首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
D Duboule  P Dollé 《The EMBO journal》1989,8(5):1497-1505
This paper reports the cloning of the fourth major murine homeogene complex, HOX-5. The partial characterization of this gene cluster revealed the presence of two novel genes (Hox-5.2, Hox-5.3) located at the 5' extremity of this complex. In situ hybridization experiments showed that these two genes are transcribed in very posterior domains during embryonic and foetal development. We also show that Hox-1.6, the gene located at the 3' most position in the HOX-1 complex, has a very anterior expression boundary during early development. These results clearly support the recently proposed hypothesis that the expression of murine Antp-like homeobox-containing genes along the antero-posterior developing body axis follows a positional hierarchy which reflects their respective physical positions within the HOX clusters, similar to that which is found for the Drosophila homeotic genes. Such a structural and functional organization is likely conserved in most vertebrates. Moreover, on the basis of sequence comparisons, we propose that the ordering of homeobox-containing genes within clusters has been conserved between Drosophila and the house mouse. Thus, very different body plans might be achieved, both in insects and vertebrates, by evolutionarily conserved gene networks possibly displaying similar regulatory interactions.  相似文献   

2.
3.
4.
5.
A homeobox-containing gene * was detected by Southern analysis of a cosmid spanning a region of the murine HOX-4 complex between Hox-4.4 (Hox-5.2) and Hox-4.2 (Hox-5.1) with a probe derived from the Hox-4.2 homeobox. The sequence of a cross-hybridizing region revealed an open reading frame encoding an Antennapedia (Antp) class homeodomain highly homologous to the products of human HOX4C (Hox-5.4/HOX4E), mouse Hox-3.1 and Hox-2.4. This, together with strong conservation of sequences 3' to the homoebox, indicates that we have cloned the murine Hox-4.3 gene. No other homeobox sequences were detected in this screen suggesting that the HOX-4 complex lacks paralogous genes represented in the equivalent regions of other HOX loci.  相似文献   

6.
7.
We report the cloning, genomic localization, primary structure and developmental expression pattern of the novel mouse Hox-4.3 gene. This gene is located within the HOX-4(5) complex, at a position which classifies it as a member of the Hox-3.1 and -2.4 subfamily, the DNA and predicted protein sequences further confirmed this classification. Hox-4.3 has a primary structure characteristic of a Hox gene but, in addition, contains several monotonic stretches of amino acids, one of the 'paired'-like type. As expected from its presence and position within the complex. Hox-4.3 is developmentally expressed in structures of either mesodermal or neurectodermal origin located or derived from below a precise craniocaudal level. However, a very important offset between anteroposterior boundaries within neuroectoderm versus mesoderm derivatives is observed. Like other genes of the HOX-4(5) complex, Hox-4.3 is expressed in developing limbs and gonads, suggesting that 'cluster specificity' could be a feature of the HOX network.  相似文献   

8.
9.
10.
R Masuda  N Yuhki  S J O'Brien 《Genomics》1991,11(4):1007-1013
The feline homolog to the mammalian homeobox locus, HOX3A, was isolated by screening a domestic cat genomic library with the murine Hox-3.1 probe. The nucleotide sequence similarity of the feline homeobox was 96% to human HOX3A, 94% to mouse Hox-3.1, and 94% to rat R4. The deduced amino acid sequence (homeodomain) of this feline homeobox was identical to all homeodomains of these cognate genes. Using a panel of feline x rodent somatic cell hybrids, the HOX3A locus was assigned to feline chromosome B4. Human HOX3A and mouse Hox-3.1 have been mapped previously to human chromosome 12 and mouse chromosome 15, respectively, both of which share syntenic homology to feline chromosome B4. These data demonstrate evolutionary conservation of both HOX3A gene sequences and chromosomal location during mammalian evolution.  相似文献   

11.
An autoregulatory element of the murine Hox-4.2 gene.   总被引:4,自引:0,他引:4       下载免费PDF全文
Hox-4.2 promoter activity was assayed by transient expression assays in P19 embryonal carcinoma (EC) cells. Cotransfection of a luciferase reporter gene construct driven by Hox-4.2 upstream sequences with an expression vector for the Hox-4.2 gene product resulted in a 20-fold increase in luciferase activity. This activity was specific in that the Hox-1.6 gene product had no effect in the same assay. Mutational analysis defined a cis-acting element with enhancer function which conferred most of this increase. Activation was largely dependent on two TAAT/ATTA motifs within this 217 bp fragment and HOX-4.2 bound specifically to both of these motifs. The 217 bp element maps within a highly conserved region of the human Hox-4.2 gene (HOX4B) which has been shown to display spatial enhancer activity in mice and flies. These findings suggest a conserved autoregulatory mechanism for the control of Hox-4.2 expression.  相似文献   

12.
Hox genes play an important role in the process of vertebrate pattern formation, and their expression is intricately regulated both temporally and spatially. All-trans-retinoic acid (RA), a physiologically active metabolite of vitamin A, affects the expression of a large number of Hox genes in vitro and in vivo. However, the regulatory mechanisms underlying the RA response of these genes have not been extensively studied, and no response element for RA receptors (RARs) has been characterized in a Hox regulatory region. The expression of murine Hox-4.2 and its human homolog, HOX4B, is increased in embryonal carcinoma (EC) cell lines upon RA treatment (M. S. Featherstone, A. Baron, S. J. Gaunt, M.-G. Mattei, and D. Duboule, Proc. Natl. Acad. Sci. USA 85:4760-4764, 1988; A. Simeone, D. Acampora, V. Nigro, A. Faiella, M. D'Esposito, A. Stornaiuolo, F. Mavilio, and E. Boncinelli, Mech. Dev. 33:215-228, 1991). Using transient expression assays, we showed that luciferase reporter gene constructs carrying genomic sequences located upstream of Hox-4.2 responded to RA in murine P19 EC cells. A 402-bp NcoI fragment was necessary for the RA responsiveness of reporter constructs. This fragment contained a regulatory element, 5'-AGGTGA(N)5AGGTCA-3', that closely resembles the consensus sequence for an RA response element. The Hox-4.2 RA response element was critical for the RA induction and specifically bound RARs. In addition, the response to RA could be inhibited by expressing a dominant negative form of RAR alpha in transfected P19 EC cells. These results suggested that Hox-4.2 is a target for RAR-mediated regulation by RA.  相似文献   

13.
14.
15.
The cloning, characterization and developmental expression patterns of two novel murine Hox genes, Hox-4.6 and Hox-4.7, are reported. Structural data allow us to classify the four Hox-4 genes located in the most upstream (5') position in the HOX-4 complex as members of a large family of homeogenes related to the Drosophila homeotic gene Abdominal B (AbdB). It therefore appears that these vertebrate genes are derived from a selective amplification of an ancestral gene which gave rise, during evolution, to the most posterior of the insect homeotic genes so far described. In agreement with the structural colinearity, these genes have very posteriorly restricted expression profiles. In addition, their developmental expression is temporally regulated according to a cranio-caudal sequence which parallels the physical ordering of these genes along the chromosome. We discuss the phylogenetic alternative in the evolution of genetic complexity by amplifying either genes or regulatory sequences, as exemplified by this system in the mouse and Drosophila. Furthermore, the possible role of 'temporal colinearity' in the ontogeny of all coelomic (metamerized) metazoans showing a temporal anteroposterior morphogenetic progression is addressed.  相似文献   

16.
17.
The extraordinary positional conservation of the homeotic genes within the Antennapedia and the Bithorax Complexes (ANT-C and BX-C) in Drosophila melanogaster and the murine Hox and human HOX clusters of genes can be interpreted as a reflection of functional necessity. The homeotic gene proboscipedia (pb) resides within the ANT-C, and its sequence is related to that of Hox-1.5. We show that two independent pb minigene P-element insertion lines completely rescue the labial palp-to-first leg homeotic transformation caused by pb null mutations; thus, a homeotic gene of the ANT-C can properly carry out its homeotic function outside of the complex. Despite the complete rescue of the null, the minigene expresses pb protein in only a subset of pb's normal domains of expression. Therefore, the biological significance of the excluded expression pattern elements remains unclear except to note they appear unnecessary for specifying normal labial identity. Additionally, by using reporter gene constructs inserted into the Drosophila genome and by comparing pb-associated genomic sequences from two divergent species, we have located cis-acting regulatory elements required for pb expression in embryos and larvae.  相似文献   

18.
The relationship between the expression of Hox-4 genes in the mesenchyme and the apical ectodermal ridge was investigated in both normal chick wing buds and wing buds treated with retinoic acid. Two conclusions emerge. One is that the activation of Hox-4 domains and the elaboration of Hox-4 gene expression patterns involve cooperation with a signal from the apical ridge. The second is that the domains of expression of 5'-located members of the complex correlate with the maintenance of the thickened ridge which is required for subsequent bud outgrowth.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号