MGDG again increased, indicating an increased need for thylakoid repair. The proportion of acetate allocated into phosphatidylethanolamine and free sterols was largest in leaves of 18-26-d-old plants and in the youngest leaves, respectively. Thus, these results demonstrate that the distribution of newly synthesized fatty acids between acyl lipid synthesis in the chloroplast and extraplastidial membranes strongly varies with leaf age, as do the proportion utilized for sterol synthesis. The findings emphasize the importance of defining the developmental stage of the leaf material used when performing studies on leaf lipid metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号