首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The disulfide relay system found in the intermembrane space (IMS) of mitochondria is an essential pathway for the import and oxidative folding of IMS proteins. Erv1, an essential member of this pathway, has been previously found to be ubiquitously present in mitochondria-containing eukaryotes. However, the other essential protein, Mia40, was found to be absent or not required in some organisms, raising questions about how the disulfide relay functions in these organisms. A recent study published in BMC Biology demonstrates for the first time that some Erv1 proteins can function in oxidative folding independently of a Mia40 protein, providing for the first time strong evidence that the IMS disulfide relay evolved in a stepwise manner.See research article: 10.1186/s12915-017-0445-8  相似文献   

2.
Three multiprotein systems are known for iron-sulfur (Fe-S) cluster biogenesis in prokaryotes and eukaryotes as follows: the NIF (nitrogen fixation), the ISC (iron-sulfur cluster), and the SUF (mobilization of sulfur) systems. In all three, cysteine is the physiological sulfur source, and the sulfur is transferred from cysteine desulfurase through a persulfidic intermediate to a scaffold protein. However, the biochemical nature of the sulfur source for Fe-S cluster assembly in archaea is unknown, and many archaea lack homologs of cysteine desulfurases. Methanococcus maripaludis is a methanogenic archaeon that contains a high amount of protein-bound Fe-S clusters (45 nmol/mg protein). Cysteine in this archaeon is synthesized primarily via the tRNA-dependent SepRS/SepCysS pathway. When a ΔsepS mutant (a cysteine auxotroph) was grown with 34S-labeled sulfide and unlabeled cysteine, <8% of the cysteine, >92% of the methionine, and >87% of the sulfur in the Fe-S clusters in proteins were labeled, suggesting that the sulfur in methionine and Fe-S clusters was derived predominantly from exogenous sulfide instead of cysteine. Therefore, this investigation challenges the concept that cysteine is always the sulfur source for Fe-S cluster biosynthesis in vivo and suggests that Fe-S clusters are derived from sulfide in those organisms, which live in sulfide-rich habitats.  相似文献   

3.
The mitochondrial intermembrane space (IMS) contains an essential machinery for protein import and assembly (MIA). Biogenesis of IMS proteins involves a disulfide relay between precursor proteins, the cysteine-rich IMS protein Mia40 and the sulfhydryl oxidase Erv1. How precursor proteins are specifically directed to the IMS has remained unknown. Here we systematically analyzed the role of cysteine residues in the biogenesis of the essential IMS chaperone complex Tim9-Tim10. Although each of the four cysteines of Tim9, as well as of Tim10, is required for assembly of the chaperone complex, only the most amino-terminal cysteine residue of each precursor is critical for translocation across the outer membrane and interaction with Mia40. Mia40 selectively recognizes cysteine-containing IMS proteins in a site-specific manner in organello and in vitro. Our results indicate that Mia40 acts as a trans receptor in the biogenesis of mitochondrial IMS proteins.  相似文献   

4.
The mitochondrial outer membrane contains proteinaceous machineries for the import and assembly of proteins, including TOM (translocase of the outer membrane) and SAM (sorting and assembly machinery). It has been shown that the dimeric phospholipid cardiolipin is required for the stability of TOM and SAM complexes and thus for the efficient import and assembly of β-barrel proteins and some α-helical proteins of the outer membrane. Here, we report that mitochondria deficient in phosphatidylethanolamine (PE), the second non-bilayer-forming phospholipid, are impaired in the biogenesis of β-barrel proteins, but not of α-helical outer membrane proteins. The stability of TOM and SAM complexes is not disturbed by the lack of PE. By dissecting the import steps of β-barrel proteins, we show that an early import stage involving translocation through the TOM complex is affected. In PE-depleted mitochondria, the TOM complex binds precursor proteins with reduced efficiency. We conclude that PE is required for the proper function of the TOM complex.  相似文献   

5.
C-C chemokine receptor 5 (CCR5) is a receptor for chemokines and a co-receptor for HIV-1 entry into the target CD4+ cells. CCR5 delta 32 deletion is a loss-of-function mutation, resistant to HIV-1 infection. We tried to induce the CCR5 delta 32 mutation harnessing the genome editing technique, CRISPR-Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats, CRISPR and CRISPR associated protein 9, Cas9) in the commonly used cell line human embryonic kidney HEK 293T cells. Surprisingly, we found that HEK293T cells are heterozygous for CCR5 delta 32 mutation, in contrast to the wild type CCR5 cells, human acute T cell leukemia cell line Jurkat and human breast adenocarcinoma cell line MDA-MB-231 cells. This finding indicates that at least one human cell line is heterozygous for the CCR5 delta 32 mutation. We also found that in PCR amplification, wild type CCR5 DNA and mutant delta 32 DNA can form mismatched heteroduplex and move slowly in gel electrophoresis.  相似文献   

6.
The Pam/Highwire/RPM-1 (PHR) proteins are key regulators of neuronal development that function in axon extension and guidance, termination of axon outgrowth, and synapse formation. Outside of development, the PHR proteins also regulate axon regeneration and Wallerian degeneration. The PHR proteins function in part by acting as ubiquitin ligases that degrade the Dual Leucine zipper-bearing Kinase (DLK). Here, we show that the Caenorhabditis elegans PHR protein, Regulator of Presynaptic Morphology 1 (RPM-1), also utilizes a phosphatase-based mechanism to regulate DLK-1. Using mass spectrometry, we identified Protein Phosphatase Magnesium/Manganese dependent 2 (PPM-2) as a novel RPM-1 binding protein. Genetic, transgenic, and biochemical studies indicated that PPM-2 functions coordinately with the ubiquitin ligase activity of RPM-1 and the F-box protein FSN-1 to negatively regulate DLK-1. PPM-2 acts on S874 of DLK-1, a residue implicated in regulation of DLK-1 binding to a short, inhibitory isoform of DLK-1 (DLK-1S). Our study demonstrates that PHR proteins function through both phosphatase and ubiquitin ligase mechanisms to inhibit DLK. Thus, PHR proteins are potentially more accurate and sensitive regulators of DLK than originally thought. Our results also highlight an important and expanding role for the PP2C phosphatase family in neuronal development.  相似文献   

7.
Mitochondrial protein traffic requires coordinated operation of protein translocator complexes in the mitochondrial membrane. The TIM23 complex translocates and inserts proteins into the mitochondrial inner membrane. Here we analyze the intermembrane space (IMS) domains of Tim23 and Tim50, which are essential subunits of the TIM23 complex, in these functions. We find that interactions of Tim23 and Tim50 in the IMS facilitate transfer of precursor proteins from the TOM40 complex, a general protein translocator in the outer membrane, to the TIM23 complex. Tim23–Tim50 interactions also facilitate a late step of protein translocation across the inner membrane by promoting motor functions of mitochondrial Hsp70 in the matrix. Therefore, the Tim23–Tim50 pair coordinates the actions of the TOM40 and TIM23 complexes together with motor proteins for mitochondrial protein import.  相似文献   

8.
The intermembrane space (IMS) represents the smallest subcompartment of mitochondria. Nevertheless, it plays important roles in the transport and modification of proteins, lipids, and metal ions and in the regulation and assembly of the respiratory chain complexes. Moreover, it is involved in many redox processes and coordinates key steps in programmed cell death. A comprehensive profiling of IMS proteins has not been performed so far. We have established a method that uses the proapoptotic protein Bax to release IMS proteins from isolated mitochondria, and we profiled the protein composition of this compartment. Using stable isotope-labeled mitochondria from Saccharomyces cerevisiae, we were able to measure specific Bax-dependent protein release and distinguish between quantitatively released IMS proteins and the background efflux of matrix proteins. From the known 31 soluble IMS proteins, 29 proteins were reproducibly identified, corresponding to a coverage of >90%. In addition, we found 20 novel intermembrane space proteins, out of which 10 had not been localized to mitochondria before. Many of these novel IMS proteins have unknown functions or have been reported to play a role in redox regulation. We confirmed IMS localization for 15 proteins using in organello import, protease accessibility upon osmotic swelling, and Bax-release assays. Moreover, we identified two novel mitochondrial proteins, Ymr244c-a (Coa6) and Ybl107c (Mic23), as substrates of the MIA import pathway that have unusual cysteine motifs and found the protein phosphatase Ptc5 to be a novel substrate of the inner membrane protease (IMP). For Coa6 we discovered a role as a novel assembly factor of the cytochrome c oxidase complex. We present here the first and comprehensive proteome of IMS proteins of yeast mitochondria with 51 proteins in total. The IMS proteome will serve as a valuable source for further studies on the role of the IMS in cell life and death.Mitochondria are double-membrane-bound organelles that fulfill a multitude of important cellular functions. Proteomic analysis of purified mitochondria revealed that they contain approximately 1000 (yeast) to 1500 (human) different proteins (13). However, the distribution of these proteins among the four mitochondrial subcompartments (outer membrane, inner membrane, matrix, and intermembrane space) has been only marginally studied through global approaches. This is attributed to the high complexity of purifying submitochondrial fractions to a grade suitable for proteomic analysis. The best-studied submitochondrial proteomes comprise the outer membranes of S. cerevisae, N. crassa, and A. thaliana (46). The mitochondrial intermembrane space (IMS)1 represents a highly interesting compartment for several reasons: it provides a redox active space that promotes oxidation of cysteine residues similar to the endoplasmic reticulum and the bacterial periplasm, but unlike cytosol, nucleus, or the mitochondrial matrix where the presence of thioredoxins or glutaredoxins prevents the risk of unwanted cysteine oxidation (7, 8). Furthermore in higher eukaryotes IMS proteins are released into the cytosol upon apoptotic induction, which triggers the activation of a cell-killing protease activation cascade (9, 10). The IMS can also exchange proteins, lipids, metal ions, and various metabolites with other cellular compartments, allowing mitochondrial metabolism to adapt to cellular homeostasis. In particular, the biogenesis and activity of the respiratory chain were shown to be controlled by various proteins of the IMS (1113). Most of the currently known IMS proteins are soluble proteins; however, some inner membrane proteins have been annotated as IMS proteins as well, such as proteins that are peripherally attached to the inner membrane or membrane proteins that expose enzyme activity toward the IMS (8).All IMS proteins are encoded in the nuclear DNA and have to be imported after translation in the cytosol (1419). Two main pathways are known to mediate the import and sorting of proteins into the IMS. One class of proteins contains bipartite presequences that consist of a matrix targeting signal and a hydrophobic sorting signal. These signals arrest the incoming preprotein at the inner membrane translocase TIM23. After insertion into the inner membrane, the soluble, mature protein can be released into the IMS by the inner membrane protease (IMP) (2022). The second class of IMS proteins possesses characteristic cysteine motifs that typically are either twin CX9C or twin CX3C motifs (23, 24). Upon translocation across the outer membrane via the TOM complex, disulfide bonds are formed within the preproteins, which traps them in the IMS. Disulfide bond formation is mediated by the MIA machinery, which consists of the inner-membrane-anchored Mia40 and the soluble IMS protein Erv1 (2528).The release of cytochrome c from the IMS upon binding and insertion of Bax at the outer membrane is a hallmark of programmed cell death. Although Bax is found only in higher eukaryotes, it was shown that recombinant mammalian Bax induces the release of cytochrome c upon incubation with isolated yeast mitochondria (29, 30). Furthermore, we found that not only cytochrome c but also other soluble IMS proteins are released from Bax-treated yeast mitochondria, whereas soluble matrix proteins largely remain within the organelle (30).We used this apparently conserved mechanism to systematically profile the protein composition of the yeast mitochondrial IMS by employing an experimental approach based on stable isotope labeling, which allowed for the specific identification of Bax-dependent protein release. Almost the entire set of known soluble IMS proteins was identified, and 20 additional, novel soluble IMS proteins were found. We confirmed IMS localization for 15 proteins through biochemical assays. Among these proteins, we identified novel proteins that fall into several classes: (i) those that are involved in maintaining protein redox homeostasis (thioredoxins, thioredoxin reductases, or thiol peroxidases), (ii) those that undergo proteolytic processing by IMP (Ptc5), (iii) those that utilize the MIA pathway for their import (Mic23 and Coa6), and (iv) those that play a role in the assembly of cytochrome c oxidase (Coa6).  相似文献   

9.
The second messengers cAMP and cGMP activate their target proteins by binding to a conserved cyclic nucleotide-binding domain (CNBD). Here, we identify and characterize an entirely novel CNBD-containing protein called CRIS (cyclic nucleotide receptor involved in sperm function) that is unrelated to any of the other members of this protein family. CRIS is exclusively expressed in sperm precursor cells. Cris-deficient male mice are either infertile due to a lack of sperm resulting from spermatogenic arrest, or subfertile due to impaired sperm motility. The motility defect is caused by altered Ca2+ regulation of flagellar beat asymmetry, leading to a beating pattern that is reminiscent of sperm hyperactivation. Our results suggest that CRIS interacts during spermiogenesis with Ca2+-regulated proteins that—in mature sperm—are involved in flagellar bending.  相似文献   

10.
Ankyrin repeat domain protein 2 (ANKRD2) translocates from the nucleus to the cytoplasm upon myogenic induction. Overexpression of ANKRD2 inhibits C2C12 myoblast differentiation. However, the mechanism by which ANKRD2 inhibits myoblast differentiation is unknown. We demonstrate that the primary myoblasts of mdm (muscular dystrophy with myositis) mice (pMBmdm) overexpress ANKRD2 and ID3 (inhibitor of DNA binding 3) proteins and are unable to differentiate into myotubes upon myogenic induction. Although suppression of either ANKRD2 or ID3 induces myoblast differentiation in mdm mice, overexpression of ANKRD2 and inhibition of ID3 or vice versa is insufficient to inhibit myoblast differentiation in WT mice. We identified that ANKRD2 and ID3 cooperatively inhibit myoblast differentiation by physical interaction. Interestingly, although MyoD activates the Ankrd2 promoter in the skeletal muscles of wild-type mice, SREBP-1 (sterol regulatory element binding protein-1) activates the same promoter in the skeletal muscles of mdm mice, suggesting the differential regulation of Ankrd2. Overall, we uncovered a novel pathway in which SREBP-1/ANKRD2/ID3 activation inhibits myoblast differentiation, and we propose that this pathway acts as a critical determinant of the skeletal muscle developmental program.  相似文献   

11.
Mitochondrial import of cleavable preproteins occurs at translocation contact sites, where the translocase of the outer membrane (TOM) associates with the presequence translocase of the inner membrane (TIM23) in a supercomplex. Different views exist on the mechanism of how TIM23 mediates preprotein sorting to either the matrix or inner membrane. On the one hand, two TIM23 forms were proposed, a matrix transport form containing the presequence translocase-associated motor (PAM; TIM23-PAM) and a sorting form containing Tim21 (TIM23SORT). On the other hand, it was reported that TIM23 and PAM are permanently associated in a single-entity translocase. We have accumulated distinct transport intermediates of preproteins to analyze the translocases in their active, preprotein-carrying state. We identified two different forms of active TOM-TIM23 supercomplexes, TOM-TIM23SORT and TOM-TIM23-PAM. These two supercomplexes do not represent separate pathways but are in dynamic exchange during preprotein translocation and sorting. Depending on the signals of the preproteins, switches between the different forms of supercomplex and TIM23 are required for the completion of preprotein import.The majority of mitochondrial proteins are nuclear encoded and posttranslationally transported into the organelle. A major class of mitochondrial proteins possess cleavable targeting signals at their amino termini, so-called presequences (5, 9, 12, 19, 30, 32). These α-helical segments are positively charged and direct the proteins across the outer and inner mitochondrial membranes toward the matrix space, where the presequences are proteolytically removed. However, a number of proteins of the inner mitochondrial membrane, among them subunits of the respiratory chain complexes, also utilize presequences as targeting signals. In addition to the presequence, they contain a hydrophobic sorting signal, which arrests precursor translocation across the inner membrane and mediates the lateral release of the polypeptide into the lipid phase (16, 30). In some cases, the membrane-inserted precursors undergo a second processing event by the inner membrane protease that cleaves behind the sorting signal and therefore leads to the release of the protein into the intermembrane space (25, 30, 31). Thus, a large variety of proteins destined for three different intramitochondrial compartments use presequences as the primary signal for transport.Cleavable preproteins initially enter mitochondria via the TOM complex and are translocated into or across the inner membrane by the TIM23 complex. The TIM23 complex consists of four integral membrane proteins, Tim23, Tim17, Tim50, and Tim21. Tim23 forms the protein-conducting channel of the translocase and is tightly associated with Tim17 (8, 26, 43). Tim50 acts as a regulator for the Tim23 channel and is involved in early steps of precursor transfer from the outer to the inner membranes (23, 29, 41). Tim21 transiently interacts with the TOM complex via binding to the intermembrane space domain of Tom22. This interaction promotes the release of presequences from Tom22 for their further transfer to the Tim23 channel (4). For full matrix translocation of preproteins, the TIM23 complex cooperates with PAM. The central subunit of PAM is mtHsp70, which undergoes ATP-dependent cycles of preprotein binding and release to promote polypeptide movement toward the matrix. The activity of mtHsp70 in the translocation process is regulated by four membrane-bound cochaperones, Tim44, the J complex Pam18/Pam16 (Tim14/Tim16), and Pam17. Tim44 provides a binding site for preproteins and mtHsp70 close to the Tim23 channel (1, 17, 22, 36). The J protein Pam18 stimulates the ATPase activity of mtHsp70 (10, 44), whereas the J-related protein Pam16 controls the activity of Pam18 (11, 13, 20). Pam17 plays an organizing role in the TIM23-PAM cooperation (33, 45).The following two different views on the organization of the presequence transport machinery are currently discussed. (i) The TIM23 complex and PAM were proposed to exist in different modular states, termed TIM23SORT and TIM23-PAM. The TIM23CORE complex, consisting of Tim23, Tim17 and Tim50, associates with either Tim21 or the subunits of PAM (4, 47, 51). The Tim21-containing form is termed TIM23SORT since this motor-free form was isolated and shown to mediate membrane insertion of sorted preproteins upon reconstitution (46). The TIM23-PAM form (lacking Tim21) is crucial for mtHsp70-driven preprotein translocation into the matrix (4). (ii) On the other hand, it was proposed that presequence translocase and import motor form a single structural and functional entity. Thus, membrane-integrated TIM23 and import motor would always remain in one complex. This model implies that a motor-free form of the TIM23 complex should not exist (27, 33, 42).To decide between the different views, it is necessary to analyze translocase and motor in their active form, i.e., during their engagement with preproteins. Moreover, the model of modular forms of TIM23 and PAM raises the question whether two strictly separate TIM23 pathways for inner membrane sorting and matrix translocation exist or whether an exchange between the different forms of the presequence translocase occurs. To date, the majority of experimental studies have been performed with the translocases in an inactive, i.e., preprotein-free, state. Studies using preproteins in transit provided only limited information so far and thus did not resolve the controversy, as follows. (i) Mokranjac and Neupert (27) questioned if the in vitro preprotein insertion by purified TIM23SORT in a proteoliposome assay (46) reflected the in organello situation in intact mitochondria. (ii) Popov-Celeketic et al. (33) accumulated a matrix-targeted preprotein in mitochondrial import sites in vivo and performed pulldown experiments. They copurified TIM23, PAM, and Tim21 and thus concluded that the TIM23 and motor subunits formed a single entity. They did not address the possibility that the accumulated preprotein was associated with different pools of translocase complexes. (iii) Wiedemann et al. (51) made use of the observation that TIM23SORT associates with the respiratory chain (47). They reported a copurification of inner membrane-sorted preproteins and matrix-targeted preproteins with respiratory chain complexes. This observation raised the possibility that the pathways for inner membrane sorting and matrix translocation are connected at least at the level of respiratory chain interaction; however, the composition of the TIM23 complexes was not analyzed.For this study, we used preproteins with variations in the intramitochondrial sorting signal to monitor the active, preprotein-carrying translocases at distinct stages of mitochondrial import. We observed different forms of active translocases on the presequence pathway. The sorting signals of the preproteins are critical for the selection of specific translocase forms. The motor and sorting forms of the TIM23 complex can be isolated as separate entities in support of the modular model. However, the different TIM23 forms are not permanently separated during preprotein import, but a dynamic exchange between the forms takes place for both matrix-targeted preproteins and inner membrane-sorted preproteins.  相似文献   

12.
Telomere shortening can cause detrimental diseases and contribute to aging. It occurs due to the end replication problem in cells lacking telomerase. Furthermore, recent studies revealed that telomere shortening can be attributed to difficulties of the semi-conservative DNA replication machinery to replicate the bulk of telomeric DNA repeats. To investigate telomere replication in a comprehensive manner, we develop QTIP-iPOND - Quantitative Telomeric chromatin Isolation Protocol followed by isolation of Proteins On Nascent DNA - which enables purification of proteins that associate with telomeres specifically during replication. In addition to the core replisome, we identify a large number of proteins that specifically associate with telomere replication forks. Depletion of several of these proteins induces telomere fragility validating their importance for telomere replication. We also find that at telomere replication forks the single strand telomere binding protein POT1 is depleted, whereas histone H1 is enriched. Our work reveals the dynamic changes of the telomeric proteome during replication, providing a valuable resource of telomere replication proteins. To our knowledge, this is the first study that examines the replisome at a specific region of the genome.  相似文献   

13.
14.
Tomato (Solanum lycopersium), an important fruit crop worldwide, requires efficient sugar allocation for fruit development. However, molecular mechanisms for sugar import to fruits remain poorly understood. Expression of sugars will eventually be exported transporters (SWEETs) proteins is closely linked to high fructose/glucose ratios in tomato fruits and may be involved in sugar allocation. Here, we discovered that SlSWEET15 is highly expressed in developing fruits compared to vegetative organs. In situ hybridization and β-glucuronidase fusion analyses revealed SlSWEET15 proteins accumulate in vascular tissues and seed coats, major sites of sucrose unloading in fruits. Localizing SlSWEET15-green fluorescent protein to the plasma membrane supported its putative role in apoplasmic sucrose unloading. The sucrose transport activity of SlSWEET15 was confirmed by complementary growth assays in a yeast (Saccharomyces cerevisiae) mutant. Elimination of SlSWEET15 function by clustered regularly interspaced short palindromic repeats (CRISPRs)/CRISPR-associated protein gene editing significantly decreased average sizes and weights of fruits, with severe defects in seed filling and embryo development. Altogether, our studies suggest a role of SlSWEET15 in mediating sucrose efflux from the releasing phloem cells to the fruit apoplasm and subsequent import into storage parenchyma cells during fruit development. Furthermore, SlSWEET15-mediated sucrose efflux is likely required for sucrose unloading from the seed coat to the developing embryo.

SlSWEET15, a specific sucrose uniporter in tomato, mediates apoplasmic sucrose unloading from phloem cells and seed coat to support fruit expansion and seed filling.  相似文献   

15.
Tumor tolerance plays a critical role in tumor growth and escape from immune surveillance. The mechanism of tumor tolerance development is not fully understood. Regulatory T cells (Tregs) play a critical role in tumor tolerance. TIM4 (T cell immunoglobulin- and mucin domain-containing molecule-4) is involved in immune regulation. We investigated the role of TIM4 in the induction of Tregs in tumors. Surgically removed glioma tissue and peripheral blood samples were obtained from 25 glioma patients. Immune cells were isolated from the tissue and blood samples. Confocal microscopy was employed to detect macrophages phagocytosing apoptotic T cells. The generation of tumor-specific Tregs and the immune suppression function of Tregs were observed in cell culture models. High levels of TIM4 were detected in glioma-derived macrophages. Phosphatidylserine (PS) was detected in glioma-derived T cells; naïve T cells expressed low levels of PS that could be up-regulated by hypoxia. Glioma-derived macrophages phagocytosed PS-expressing T cells, gaining the tolerogenic properties, which could induce tumor-specific Tregs; the latter could suppress tumor-specific CD8+ T cells. We conclude that macrophage-derived TIM4 plays an important role in the induction of Tregs in gliomas, which may play an important role in tumor tolerance.  相似文献   

16.
The small ubiquitin related modifier (SUMO)-mediated posttranslational protein modification is widely conserved among eukaryotes. Similar to ubiquitination, SUMO modifications are attached to the substrate protein through three reaction steps by the E1, E2 and E3 enzymes. To date, multiple families of SUMO E3 ligases have been reported in yeast and animals, but only two types of E3 ligases have been identified in Arabidopsis: SAP and Miz 1 (SIZ1) and Methyl Methanesulfonate-Sensitivity protein 21 (MMS21)/HIGH PLOIDY 2 (HPY2), hereafter referred to as HPY2. Both proteins possess characteristic motifs termed Siz/PIAS RING (SP-RING) domains, and these motifs are conserved throughout the plant kingdom. Previous studies have shown that loss-of-function mutations in HPY2 or SIZ1 cause dwarf phenotypes and that the phenotype of siz1-2 is caused by the accumulation of salicylic acid (SA). However, we demonstrate here that the phenotype of hpy2-1 does not depend on SA accumulation. Consistently, the expression of SIZ1 driven by the HPY2 promoter does not complement the hpy2-1 phenotypes, indicating that they are not functional homologs. Lastly, we show that the siz1-2 and hpy2-1 double mutant results in embryonic lethality, supporting the hypothesis that they have non-overlapping roles during embryogenesis. Together, these results suggest that SIZ1 and HPY2 function independently and that their combined SUMOylation is essential for plant development.  相似文献   

17.
Ubiquitin pathway E3 ligases are an important component conferring specificity and regulation in ubiquitin attachment to substrate proteins. The Arabidopsis thaliana RING (Really Interesting New Gene) domain-containing proteins BRIZ1 and BRIZ2 are essential for normal seed germination and post-germination growth. Loss of either BRIZ1 (At2g42160) or BRIZ2 (At2g26000) results in a severe phenotype. Heterozygous parents produce progeny that segregate 3:1 for wild-type:growth-arrested seedlings. Homozygous T-DNA insertion lines are recovered for BRIZ1 and BRIZ2 after introduction of a transgene containing the respective coding sequence, demonstrating that disruption of BRIZ1 or BRIZ2 in the T-DNA insertion lines is responsible for the observed phenotype. Both proteins have multiple predicted domains in addition to the RING domain as follows: a BRAP2 (BRCA1-Associated Protein 2), a ZnF UBP (Zinc Finger Ubiquitin Binding protein), and a coiled-coil domain. In vitro, both BRIZ1 and BRIZ2 are active as E3 ligases but only BRIZ2 binds ubiquitin. In vitro synthesized and purified recombinant BRIZ1 and BRIZ2 preferentially form hetero-oligomers rather than homo-oligomers, and the coiled-coil domain is necessary and sufficient for this interaction. BRIZ1 and BRIZ2 co-purify after expression in tobacco leaves, which also requires the coiled-coil domain. BRIZ1 and BRIZ2 coding regions with substitutions in the RING domain are inactive in vitro and, after introduction, fail to complement their respective mutant lines. In our current model, BRIZ1 and BRIZ2 together are required for formation of a functional ubiquitin E3 ligase in vivo, and this complex is required for germination and early seedling growth.  相似文献   

18.
The molecular mechanisms regulating smooth muscle-specific gene expression during smooth muscle development are poorly understood. Myocardin is an extraordinarily powerful cofactor of serum response factor (SRF) that stimulates expression of smooth muscle-specific genes. In an effort to search for proteins that regulate myocardin function, we identified a novel HMG box-containing protein HMG2L1 (high mobility group 2 like 1). We found that HMG2L1 expression is correlated with the smooth muscle cell (SMC) synthetic phenotype. Overexpression of HMG2L1 in SMCs down-regulated smooth muscle marker expression. Conversely, depletion of endogenous HMG2L1 in SMCs increases smooth muscle-specific gene expression. Furthermore, we found HMG2L1 specifically abrogates myocardin-induced activation of smooth muscle-specific genes. By GST pulldown assays, the interaction domains between HMG2L1 and myocardin were mapped to the N termini of each of the proteins. Finally, we demonstrated that HMG2L1 abrogates myocardin function through disrupting its binding to SRF and abolishing SRF-myocardin complex binding to the promoters of smooth muscle-specific genes. This study provides the first evidence of this novel HMG2L1 molecule playing an important role in attenuating smooth muscle differentiation.  相似文献   

19.
Iron-sulfur proteins play an essential role in many biologic processes. Hence, understanding their assembly is an important goal. In Escherichia coli, the protein IscA is a product of the isc (iron-sulfur cluster) operon and functions in the iron-sulfur cluster assembly pathway in this organism. IscA is conserved in evolution, but its function in mammalian cells is not known. Here, we provide evidence for a role for a human homologue of IscA, named IscA1, in iron-sulfur protein biogenesis. We observe that small interfering RNA knockdown of IscA1 in HeLa cells leads to decreased activity of two mitochondrial iron-sulfur enzymes, succinate dehydrogenase and mitochondrial aconitase, as well as a cytosolic iron-sulfur enzyme, cytosolic aconitase. IscA1 is observed both in cytosolic and mitochondrial fractions. We find that IscA1 interacts with IOP1 (iron-only hydrogenase-like protein 1)/NARFL (nuclear prelamin A recognition factor-like), a cytosolic protein that plays a role in the cytosolic iron-sulfur protein assembly pathway. We therefore propose that human IscA1 plays an important role in both mitochondrial and cytosolic iron-sulfur cluster biogenesis, and a notable component of the latter is the interaction between IscA1 and IOP1.  相似文献   

20.

Background

The Schistosoma mansoni Venom-Allergen-Like proteins (SmVALs) are members of the SCP/TAPS (Sperm-coating protein/Tpx-1/Ag5/PR-1/Sc7) protein superfamily, which may be important in the host-pathogen interaction. Some of these molecules were suggested by us and others as potential immunomodulators and vaccine candidates, due to their functional classification, expression profile and predicted localization. From a vaccine perspective, one of the concerns is the potential allergic effect of these molecules.

Methodology/Principal Findings

Herein, we characterized the putative secreted proteins SmVAL4 and SmVAL26 and explored the mouse model of airway inflammation to investigate their potential allergenic properties. The respective recombinant proteins were obtained in the Pichia pastoris system and the purified proteins used to produce specific antibodies. SmVAL4 protein was revealed to be present only in the cercarial stage, increasing from 0–6 h in the secretions of newly transformed schistosomulum. SmVAL26 was identified only in the egg stage, mainly in the hatched eggs'' fluid and also in the secretions of cultured eggs. Concerning the investigation of the allergic properties of these proteins in the mouse model of airway inflammation, SmVAL4 induced a significant increase in total cells in the bronchoalveolar lavage fluid, mostly due to an increase in eosinophils and macrophages, which correlated with increases in IgG1, IgE and IL-5, characterizing a typical allergic airway inflammation response. High titers of anaphylactic IgG1 were revealed by the Passive Cutaneous Anaphylactic (PCA) hypersensitivity assay. Additionally, in a more conventional protocol of immunization for vaccine trials, rSmVAL4 still induced high levels of IgG1 and IgE.

Conclusions

Our results suggest that members of the SmVAL family do present allergic properties; however, this varies significantly and therefore should be considered in the design of a schistosomiasis vaccine. Additionally, the murine model of airway inflammation proved to be useful in the investigation of allergic properties of potential vaccine candidates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号