首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The natural product specialized metabolites produced by microbes and plants are the backbone of our current drugs. Despite their historical importance, few pharmaceutical companies currently emphasize their exploitation in new drug discovery and instead favour synthetic compounds as more tractable alternatives. Ironically, we are in a Golden Age of understanding of natural product biosynthesis, biochemistry and engineering. These advances have the potential to usher in a new era of natural product exploration and development taking full advantage of the unique and favourable properties of natural products compounds in drug discovery.  相似文献   

2.
Heat shock protein 90 (Hsp90) is an important target in cancer because of its role in maintaining transformation and has recently become the focus of several drug discovery and development efforts. While compounds with different modes of action are known, the focus of this review is on those classes of compounds which inhibit Hsp90 by binding to the N-terminal ATP pocket. These include natural product inhibitors such as geldanamycin and radicicol and synthetic inhibitors comprised of purines, pyrazoles, isoxazoles and other scaffolds. The synthetic inhibitors have been discovered either by structure-based design, high throughput screening and more recently using fragment-based design and virtual screening techniques. This review will discuss the discovery of these different classes, as well as their development as potential clinical agents.  相似文献   

3.
The knowledge of complete sequences of different organisms is dramatically changing the landscape of biological research and pharmaceutical development. We are experiencing a transition from a trial-and-error approach in traditional biological research and natural product drug discovery to a systematic operation in genomics and target-specific drug design and selection. Small, cell-permeable and target-specific chemical ligands are particularly useful in systematic genomic approaches to study biological questions. On the other hand, genomic sequence information, comparative and structural genomics, when combined with the cutting edge technologies in synthetic chemistry and ligand screening/identification, provide a powerful way to produce target-specific and/or function-specific chemical ligands and drugs. Chemical genomics or chemogenomics is a new term that describes the development of target-specific chemical ligands and the use of such chemical ligands to globally study gene and protein functions. We anticipate that chemical genomics plays a critical role in the genomic age of biological research and drug discovery.  相似文献   

4.
It has been half a century since investigators first began experimenting with adding ion exchange resins during the fermentation of microbial natural products. With the development of nonionic polymeric adsorbents in the 1970s, the application of in situ product adsorption in bioprocessing has grown slowly, but steadily. To date, in situ product adsorption strategies have been used in biotransformations, plant cell culture, the production of biofuels, and selected bulk chemicals, such as butanol and lactic acid, as well as in more traditional natural product fermentation within the pharmaceutical industry. Apart from the operational gains in efficiency from the integration of fermentation and primary recovery, the addition of adsorbents during fermentation has repeatedly demonstrated the capacity to significantly increase titers by sequestering the product and preventing or mitigating degradation, feedback inhibition and/or cytotoxic effects. Adoption of in situ product adsorption has been particularly valuable in the early stages of natural product-based drug discovery programs, where quickly and cost-effectively generating multigram quantities of a lead compound can be challenging when using a wild-type strain and fermentation conditions that have not been optimized. While much of the literature involving in situ adsorption describes its application early in the drug development process, this does not imply that the potential for scale-up is limited. To date, commercial-scale processes utilizing in situ product adsorption have reached batch sizes of at least 30,000 l. Here we present examples where in situ product adsorption has been used to improve product titers or alter the ratios among biosynthetically related natural products, examine some of the relevant variables to consider, and discuss the mechanisms by which in situ adsorption may impact the biosynthesis of microbial natural products.  相似文献   

5.
Natural products have immense therapeutic potential not only due to their structural variation and complexity but also due to their range of biological activities. Research based on natural products has led to the discovery of molecules with biomedical and pharmaceutical applications in different therapeutic areas like cancer, inflammation responses, diabetes, and infectious diseases. There are still several challenges to be overcome in natural product drug discovery research programs and the challenge of high throughput screening of natural substances is one of them. Bioactivity screening is an integral part of the drug discovery process and several in vitro and in vivo biological models are now available for this purpose. Among other well-reported biological models, the zebrafish (Danio rerio) is emerging as an important in vivo model for preclinical studies of synthetic molecules in different therapeutic areas. Zebrafish embryos have a short reproductive cycle, show ease of maintenance at high densities in the laboratory and administration of drugs is a straightforward procedure. The embryos are optically transparent, allowing for the visualization of drug effects on internal organs during the embryogenesis process. In this review, we illustrate the importance of using zebrafish as an important biological model in the discovery of bioactive drugs from natural sources.  相似文献   

6.
7.
后基因组时代的真菌天然产物发现   总被引:1,自引:0,他引:1  
真菌产生的次级代谢产物是新药发现的重要来源之一,然而近年来传统的真菌天然产物发现方法在大量真菌基因组测序完成的时代遇到了很大的挑战。如何利用这些基因组数据来发现真菌中新的天然产物已成为后基因组时代天然产物发现的研究重点和热点。本综述先后介绍了真菌天然产物的类型及其相应基因簇和骨架酶的特征,基于基因组挖掘技术发展而来的天然产物发现新策略,以及利用合成生物学理念和技术在真菌天然产物发现中的应用现状,最后展望了后基因组时代中的天然产物发现研究前沿及基因组数据在后基因组时代对真菌天然产物发现的应用前景。  相似文献   

8.
The pharmaceutical industry is facing serious challenges as the drug discovery process is becoming extremely expensive, riskier and critically inefficient. A significant shift from single to multi targeted drugs especially for polygenic syndromes is being witnessed. Strategic options based on natural product drug discovery, ethnopharmacology and traditional medicines are re-emerging to offer good base as an attractive discovery engine. Approaches based on reverse pharmacology may offer efficient development platforms for herbal formulations. Relevant case studies from India and other countries where such approaches have expedited the drug discovery and development process by reducing time and economizing investments with better safety are discussed.  相似文献   

9.
随着耐药细菌的出现和广泛传播,开发新型抗菌药迫在眉睫。分布在人体不同部位的共生菌能够产生多种抗菌分子以抑制病原菌的定植和感染。人体共生菌的抗菌分子为研发全新结构和作用机制的药物提供了潜在的资源宝库,随着生物信息学、合成生物学、基因组学等组学技术的进一步发展,对人体共生菌抗菌分子的挖掘也会更加深入,为解决耐药问题提供了有效的途径。文中回顾了目前所发现的人体共生菌产生的抗菌分子,并介绍了几种用于挖掘人体共生菌这一天然抗菌药物的资源宝库的方法。随着现代生物工程技术的发展,人体共生菌的抗菌分子将会得到更加全面、系统的探索和应用。  相似文献   

10.
Recent years have witnessed a global decline in the productivity and advancement of the pharmaceutical industry. A major contributing factor to this is the downturn in drug discovery successes. This can be attributed to the lack of structural (particularly scaffold) diversity and structural complexity exhibited by current small molecule screening collections.Macrocycles have been shown to exhibit a diverse range of biological properties, with over 100 natural product-derived examples currently marketed as FDA-approved drugs. Despite this, synthetic macrocycles are widely considered to be a poorly explored structural class within drug discovery, which can be attributed to their synthetic intractability.Herein we describe a novel complexity-to-diversity strategy for the diversity-oriented synthesis of novel, structurally complex and diverse macrocyclic scaffolds from natural product starting materials. This approach exploits the inherent structural (including functional) and stereochemical complexity of natural products in order to rapidly generate diversity and complexity. Readily-accessible natural product-derived intermediates serve as structural templates which can be divergently functionalized with different building blocks to generate a diverse range of acyclic precursors. Subsequent macrocyclisation then furnishes compounds that are each based around a distinct molecular scaffold. Thus, high levels of library scaffold diversity can be rapidly achieved. In this proof-of-concept study, the natural product quinine was used as the foundation for library synthesis, and six novel structurally diverse, highly complex and functionalized macrocycles were generated.  相似文献   

11.
Cytotoxic small-molecule drugs have a major influence on the fate of antibody–drug conjugates (ADCs). An ideal cytotoxic agent should be highly potent, remain stable while linked to ADCs, kill the targeted tumor cell upon internalization and release from the ADCs, and maintain its activity in multidrug-resistant tumor cells. Lessons learned from successful and failed experiences in ADC development resulted in remarkable progress in the discovery and development of novel highly potent small molecules. A better understanding of such small-molecule drugs is important for development of effective ADCs. The present review discusses requirements making a payload appropriate for antitumor ADCs and focuses on the main characteristics of commonly-used cytotoxic payloads that showed acceptable results in clinical trials. In addition, the present study represents emerging trends and recent advances of payloads used in ADCs currently under clinical trials.  相似文献   

12.
Accumulating evidence demonstrates that polyphenols in natural products are beneficial against human lethal diseases such as cancer and metastasis. The underlying mechanisms of anti-cancer effects are complex. Recent studies show that several polyphenols, including epigallocatechin-3-gallate (EGCG) in green tea and resveratrol in red wine, inhibit angiogenesis when administrated orally. These polyphenols have direct effects on suppression of angiogenesis in several standard animal angiogenesis models. Because angiogenesis is involved in many diseases such as cancer, diabetic retinopathy and chronic inflammations, the discovery of these polyphenols as angiogenesis inhibitors has shed light on the health beneficial mechanisms of natural products, which are rich in these molecules. At the molecular level, recent studies have provided important information on how these molecules inhibit endothelial cell growth. Perhaps the greatest therapeutic advantage of these small natural molecules over large protein compounds is that they can be administrated orally without causing severe side effects. It is anticipated that more polyphenols in natural products will be discovered as angiogenesis inhibitors and that these natural polyphenols could serve as leading structures in the discovery of more potent, synthetic angiogenesis inhibitors.  相似文献   

13.
The discovery of antibiotics and other antimicrobial agents in the 1930s is arguably the most significant therapeutic advance in medical history. Penicillin and the sulfa drugs touched off the search for and discovery of countless derivative compounds and several new antibiotic classes. However, the pace of discovery has slowed down, and there is growing appreciation that much of the low-lying fruit accessible to traditional methods of antimicrobial discovery has been harvested. Combating emerging drug-resistant strains of infectious agents may require the adoption of fresh approaches to drug target validation, small-molecule discovery and safety assessment. The recent development of several infectious disease models in zebrafish raises the possibility of a new paradigm in antimicrobial discovery.  相似文献   

14.
During the past 15 years, most large pharmaceutical companies have decreased the screening of natural products for drug discovery in favor of synthetic compound libraries. Main reasons for this include the incompatibility of natural product libraries with high-throughput screening and the marginal improvement in core technologies for natural product screening in the late 1980s and early 1990 s. Recently, the development of new technologies has revolutionized the screening of natural products. Applying these technologies compensates for the inherent limitations of natural products and offers a unique opportunity to re-establish natural products as a major source for drug discovery. Examples of these new advances and technologies are described in this review.  相似文献   

15.
Over 60% of the current anticancer drugs have their origin in one way or another from natural sources. Nature continues to be the most prolific source of biologically active and diverse chemotypes, and it is becoming increasingly evident that associated microbes may often be the source of biologically active compounds originally isolated from host macro-organisms. While relatively few of the actual isolated compounds advance to become clinically effective drugs in their own right, these unique molecules may serve as models for the preparation of more efficacious analogs using chemical methodology such as total or combinatorial (parallel) synthesis, or manipulation of biosynthetic pathways. In addition, conjugation of toxic natural molecules to monoclonal antibodies or polymeric carriers specifically targeted to epitopes on tumors of interest can lead to the development of efficacious targeted therapies. The essential role played by natural products in the discovery and development of effective anticancer agents, and the importance of multidisciplinary collaboration in the generation and optimization of novel molecular leads from natural product sources is reviewed.  相似文献   

16.
Zhang C  Lai L 《Biochemical Society transactions》2011,39(5):1382-6, suppl 1 p following 1386
Structure-based drug design for chemical molecules has been widely used in drug discovery in the last 30 years. Many successful applications have been reported, especially in the field of virtual screening based on molecular docking. Recently, there has been much progress in fragment-based as well as de novo drug discovery. As many protein-protein interactions can be used as key targets for drug design, one of the solutions is to design protein drugs based directly on the protein complexes or the target structure. Compared with protein-ligand interactions, protein-protein interactions are more complicated and present more challenges for design. Over the last decade, both sampling efficiency and scoring accuracy of protein-protein docking have increased significantly. We have developed several strategies for structure-based protein drug design. A grafting strategy for key interaction residues has been developed and successfully applied in designing erythropoietin receptor-binding proteins. Similarly to small-molecule design, we also tested de novo protein-binder design and a virtual screen of protein binders using protein-protein docking calculations. In comparison with the development of structure-based small-molecule drug design, we believe that structure-based protein drug design has come of age.  相似文献   

17.
F Zhu  XH Ma  C Qin  L Tao  X Liu  Z Shi  CL Zhang  CY Tan  YZ Chen  YY Jiang 《PloS one》2012,7(7):e39782
Due to extensive bioprospecting efforts of the past and technology factors, there have been questions about drug discovery prospect from untapped species. We analyzed recent trends of approved drugs derived from previously untapped species, which show no sign of untapped drug-productive species being near extinction and suggest high probability of deriving new drugs from new species in existing drug-productive species families and clusters. Case histories of recently approved drugs reveal useful strategies for deriving new drugs from the scaffolds and pharmacophores of the natural product leads of these untapped species. New technologies such as cryptic gene-cluster exploration may generate novel natural products with highly anticipated potential impact on drug discovery.  相似文献   

18.
Malaria continues to be an enormous global health challenge, with millions of new infections and deaths reported annually. This is partly due to the development of resistance by the malaria parasite to the majority of established anti-malarial drugs, a situation that continues to hamper attempts at controlling the disease. This has spurred intensive drug discovery endeavours geared towards identifying novel, highly active anti-malarial drugs, and the identification of quality leads from natural sources would greatly augment these efforts. The current reality is that other than compounds that have their foundation in historic natural products, there are no other compounds in drug discovery as part of lead optimization projects and preclinical development or further that have originated from a natural product start-point in recent years. This paper briefly presents both classical as well as some more modern, but underutilized, approaches that have been applied outside the field of malaria, and which could be considered in enhancing the potential of natural products to provide or inspire the development of anti-malarial lead compounds.  相似文献   

19.
A wide variety of novel small-molecule natural products has recently been reported. These compounds were isolated from marine and terrestrial sources, and from a variety of animals, plants and microorganisms. With the breadth of diversity represented in these bioactive small molecules, the future of natural product drug discovery looks bright.  相似文献   

20.
Phytochemistry and pharmacognosy   总被引:1,自引:0,他引:1  
Phillipson JD 《Phytochemistry》2007,68(22-24):2960-2972
During the past 50 years there have been tremendous advances in chemical and biological techniques of analysis that have transformed research in pharmacognosy. The PSE has regularly held symposia of relevance to pharmacognosy and some of these are briefly reviewed in the area of natural products from higher plants. These symposia have charted the developments that link pharmacognosy with phytochemistry and illustrate the application of increasingly more sophisticated analytical techniques to the discovery of biologically active compounds. Plants have yielded clinical drugs, either as natural product molecules, or as synthetic modifications, particularly for chemotherapeutic treatment of cancer and malaria. Aspects of biotechnology, traditional medicines and herbal medicinal products are briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号