首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVES: Tachykinins are important mediators in neuromuscular signalling but have not been thoroughly characterised in the mouse gut. We investigated the participation of tachykinin receptors in contractility of circular muscle strips of the mouse ileum. RESULTS: Electrical field stimulation (EFS) of excitatory nonadrenergic noncholinergic (NANC) nerves induced frequency-dependent contractions which were mimicked by substance P (SP). Desensitisation of SP and NK(1), NK(2) or NK(3) receptors significantly reduced contractions to EFS. The NK(1) receptor blocker RP67580 significantly inhibited NANC contractions to EFS. The NK(2) and NK(3) receptor blockers nepadutant and SR142801 did not affect NANC contractions per se but increased the RP67580-induced inhibition of NANC contractions to EFS. Contractions to SP were significantly reduced by RP67580 but not affected by nepadutant or SR142801. The NK(1) and NK(2) receptor agonists, septide and [beta-ala(8)]-NKA 4-10 (beta-A-NKA), respectively, but not the NK(3) receptor agonist senktide-induced dose-dependent contractions. Atropine inhibited and l-NNA augmented contractions to septide. Contractions to beta-A-NKA were insensitive to atropine but augmented by l-NNA. CONCLUSIONS: Tachykinins mediate NANC contractions to EFS in the mouse small intestine. Endogenously released tachykinins activate mainly NK(1) receptors, located on cholinergic nerves and smooth muscle cells and, to a lesser degree, NK(2) and NK(3) receptors, most likely located presynaptically.  相似文献   

2.
AimsThe anterior mesenteric artery of chickens contains a well-developed outer longitudinal smooth muscle layer in addition to an inner circular layer. Cholinergic and purinergic neurons play crucial roles in excitatory transmission at the longitudinal smooth muscle. The aim of this study was to clarify postnatal development of excitatory neurotransmission of the longitudinal smooth muscle.Main methodsMembrane potentials of smooth muscle were recorded with a microelectrode technique. Perivascular nerves were stimulated by applying electrical field stimulation (EFS).Key findingsHistological examination showed that longitudinal smooth muscles exist in the artery at birth. EFS failed to evoke membrane response in 1-day-old chickens, though it caused depolarization (excitatory junction potential; EJP) in 12-week-old chickens. However, exogenous application of acetylcholine (ACh) or ATP produced depolarization in longitudinal smooth muscle of 1-day-old chickens, suggesting that responsiveness of smooth muscle to excitatory neurotransmitters is already established at birth. In preparations isolated from 10-day-old chickens, EFS caused EJP, which was totally blocked by atropine but not by a non-specific purinoceptor antagonist, suramin. Several purinoceptor subtypes including P2Y1, which may be related to depolarizing response in smooth muscle of adult chickens, were expressed in the anterior mesenteric artery of 10-day-old chickens.SignificanceExcitatory innervation in longitudinal smooth muscle of the chicken anterior mesenteric artery is not established at birth but develops during the early postnatal period. Moreover, development of cholinergic excitatory innervation precedes that of purinergic excitatory innervation, although receptors that mediate purinergic control are already expressed in smooth muscle.  相似文献   

3.
4.
To determine the role of endogenous enkephalinase (EC 3.4.24.11) in regulating peptide-induced contraction of airway smooth muscle, we studied the effect of the enkephalinase inhibitor, leucine-thiorphan (Leu-thiorphan), on responses of isolated ferret tracheal smooth muscle segments to substance P (SP) and to electrical field stimulation (EFS). Leu-thiorphan shifted the dose-response curve to SP to lower concentrations. Atropine or the SP antagonist [D-Pro2,D-Trp7,9]SP significantly inhibited SP-induced contractions in the presence of Leu-thiorphan. Leu-thiorphan increased the contractile responses to EFS dose dependently, an effect that was significantly inhibited by the SP antagonist [D-Pro2,D-Trp7,9]SP. SP, in a concentration that did not cause contraction, increased the contractile responses to EFS. This effect was augmented by Leu-thiorphan dose dependently and was not inhibited by hexamethonium or by phentolamine but was inhibited by atropine. Because contractile responses to acetylcholine were not significantly affected by SP or by Leu-thiorphan, the potentiating effects of SP were probably on presynaptic-postganglionic cholinergic neurotransmission. Captopril, bestatin, or leupeptin did not augment contractions, suggesting that enkephalinase was responsible for the effects. These results suggest that endogenous tachykinins modulate smooth muscle contraction and endogenous enkephalinase modulates contractions produced by endogenous or exogenous tachykinins and tachykinin-induced facilitation of cholinergic neurotransmission.  相似文献   

5.
Fundic tone is maintained through a balance of excitatory and inhibitory input to fundic smooth muscle. The aim of this study was to determine the role of serotonin (5-HT) and 5-HT receptors in modulating murine fundic tone. Muscle strips were prepared from the murine fundus. Intracellular recordings were made from circular smooth muscle cells, and the effects of 5-HT on tone and excitatory and inhibitory junction potentials evoked by electrical field stimulation (EFS) were determined. 5-HT induced a concentration-dependent contraction and smooth muscle depolarization that was tetrodotoxin resistant. The 5-HT(1B/D) receptor antagonists GR-127935 and BRL-155172 significantly inhibited 5-HT-induced contractions. The 5-HT(1B/D) agonist sumatriptan contracted murine fundic muscle. The 5-HT(1A) receptor agonist buspirone relaxed fundic smooth muscle, and the relaxation was inhibited by WAY-100135 but not by N(omega)-nitro-l-arginine or tetrodotoxin. 5-HT enhanced both the excitatory and inhibitory responses to EFS. The 5-HT(3) receptor antagonist MDL-72222 partly inhibited both the excitatory and inhibitory response elicited by EFS, whereas the 5-HT(4) receptor antagonist GR-113808 partly inhibited the EFS-evoked inhibitory response. The 5-HT reuptake inhibitor fluoxetine contracted smooth muscle strips, a contraction that was partially inhibited by GR-127935 and abolished by tetrodotoxin. In conclusion, the data suggest that 5-HT modulates murine fundic contractile activity through several different receptor subtypes. Sustained release of 5-HT maintains fundic tone through postjunctional 5-HT(1B/D) receptors. 5-HT(3) receptors modulate excitatory neural input to murine fundic smooth muscle, and both 5-HT(3) and 5-HT(4) receptors modulate inhibitory neural input to murine fundic smooth muscle.  相似文献   

6.
To compare electrical field stimulation (EFS) with nicotine in the stimulation of excitatory and inhibitory enteric motoneurons (EMN) in the human esophagus, circular lower esophageal sphincter (LES), and circular and longitudinal esophageal body (EB) strips from 20 humans were studied in organ baths. Responses to EFS or nicotine (100 microM) were compared in basal conditions, after N(G)-nitro-l-arginine (l-NNA; 100 microM), and after l-NNA and apamin (1 microM). LES strips developed myogenic tone enhanced by TTX (5 microM) or l-NNA. EFS-LES relaxation was abolished by TTX, unaffected by hexamethonium (100 microM), and enhanced by atropine (3 microM). Nicotine-LES relaxation was higher than EFS relaxation, reduced by TTX or atropine, and blocked by hexamethonium. After l-NNA, EFS elicited a strong cholinergic contraction in circular LES and EB, and nicotine elicited a small relaxation in LES and no contractile effect in EB. After l-NNA and apamin, EFS elicited a strong cholinergic contraction in LES and EB, and nicotine elicited a weak contraction amounting to 6.64 +/- 3.19 and 9.20 +/- 5.51% of that induced by EFS. EFS elicited a contraction in longitudinal strips; after l-NNA and apamin, nicotine did not induce any response. Inhibitory EMN tonically inhibit myogenic LES tone and are efficiently stimulated both by EFS and nicotinic acetylcholine receptors (nAChRs) located in somatodendritic regions and nerve terminals, releasing nitric oxide and an apamin-sensitive neurotransmitter. In contrast, although esophageal excitatory EMN are efficiently stimulated by EFS, their stimulation through nAChRs is difficult and causes weak responses, suggesting the participation of nonnicotinic mechanisms in neurotransmission to excitatory EMN in human esophagus.  相似文献   

7.
Functional innervation of cat airways smooth muscle was examined in isolated segments of trachea and bronchi using electrical field stimulation (EFS) techniques. Field stimulation caused contraction in tissues at resting tone and biphasic responses (contraction followed by relaxation) in tissues precontracted with 5-hydroxytryptamine (5-HT). Contractions were abolished by 10(-6) M atropine. Inhibitory responses were dependent on impulse voltage, duration, and frequency. At low voltages (less than or equal to 10 V) and pulse durations (less than or equal to 0.3 ms), EFS induced relaxations were abolished by 3 X 10(-6) M tetrodotoxin (TTX). Greater stimulus parameters elicited TTX-resistant relaxations. Pretreatment of the tissues with 10(-6) M propranolol and 10(-5) M guanethidine caused rightward shifts in relaxation frequency-response curves. These findings indicate that cat airways are innervated by excitatory cholinergic, inhibitory adrenergic, and inhibitory nonadrenergic noncholinergic (NANC) nerves. Pretreatment of the tissues with hexamethonium, cimetidine, indomethacin, or nordihydroguaiaretic acid did not affect NANC relaxation responses. It is concluded that NANC inhibitory responses in cat airway smooth muscle are mediated through intrinsic postganglionic nerve fibers and occur independently of histamine H2-receptor activation and without involvement of cyclooxygenase or lipoxygenase products of arachidonic acid metabolism.  相似文献   

8.
Intracellular recordings were made from the circular smooth muscle cells of the canine jejunum to study the effect of exogenous ATP and to compare the ATP response to the nonadrenergic, noncholinergic (NANC) inhibitory junction potential (IJP) evoked by electrical field stimulation (EFS). Under NANC conditions, exogenous ATP evoked a transient hyperpolarization (6.5 +/- 0.6 mV) and EFS evoked a NANC IJP (17 +/- 0.4 mV). Omega-conotoxin GVIA (100 nM) and a low-Ca(2+), high-Mg(2+) solution abolished the NANC IJP but had no effect on the ATP-evoked hyperpolarization. The ATP-evoked hyperpolarization and the NANC IJP were abolished by apamin (1 microM) and N(G)-nitro-L-arginine (100 microM). Oxyhemoglobin (5 microM) partially (38.8 +/- 5.5%) reduced the amplitude of the NANC IJP but had no effect on the ATP-evoked hyperpolarization. Neither the NANC IJP nor the ATP-evoked hyperpolarization was affected by P2 receptor antagonists or agonists, including suramin, reactive blue 2, 1-(N, O-bis-[5-isoquinolinesulfonyl]-N-methyl-L-tyrosyl)-4-phenylpiperazine , pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid, alpha, beta-methylene ATP, 2-methylthioadenosine 5'-triphosphate tetrasodium salt, and adenosine 5'-O-2-thiodiphosphate. The data suggest that ATP evoked an apamin-sensitive hyperpolarization in circular smooth muscle cells of the canine jejunum via local production of NO in a postsynaptic target cell.  相似文献   

9.
Bayer S  Crenner F  Aunis D  Angel F 《Life sciences》2002,71(8):911-925
GABAergic regulation of intestinal motility through the modulation of non-adrenergic non-cholinergic (NANC) neurons remains poorly understood especially in rat colon where very few studies have been undertaken. Therefore, the effects of GABA on circular preparations of rat distal colon were investigated using classical organ bath chambers to record spontaneous mechanical activities (SMA). SMA was characterized by the occurrence of rhythmic phasic contractions (type-I) or by spontaneously occurring large contractions superimposed on small rhythmic contractions (type-II). In the presence of atropine and guanethidine (NANC conditions), these large contractions were inhibited by bicuculline, a GABA(A)-receptor antagonist as well as by TTX, L-NAME and apamin together, or L 732-138, a NK1-receptor antagonist. In NANC conditions, GABA induced a transient monophasic relaxation or a biphasic effect characterized by a relaxation followed by a tonic contraction in both type-I and -II preparations. Both the inhibitory and excitatory effects of GABA were blocked by TTX and L-NAME + apamin; the GABA-induced contraction was also sensitive to L 732-138. The responses to GABA were mimicked by the GABA(A)-receptor agonist, muscimol, whereas baclofen and CACA, respectively GABA(B) and GABA(C)-receptors agonists showed no effect. These results demonstrated that only GABA(A)-receptors seem to be involved in the regulation of SMA in rat distal colon in NANC conditions. Release of NANC inhibitory transmitter (NO and probably ATP) and NANC excitatory transmitter (maybe substance P) might be involved.  相似文献   

10.
The relationship between neurogenic responses of longitudinal and circular muscle was studied by measuring contractions and EMG or nonadrenergic, non-cholinergic (NANC) relaxations and NANC inhibitory junction potentials in different preparations of the guinea-pig ileum. NANC relaxation of longitudinal muscle was observed also without any preceding or concomitant circular muscle contraction ruling out the possibility that the latter might be the cause of the NANC relaxation. Circular muscle twitches or powerful contractions were absent if there was no preceding neurogenic or myogenic excitation of longitudinal muscle; in preparations with myenteric plexus-longitudinal muscle layers removed only small residual responses were seen although still under neurogenic influences. Thus excitation of longitudinal muscle seemed a prerequisite for synchronized and powerful contractions of circular muscle to occur. Cholinergic contraction and NANC relaxation of longitudinal muscle evoked by field stimulation were partly inhibited if the submucous plexus was also present suggesting the involvement of a more complex neuronal circuitry in these responses.  相似文献   

11.
Two peptides from the tachykinin family, substance P (SP) and neurokinin A (NKA), were identified as neurotransmitters (co-transmitters) of non-adrenergic non-cholinergic (NANCh) excitation in the gastrointestinal tract. The contraction of smooth muscles produced by tachykinins released from the excitatory enteric motoneurons is mediated by the NK1 and/or the NK2 tachykinin receptors. The differing contribution of these receptors in mediating the NANCh excitatory responses has been demonstrated in various regions of the intestine. The NK3 tachykinin receptors are confined only to the enteric neurons; they mediate release of different excitatory and inhibitory transmitters. The main secondary messenger pathway for all three tachykinin receptors is phosphoinositide breakdown that results in an increase of intracellular Ca2+ concentration. Signal transduction mechanisms are still not adequately known for tahykinin receptors. A multiple ionic mechanism has been proposed to mediate excitatory action of SP; it comprises activation of non-selective cationic channels, or activation of maxi Cl channels, and/or inhibition of K+ channels. Data about the ionic mechanism underlying the NK2 receptor activation are still missing. In conclusion, SP and NKA play a physiological role as NANCh neurotransmitters in smooth muscles of the gastrointestinal tract and, therefore, tachykinins may have a significant pathophysiological relevance in humans.Neirofiziologiya/Neurophysiology, Vol. 27, No. 5/6, pp. 425–432, September–December, 1995.  相似文献   

12.
Intracellular recordings were taken from the smooth muscle of the guinea pig trachea, and the effects of intrinsic nerve stimulation were examined. Approximately 50% of the cells had stable resting membrane potentials of -50 +/- 1 mV. The remaining cells displayed spontaneous oscillations in membrane potential, which were abolished either by blocking voltage-dependent Ca(2+) channels with nifedipine or by depleting intracellular Ca(2+) stores with ryanodine. In quiescent cells, stimulation with a single impulse evoked an excitatory junction potential (EJP). In 30% of these cells, trains of stimuli evoked an EJP that was followed by oscillations in membrane potential. Transmural nerve stimulation caused an increase in the frequency of spontaneous oscillations. All responses were abolished by the muscarinic-receptor antagonist hyoscine (1 microM). In quiescent cells, nifedipine (1 microM) reduced EJPs by 30%, whereas ryanodine (10 microM) reduced EJPs by 93%. These results suggest that both the release of Ca(2+) from intracellular stores and the influx of Ca(2+) through voltage-dependent Ca(2+) channels are important determinants of spontaneous and nerve-evoked electrical activity of guinea pig tracheal smooth muscle.  相似文献   

13.
14.
Nerve growth factor (NGF), a member of the neurotrophin family, enhances synthesis of neuropeptides in sensory and sympathetic neurons. The aim of this study was to examine the effect of NGF on airway responsiveness and determine whether these effects are mediated through synthesis and release of substance P (SP) from the intrinsic airway neurons. Ferrets were instilled intratracheally with NGF or saline. Tracheal smooth muscle contractility to methacholine and electrical field stimulation (EFS) was assessed in vitro. Contractions of isolated tracheal smooth muscle to EFS at 10 and 30 Hz were significantly increased in the NGF treatment group (10 Hz: 33.57 +/- 2.44%; 30 Hz: 40.12 +/- 2.78%) compared with the control group (10 Hz: 27.24 +/- 2.14%; 30 Hz: 33.33 +/- 2.31%). However, constrictive response to cholinergic agonist was not significantly altered between the NGF treatment group and the control group. The NGF-induced modulation of airway smooth muscle to EFS was maintained in tracheal segments cultured for 24 h, a procedure that causes a significant anatomic and functional loss of SP-containing sensory fibers while maintaining viability of intrinsic airway neurons. The number of SP-containing neurons in longitudinal trunk and superficial muscular plexus and SP nerve fiber density in tracheal smooth muscle all increased significantly in cultured trachea treated with NGF. Pretreatment with CP-99994, an antagonist of neurokinin 1 receptor, attenuated the NGF-induced increased contraction to EFS in cultured segments but had no effect in saline controls. These results show that the NGF-enhanced airway smooth muscle contractile responses to EFS are mediated by the actions of SP released from intrinsic airway neurons.  相似文献   

15.
(2-[(125)I]iodohistidyl(1))Neurokinin A ([(125)I]NKA), which labels "septide-sensitive" but not classic NK(1) binding sites in peripheral tissues, was used to determine whether septide-sensitive binding sites are also present in the rat brain. Binding studies were performed in the presence of SR 48968 (NK(2) antagonist) and senktide (NK(3) agonist) because [(125)I]NKA also labels peripheral NK(2) binding sites and, as shown in this study, central NK(3) binding sites. [(125)I]NKA was found to label not only septide-sensitive binding sites but also a new subtype of NK(1) binding site distinct from classic NK(1) binding sites. Both subtypes of [(125)I]NKA binding sites were sensitive to tachykinin NK(1) antagonists and agonists but also to the endogenous tachykinins NKA, neuropeptide K (NPK), and neuropeptide gamma (NPgamma). However, compounds of the septide family such as substance P(6-11) [SP(6-11)] and propionyl-[Met(O(2))(11)]SP(7-11) and some NK(1) antagonists, GR 82334, RP 67580, and CP 96345, had a much lower affinity for the new NK(1)-sensitive sites than for the septide-sensitive sites. The hypothalamus and colliculi possess only this new subtype of NK(1) site, whereas both types of [(125)I]NKA binding sites were found in the amygdala and some other brain structures. These results not only explain the central effects of septide or SP(6-11), but also those of NKA, NPK, and NPgamma, which can be selectively blocked by NK(1) receptor antagonists.  相似文献   

16.
Lu HL  Wang ZY  Huang X  Han YF  Wu YS  Guo X  Kim YC  Xu WX 《Regulatory peptides》2011,167(2-3):170-176
In the present study, we investigated the effect of Ang II on gastric smooth muscle motility and its mechanism using intracellular recording and whole-cell patch clamp techniques. Ang II dose-dependently increased the tonic contraction and the frequency of spontaneous contraction in the gastric antral circular smooth muscles of guinea pig. ZD7155, an Ang II type 1 receptor (AT(1)R) blocker, completely blocked the effect of Ang II on the spontaneous contraction of gastric smooth muscle. In contrast, TTX, a sodium channel blocker, failed to block the effect. Furthermore, nicardipine, a voltage-gated Ca(2+)-channel antagonist, did not block the effect of Ang II on the tonic contraction of gastric smooth muscle, but external free-calcium almost completely blocked this effect. Both ryanodine, an inhibitor of calcium-induced Ca(2+) release (CICR) from ryanodine-sensitive calcium stores, and thapsigargin, which depletes calcium in calcium stores, almost completely blocked the effect of Ang II on tonic contraction. However, 2-APB, an inositol trisphosphate (IP(3)) receptor blocker, significantly, but not completely, blocked the Ang II effect on tonic contraction. We also determined that Ang II depolarized membrane potential and increased slow wave frequency in a dose-dependent manner. It also inhibited delayed rectifying potassium currents in a dose-dependent manner, but did not affect L-type calcium currents or calcium-activated potassium currents. These results suggest that Ang II plays an excitatory regulation in gastric motility via AT(1)R-IP(3) and the CICR signaling pathway. The Ang II-induced inhibition of delayed rectifying potassium currents that depolarize membrane potential is also involved in the potentiation of tonic contraction and the frequency of spontaneous contraction in the gastric smooth muscle of guinea pig.  相似文献   

17.
Protease-activated receptor-2 (PAR-2) is a G protein-coupled receptor and is expressed throughout the gut. It is well known that PAR-2 participates in the regulation of gastrointestinal motility; however, the results are inconsistent. The present study investigated the effect and mechanism of PAR-2 activation on murine small intestinal smooth muscle function in vitro. Both trypsin and PAR-2-activating peptide SLIGRL induced a small relaxation followed by a concentration-dependent contraction. The sensitivity to trypsin was greater than that to SLIGRL (EC50 = 0.03 vs. 40 microM), but maximal responses were similar (12.3 +/- 1.6 vs. 13.7 +/- 1.3 N/cm2). Trypsin-evoked contraction (1 microM) exhibited a rapid desensitization, whereas the desensitization of response to SLIGRL was less even at high concentration (50 microM). Atropine had no effect on PAR-2 agonist-induced contractions. In contrast, TTX and capsaicin significantly attenuated those contractions, implicating a neurogenic mechanism that may involve capsaicin-sensitive sensory nerves. Furthermore, contractions induced by trypsin and SLIGRL were reduced by neurokinin receptor NK1 antagonist SR-140333 or NK2 antagonist SR-48968 alone or were further reduced by combined application of SR-140333 and SR-48968, indicating the involvement of neurokinin receptors. In addition, desensitizing neurokinin receptors with substance P and/or neurokinin A decreased the PAR-2 agonist-evoked contraction. We concluded that PAR-2 agonists induced a contraction of murine intestinal smooth muscle that was mediated by nerves. The excitatory effect is also dependent on sensory neural pathways and requires both NK1 and NK2 receptors.  相似文献   

18.
The present studies compared the effects of CO-releasing molecule (CORM-1), authentic CO, and nonadrenergic noncholinergic (NANC) nerve stimulation in the internal anal sphincter (IAS). Functional in vitro experiments and Western blot studies were conducted in rat IAS smooth muscle. We examined the effects of CORM-1 (50-600 microM) and authentic CO (5-100 microM) and NANC nerve stimulation by electrical field stimulation (EFS; 0.5-20 Hz, 0.5-ms pulse, 12 V, 4-s train). The experiments were repeated after preincubation of the tissues with the neurotoxin TTX, the guanylate cyclase inhibitor 1H-(1,2,4)oxadiazolo-(4,3-a)quinoxalin-1-one (ODQ), the selective heme oxygenase (HO) inhibitor tin protoporphyrin IX (SnPP-IX), the nitric oxide synthase inhibitor N(omega)-nitro-L-arginine (L-NNA), and SnPP-IX + L-NNA. We also investigated the effects of the HO substrate hematin (100 microM). CORM-1, as well as CO, produced concentration-dependent IAS relaxation, whereas hematin had no effect. TTX abolished and L-NNA significantly blocked IAS relaxation by EFS without any effect on CORM-1 and CO. ODQ blocked IAS relaxation by CORM-1, authentic CO, and EFS. SnPP-IX had no significant effect on IAS relaxation by CORM-1, CO, or EFS. The presence of neuronal nitric oxide synthase, HO-1, and HO-2 in IAS smooth muscle was confirmed by Western blot studies. CORM-1 and CO, as well as NANC nerve stimulation, produced IAS relaxation via guanylate cyclase/cGMP-dependent protein kinase activation. The advent of CORM-1 with potent effects in the IAS has significant implications in anorectal motility disorders with regard to pathophysiology and therapeutic potentials.  相似文献   

19.
1. The mechanical responses to some autonomic drugs and neuropeptides of longitudinal muscle (LM) and circular muscle (CM) strips isolated from the carp intestinal bulb were investigated in vitro. 2. Acetylcholine and carbamylcholine caused concentration-dependent transient contraction of both LM and CM strips. Tetrodotoxin had no effect, but atropine selectively decreased the contractile responses to acetylcholine and carbamylcholine. 3. Excitatory alpha-2 and inhibitory beta adrenoceptors were present in both LM and CM strips. 4. 5-Hydroxytryptamine (5-HT) caused concentration-dependent contraction of both LM and CM strips. Tetrodotoxin, atropine and methysergide decreased the contractile responses to 5-HT. 5. Some neuropeptides (angiotensin I, angiotensin II, bombesin, bradykinin, neurotensin, somatostatin and vasoactive intestinal polypeptide) did not cause any mechanical response (contraction or relaxation) in either smooth muscle strip. 6. Substance P (SP), neurokinin A (NKA) and neurokinin B (NKB) caused contraction of both LM and CM strips. However, the time course of the contraction in LM was different from that in CM. The order of potency was NKA greater than SP greater than NKB in LM strips and NKA greater than SP much greater than NKB in CM strips. In LM strips, the contractile responses to tachykinins were unaffected by spantide and methysergide, but partly decreased by tetrodotoxin and atropine. On the other hand, the contractile responses of CM strips were unaffected by tetrodotoxin, atropine, methysergide and spantide. 7. Dynorphin (1-13) (DYN), leucine-enkephalin (L-Enk) and methionine-enkephalin (M-Enk) caused concentration-dependent contraction of both LM and CM strips. The order of potency was DYN greater than M-Enk greater than L-Enk. Naloxone selectively decreased the responses to opiate peptides. 8. The present results indicate that acetylcholine, carbamylcholine, catecholamines, 5-HT, tachykinins (SP, NKA and NKB) and opiate peptides (DYN, L-Enk and M-Enk) affect the mechanical activity of LM and CM strips isolated from the carp intestinal bulb through their specific receptors.  相似文献   

20.
OBJECTIVE: Nedocromil sodium (nedocromil) improves the clinical condition of asthmatic subjects but its mechanism of action is not fully understood. This study aimed to determine whether nedocromil alters the ability of contractile and relaxant non-adrenergic, non-cholinergic neural (NANC) responses to stabilise tone by inhibiting or potentiating these responses in bronchial smooth muscle and, if so, whether the action is on a pre- or postjunctional level. RESULTS: Nedocromil attenuated contractile but not relaxant NANC responses (elicited by electric field stimulation) significantly (P < 0.05) in guinea pig main bronchi in vitro. However, the ability of NANC responses to stabilise tone (convergence effect) was not significantly impaired by nedocromil. Furthermore, nedocromil did not significantly shift the concentration response curve (-log EC50) to neurokinin A (NKA), the dominating contractile NANC transmitter, or alter the maximum response to NKA (P > 0.05). Submaximum or maximum contractile responses to histamine were not markedly affected by nedocromil (P > 0.05). CONCLUSIONS: Nedocromil exerts selective neural inhibition of the contractile but not of the relaxant NANC responses on a pre-junctional level in bronchial smooth muscle. Nedocromil does not, however, markedly impair the ability of NANC response to stabilise bronchial smooth muscle tone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号