首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Glycogen synthesis in hepatocyte cultures is dependent on: (1) the nutritional state of the donor rat, (2) the acinar origin of the hepatocytes, (3) the concentrations of glucose and gluconeogenic precursors, and (4) insulin. High concentrations of glucose (15-25 mM) and gluconeogenic precursors (10 mM-lactate and 1 mM-pyruvate) had a synergistic effect on glycogen deposition in both periportal and perivenous hepatocytes. When hepatocytes were challenged with glucose, lactate and pyruvate in the absence of insulin, glycogen was deposited at a linear rate for 2 h and then reached a plateau. However, in the presence of insulin, the initial rate of glycogen deposition was increased (20-40%) and glycogen deposition continued for more than 4 h. Consequently, insulin had a more marked effect on the glycogen accumulated in the cell after 4 h (100-200% increase) than on the initial rate of glycogen deposition. Glycogen accumulation in hepatocyte cultures prepared from rats that were fasted for 24 h and then re-fed for 3 h before liver perfusion was 2-fold higher than in hepatocytes from rats fed ad libitum and 4-fold higher than in hepatocytes from fasted rats. The incorporation of [14C]lactate into glycogen was 2-4-fold higher in periportal than in perivenous hepatocytes in both the absence and the presence of insulin, whereas the incorporation of [14C]glucose into glycogen was similar in periportal and perivenous hepatocytes in the absence of insulin, but higher in perivenous hepatocytes in the presence of insulin. Rates of glycogen deposition in the combined presence of glucose and gluconeogenic precursors were similar in periportal and perivenous hepatocytes, whereas in the presence of glucose alone, rates of glycogen deposition paralleled the incorporation of [14C]glucose into glycogen and were higher in perivenous hepatocytes in the presence of insulin. It is concluded that periportal and perivenous hepatocytes utilize different substrates for glycogen synthesis, but differences between the two cell populations in the relative utilization of glucose and gluconeogenic precursors are dependent on the presence of insulin and on the nutritional state of the rat.  相似文献   

2.
Cultured rat hepatocytes were used to characterize the relationship between cellular glycogen content and the basal rate, as well as response to insulin of glycogen synthesis. Depending on the concentration of medium glucose, glycogen-depleted monolayers accumulated glycogen between 24 and 48 h of culture up to the fed in vivo level. Insulin at 100 nM stimulated glycogen deposition 20-fold at 1 mM and 1.5-fold at 50 mM glucose. The rate of further glycogen storage decreased with time and increasing glycogen content. In hepatocytes preincubated with 1-50 mM glucose during 24-48 h, short-term basal and insulin-dependent incorporation of 10 mM [14C]glucose into glycogen was inversely related to the actual cellular glycogen content. This was not due to different intracellular dilution of the label, since the specific radioactivity of UDP-glucose was similar in all groups. 125I-Insulin binding indicated that insulin receptors were also not involved in this phenomenon. An inverse relationship was also found between glycogen content and the stimulation of glycogen synthase I activity by insulin, whereas the basal activity of the enzyme was dissociated from the rate of incorporation of [14C]glucose. Basal net glycogen deposition at 10 mM glucose was also inversely related to cellular glycogen; however, no such relation was evident in the presence of insulin due to the overlapping inhibition of glycogenolysis. These studies suggest that the glycogen-mediated inhibition of the activation of glycogen synthase I is operative in the cultured hepatocyte and leads to an apparent inverse relationship between the actual glycogen content and basal as well as insulin-dependent glycogenesis.  相似文献   

3.
Insulin has been shown to alter long-chain fatty acid (LCFA) metabolism and malonyl-CoA production in muscle. However, these alterations may have been induced, in part, by the accompanying insulin-induced changes in glucose uptake. Thus, to determine the effects of insulin on LCFA metabolism independently of changes in glucose uptake, rat hindquarters were perfused with 600 microM palmitate and [1-(14)C]palmitate and with either 20 mM glucose and no insulin (G) or 6 mM glucose and 250 microU/ml of insulin (I). As dictated by our protocol, glucose uptake was not significantly different between the G and I groups (10.3 +/- 0.6 vs. 11.0 +/- 0.5 micromol x g(-1) x h(-1); P > 0.05). Total palmitate uptake and oxidation were not significantly different (P > 0.05) between the G (10.1 +/- 1.0 and 0.8 +/- 0.1 nmol x min(-1) x g(-1)) and I (10.2 +/- 0.6 and 1.1 +/- 0.2 nmol. min(-1) x g(-1)) groups. Preperfusion muscle triglyceride and malonyl-CoA levels were not significantly different between the G and I groups and did not change significantly during the perfusion (P > 0.05). Similarly, muscle triglyceride synthesis was not significantly different between groups (P > 0.05). These results demonstrate that the presence of insulin under conditions of similar glucose uptake does not alter LCFA metabolism and suggest that cellular mechanisms induced by carbohydrate availability, but independent of insulin, may be important in the regulation of muscle LCFA metabolism.  相似文献   

4.
Energy metabolism of cultured TM4 cells and the action of gossypol   总被引:1,自引:0,他引:1  
The energy metabolism of cultured TM4 cells, a cell line originally derived from mouse testicular cells, has been studied in relation to the action of gossypol. In the absence of externally added substrates, TM4 cells consumed oxygen at 37 +/- 5 nmoles O2 X mg protein-1 X h-1. Pyruvate stimulated oxygen consumption in a dose-dependent fashion up to 23%. Addition of glucose to the cells suspended in substrate-free medium inhibited oxygen consumption. At 5.5 mM glucose, the inhibition of oxygen consumption was 45 +/- 9%. The rate of aerobic lactate production from endogenous substrates was less than 7 nmoles lactate X mg protein-1 X h-1, even in the presence of optimal concentrations of the mitochondrial uncoupler carbonylcyanide m-chlorophenylhydrazone. The rate of aerobic lactate production was 920 +/- 197 nmoles X mg protein-1 X h-1 at external glucose concentrations of 2 mM or greater. The formation of aerobic glycolytic adenosine triphosphate (ATP) in 5 mM glucose comprised about 80% of the total ATP production. Gossypol stimulated both aerobic lactate production and oxygen consumption of the transformed testicular cells in a dose-dependent manner. The effect of gossypol on glucose transport, aerobic lactate production, and oxygen consumption is consistent with the hypothesis that gossypol modifies energy metabolism in these cells mainly by partially uncoupling mitochondrial oxidative phosphorylation. The possible impairment of cell and tissue function under gossypol treatment would depend on the metabolic properties of each specific differentiated cell.  相似文献   

5.
High-fat and high-sucrose diets increase the contribution of gluconeogenesis to glucose appearance (glc R(a)) under basal conditions. They also reduce insulin suppression of glc R(a) and insulin-stimulated muscle glycogen synthesis under euglycemic, hyperinsulinemic conditions. The purpose of the present study was to determine whether these impairments influence liver and muscle glycogen synthesis under hyperglycemic, hyperinsulinemic conditions. Male rats were fed a high-sucrose, high-fat, or low-fat, starch control diet for either 1 (n = 5-7/group) or 5 wk (n = 5-6/group). Studies involved two 90-min periods. During the first, a basal period (BP), [6-3H]glucose was infused. In the second, a hyperglycemic period (HP), [6-3H]glucose, [6-14C]glucose, and unlabeled glucose were infused. Plasma glucose (BP: 111.2 +/- 1.5 mg/dl; HP: 172.3 +/- 1.5 mg/dl), insulin (BP: 2.5 +/- 0.2 ng/ml; HP: 4.9 +/- 0.3 ng/ml), and glucagon (BP: 81.8 +/- 1.6 ng/l; HP: 74.0 +/- 1.3 ng/l) concentrations were not significantly different among diet groups or with respect to time on diet. There were no significant differences among groups in the glucose infusion rate (mg x kg(-1) x min(-1)) necessary to maintain arterial glucose concentrations at approximately 170 mg/dl (pooled average: 6.4 +/- 0.8 at 1 wk; 6.4 +/- 0.7 at 5 wk), percent suppression of glc R(a) (44.4 +/- 7.8% at 1 wk; 63.2 +/- 4.3% at 5 wk), tracer-estimated net liver glycogen synthesis (7.8 +/- 1.3 microg x g liver(-1) x min(-1) at 1 wk; 10.5 +/- 2.2 microg x g liver(-1) x min(-1) at 5 wk), indirect pathway glycogen synthesis (3.7 +/- 0.9 microg x g liver(-1) x min(-1) at 1 wk; 3.4 +/- 0.9 microg x g liver(-1) x min(-1) at 5 wk), or tracer-estimated net muscle glycogenesis (1.0 +/- 0.3 microg x g muscle(-1) x min(-1) at 1 wk; 1.6 +/- 0.3 microg x g muscle(-1) x min(-1) at 5 wk). These data suggest that hyperglycemia compensates for diet-induced insulin resistance in both liver and skeletal muscle.  相似文献   

6.
The mechanism of insulin's action upon intracellular proteolysis in isolated hepatocytes was studied. At 37 degrees C insulin inhibited intracellular degradation of intracellular proteins in a dose-dependent manner. A maximal 40% inhibition of intracellular proteolysis was achieved at an insulin concentration of 500 ng/ml with a half-maximal inhibition observed at 2.5 ng/ml of insulin. Insulin inhibited intracellular proteolysis both in the presence and in the absence of amino acids in the incubation mixture. Low concentrations of trypsin (10 micrograms/ml) mimicked insulin's effect upon glucose incorporation into glycogen, but not on intracellular proteolysis. Four protease inhibitors (phenylmethylsulfonyl fluoride (0.5 mM), p-nitrophenyl-p-guanidinobenzoate (0.25 mM), p-tosyl-L-arginine methyl ester (1 mM), and N alpha-p-tosyl-L-lysine chloromethyl ketone (1 mM) blocked the stimulatory effect of insulin upon [14C]glucose incorporation into glycogen, but did not affect the inhibitory action of insulin upon intracellular proteolysis. These results suggest that the mechanism of insulin's action upon intracellular proteolysis differs from that involved in stimulation of glycogenesis. Low temperature (15 degrees C) and short time exposure (10 min) of the hepatocytes to insulin eliminated the inhibitory effect of insulin on intracellular proteolysis. Similarly, insulin's effect on intracellular proteolysis was eliminated by dansylcadaverine, a transglutaminase inhibitor that blocked insulin internalization. In contrast, dansylcadaverine had no effect on insulin's ability to stimulate [14C]glucose incorporation into glycogen. These experiments strongly suggest the necessity of insulin internalization for its inhibitory effect on endogenous protein degradation.  相似文献   

7.
To determine the effects of brief food restriction on fatty acid (FA) metabolism, hindlimbs of F344/BN rats fed either ad libitum (AL) or food restricted (FR) to 60% of baseline food intake for 28 days were perfused under hyperglycemic-hyperinsulinemic conditions (20 mM glucose, 1 mM palmitate, 1,000 microU/ml insulin, [3-(3)H]glucose, and [1-(14)C]palmitate). Basal glucose and insulin levels were significantly lower (P < 0.05) in FR vs. AL rats. Palmitate uptake (34.3 +/- 2.7 vs. 24.5 +/- 3.1 nmol/g/min) and oxidation (3.8 +/- 0.2 vs. 2.7 +/- 0.3 nmol.g(-1).min(-1)) were significantly higher (P < 0.05) in FR vs. AL rats, respectively. Glucose uptake was increased in FR rats and was accompanied by significant increases in red and white gastrocnemius glycogen synthesis, indicating an improvement in insulin sensitivity. Although muscle triglyceride (TG) levels were not significantly different between groups, glucose uptake and total preperfusion TG concentration were negatively correlated (r(2) = 0.27, P < 0.05). In conclusion, our results show that under hyperglycemic-hyperinsulinemic conditions, brief FR resulted in an increase in FA oxidative disposal that may contribute to the improvement in insulin sensitivity.  相似文献   

8.
The influence of medium composition on basal and insulin-stimulated glycogenesis was studied in cultured 17-day-old rat fetal hepatocytes, which contain no glycogen at the time of transplantation. Continuous-labeling 14C-glucose experiments were used to determine both glycogen content and glycogen labeling. The specific activity of glucose units in the newly formed glycogen (a) was compared to that of the medium glucose (b): the ratio a/b expresses the contribution of medium glucose to glycogen formation. In standard medium (5.5 mM glucose), this ratio averaged 0.60. Variations of glucose concentration in the medium from 1 to 40 mM were accompanied by a progressive increase in both glycogen content and the ratio a/b (up to 0.80). Supplementation of standard medium with fructose, galactose, glycerol, or lactate-pyruvate decreased the hepatocyte glucose uptake from the medium. Galactose (1 to 5 mM) or lactate-pyruvate (5 mM) enhanced the glycogen content whereas glycerol or fructose (1 to 5 mM) had no effect. The ratio a/b, not modified by glycerol or lactate-pyruvate, was decreased to 0.45 by fructose (5 mM). Galactose at concentrations as low as 1 to 2 mM brought the ratio down to 0.30, indicating that it is a superior precursor of glycogen as compared to glucose. When the hepatocytes were grown in the presence of 10 nM insulin, the glycogen content was constantly higher than in the absence of the hormone (2-fold stimulation). Also the amplitude of the glycogenic effect of insulin was similar whatever the modifications of the medium, whereas ratio a/b and glucose uptake were hardly increased by insulin. Thus several substrates can contribute to glycogen formation (especially galactose) in cultured fetal hepatocytes and the essential effect of insulin is a stimulation of the final step of the glycogenosynthetic pathway.  相似文献   

9.
1. The effects of synthetic human amylin on basal and insulin-stimulated (100 and 1000 microunits/ml) rates of lactate formation, glucose oxidation and glycogen synthesis were measured in the isolated rat soleus muscle preparation incubated in the presence of various concentrations of glucose (5, 11 and 22 mM). 2. The rate of glucose utilization was increased by about 2-fold by increasing the glucose concentration from 5 to 22 mM. 3. Synthetic human amylin (10 nM) significantly inhibited (by 46-56%) glycogen synthesis, irrespective of the concentration of insulin or glucose present in the incubation medium. 4. Amylin (10 nM) did not affect insulin-stimulated rates of 2-deoxy[3H]glucose transport and phosphorylation. 5. Intraperitoneal administration of insulin (100 micrograms/kg) to rats in vivo stimulated the rate of [U-14C]glucose incorporation into glycogen in the diaphragm by about 80-fold. This rate was decreased (by 28%) by co-administration of amylin (66 micrograms/kg).  相似文献   

10.
Defects in the deposition of glycogen and the regulation of glycogen synthesis in the livers of severely insulin-deficient rats can be reversed, in vivo, within hours of insulin administration. Using primary cultures of hepatocytes isolated from normal and diabetic rats in a serum-free chemically defined medium, the present study addresses the chronic action of insulin to facilitate the direct effects of insulin and glucose on the short term regulation of the enzymes controlling glycogen metabolism. Primary cultures were maintained in the presence of insulin, triiodothyronine, and cortisol for 1-3 days. On day 1 in alloxan diabetic cultures, 10(-7) M insulin did not acutely activate glycogen synthase over a period of 15 min or 1 h, whereas insulin acutely activated synthase in cultures of normal hepatocytes. By day 3 in hepatocytes isolated from alloxan diabetic rats, insulin effected an approximate 30% increase in per cent synthase I within 15 min as was also the case for normal cells. The acute effect of insulin on synthase activation was independent of changes in phosphorylase alpha. Whereas glycogen synthase phosphatase activity could not be shown to be acutely affected by insulin, the total activity in diabetic cells was restored to normal control values over the 3-day culture period. The acute effect of 30 mM glucose to activate glycogen synthase in cultured hepatocytes from normal rats after 1 day of culture was missing in hepatocytes isolated from either alloxan or spontaneously diabetic (BB/W) rats. After 3 days in culture, glucose produced a 50% increase in glycogen synthase activity during a 10-min period under the same conditions. These studies clearly demonstrate that insulin acts in a chronic manner in concert with thyroid hormones and steroids to facilitate acute regulation of hepatic glycogen synthesis by both insulin and glucose.  相似文献   

11.
Inhibition of hepatic glycogenolysis by an intracellular inhibitor of cAMP-dependent protein kinase in glucagon-stimulated hepatocytes was potentiated by insulin. When hepatocytes isolated from fed rats were treated with 0.3 nM glucagon, which activates glycogen breakdown half-maximally, the Rp diastereomer of adenosine cyclic 3',5'-phosphorothioate [Rp-cAMPS), a cAMP antagonist, inhibited glucose production half-maximally at 3 microM. A 10-fold lower concentration of antagonist was required to half-maximally inhibit glucose production in the presence of 10 nM insulin, which alone produced only 15% inhibition. Under the same experimental conditions, the maximal effect of (Rp)-cAMPS was also potentiated. In addition, the increase in the concentration of glucagon required for half-maximal activation of phosphorylase activity and inactivation of glycogen synthase activity in the presence of minimally effective concentrations of insulin and (Rp)-cAMPS were clearly synergistic. It is postulated that the synergism observed is a consequence of action at several enzymatic sites leading to, and including, alteration of the phosphorylation state of the two rate-limiting enzymes in glycogen metabolism.  相似文献   

12.
The effects of insulin on the ability of the specific intracellular cAMP-dependent protein kinase antagonist, the Rp diastereomer of adenosine cyclic 3',5'-phosphorothioate, to inhibit glycogenolysis induced by the Sp diastereomer was studied in hepatocytes isolated from fed rats. Addition of the cAMP agonist, (Sp)-cAMPS, to hepatocytes resulted in a concentration-dependent increase in glycogenolytic glucose production concomitant with the cAMP-dependent activation of phosphorylase and inhibition of glycogen synthase. Activity curves were shifted to the right in the presence of the cAMP antagonist, (Rp)-cAMPS. Preincubation of the hepatocytes with a maximally effective concentration of insulin did not affect the concentration of (Sp)-cAMPS required for half-maximal activation of phosphorylase but did result in a 10-fold shift in the concentration of (Sp)-cAMPS required for half-maximal inactivation of glycogen synthase. Preincubation of hepatocytes with a combination of the cAMP antagonist, (Rp)-cAMPS, and insulin resulted in synergistic inhibition of (Sp)-cAMPS-induced phosphorylase activation, glycogen synthase inactivation, and glycogenolytic glucose production. Since neither phosphorothioate diastereomer was hydrolyzed significantly during the course of the experiments, the synergistic effects of insulin are postulated to be working through a mechanism subsequent to the phosphodiesterase activation step.  相似文献   

13.
The regulation of carbohydrate metabolism involves changes in the phosphorylation state of enzymes. We used okadaic acid, a potent inhibitor of protein phosphatases type 2A (IC50 0.05-2 nM) and type 1 (IC50 10-20 nM) to determine the role of these phosphatases in the control of carbohydrate metabolism by insulin in rat hepatocytes. In the absence of insulin, okadaic acid caused total inhibition of glycogen synthesis at 100 nM and half-maximal inhibition at 8-9 nM. In the presence of insulin, lower concentrations of okadaic acid (to which type 2A phosphatases are sensitive) were effective at inhibiting glycogen synthesis. 2.5 nM okadaic acid caused total inhibition of the 2-fold stimulation of glycogen synthesis by insulin but had no effect on the basal unstimulated rate of glycogen synthesis. This suggests the involvement of type 2A protein phosphatases in the stimulation of glycogen synthesis by insulin. Okadaic acid (5 nM), partially suppressed but did not abolish the increase in glucokinase mRNA levels caused by insulin, indicating that dephosphorylation mechanisms may be involved in the control of glucokinase mRNA levels by insulin. It is concluded that activation of protein phosphatases type 1 and/or type 2A by insulin may have a widespread role in the control of glucose metabolism at various sites.  相似文献   

14.
Gluconeogenesis predominates in periportal regions of the liver lobule   总被引:2,自引:0,他引:2  
Rates of gluconeogenesis from lactate were calculated in periportal and pericentral regions of the liver lobule in perfused rat livers from increases in O2 uptake due to lactate. When lactate (0.1-2.0 mM) was infused into livers from fasted rats perfused in either anterograde or the retrograde direction, a good correlation (r = 0.97) between rates of glucose production and extra O2 uptake by the liver was observed as expected. Rates of oxygen uptake were determined subsequently in periportal and pericentral regions of the liver lobule by placing miniature oxygen electrodes on the liver surface and measuring the local change in oxygen concentration when the flow was stopped. Basal rates of oxygen uptake of 142 +/- 11 and 60 +/- 4 mumol X g-1 X h-1 were calculated for periportal and pericentral regions, respectively. Infusion of 2 mM lactate increased oxygen uptake by 71 mumol X g-1 X h-1 in periportal regions and by 29 mumol X g-1 X h-1 in pericentral areas of the liver lobule. Since the stoichiometry between glucose production and extra oxygen uptake is well-established, rates of glucose production in periportal and pericentral regions of the liver lobule were calculated from local changes in rates of oxygen uptake for the first time. Maximal rates of glucose production from lactate (2 mM) were 60 +/- 7 and 25 +/- 4 mumol X g-1 X h-1 in periportal and pericentral zones of the liver lobule, respectively. The lactate concentrations required for half-maximal glucose synthesis were similar (0.4-0.5 mM) in both regions of the liver lobule in the presence or absence of epinephrine (0.1 microM). In the presence of epinephrine, maximal rates of glucose production from lactate were 79 +/- 5 and 59 +/- 3 mumol X g-1 X h-1 in periportal and pericentral regions, respectively. Thus, gluconeogenesis from lactate predominates in periportal areas of the liver lobule during perfusion in the anterograde direction; however, the stimulation by added epinephrine was greatest in pericentral areas. Differences in local rates of glucose synthesis may be due to ATP availability, as a good correlation between basal rates of O2 uptake and rates of gluconeogenesis were observed in both regions of the liver lobule in the presence and absence of epinephrine. In marked contrast, when livers were perfused in the retrograde direction, glucose production was 28 +/- 5 mumol X g-1 X h-1 in periportal areas and 74 +/- 6 mumol X g-1 X h-1 in pericentral regions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Cigarette smoking is a leading cause of many adverse health consequences. Chronic nicotine exposure leads to insulin resistance and may increase the risk of developing non-insulin-dependent diabetes mellitus in young otherwise healthy smokers. To evaluate smoking-induced effects on carbohydrate metabolism, we studied muscle glycogen recovery from exercise in a young healthy population of smokers. The study used 31P-13C NMR spectroscopy to compare muscle glycogen and glucose 6-phosphate levels during recovery in exercised gastrocnemius muscles of randomized cohorts of healthy male smokers (S) and controls (C). Data for the two groups were as follows: S, > or =20 cigarettes/day (n = 8), 24 +/- 2 yr, 173 +/- 3 cm, 70 +/- 4 kg and age- and weight-matched nonsmoking C (n = 10), 23 +/- 1 yr, 175 +/- 3 cm, 67 +/- 3 kg. Subjects performed single-leg toe raises to deplete glycogen to approximately 20 mmol/l, and glycogen resynthesis was measured during the first 4 h of recovery. Plasma samples were assayed for glucose and insulin at rest and during recovery. Test subjects were recruited from the general community surrounding Yale University. Glycogen was depleted to similar levels in the two groups [23.5 +/- 1.2 (S) and 19.1 +/- 1.3 (C) mmol/l]. During the 1st h of recovery, glycogen synthesis rates were similar [13.8 +/- 1.1 (S) and 15.3 +/- 1.3 (C) mmol x l-1 x h-1]. Between hours 1 and 4, glycogen synthesis was impaired in smokers [0.8 +/- 0.2 (S) and 4.5 +/- 0.5 (C) mmol x l-1 x h-1, P = 0.0002] compared with controls. Glucose 6-phosphate was reduced in smokers during hours 1-4 [0.105 +/- 0.006 (S) and 0.217 +/- 0.019 (C) mmol/l, P = 0.0212]. We conclude that cigarette smoking impairs the insulin-dependent portion of muscle recovery from glycogen-depleting exercise. This impairment likely results from a reduction in glucose uptake.  相似文献   

16.
To understand the secretory mechanisms and physiological role of insulin in the tear film, the present study examined 1) the time course of insulin secretion in the tear film under glucose intravenous stimulation, 2) the glucose- and carbachol-induced insulin secretion from isolated lacrimal gland (LG), 3) the effect of insulin on glucose consumption by the cornea, and 4) the expression of insulin, pancreatic duodenal homeobox-1 (PDX-1), and glucose transport proteins (GLUTs) in LG tissue. The insulin level in the tear film of 8-wk-old male Wistar rats increased from 0.6 +/- 0.45 to 3.7 +/- 1.3 ng/ml in the initial minutes after glucose stimulation. In vitro assays demonstrated that higher glucose concentrations from 2.8 to 16.7 mM, 200 microM carbachol, or 40 mM KCl significantly increased insulin secretion from lacrimal glands compared with controls, but did not detect C-peptide as measured by RIA. Glucose consumption by corneal tissue, evaluated by radiolabeled D-[U-14C]glucose uptake, was 24.07 +/- 0.61 and was enhanced to 31.63 +/- 3.15 nmol x cornea(-1) x 2 h(-1) in the presence of 6 nM insulin (P = 0.033) and to 37.5 +/- 3.7 nmol x cornea(-1) x 2 h(-1) in the presence of 11.2 mM glucose (P = 0.015). Insulin and PDX-1 mRNA was detected in LG. Insulin was located in the apical areas of acinar cells by immunoperoxidase and the expression of GLUT-1, but not PDX-1, was confirmed by Western blot. These findings suggest that insulin secretion in the tear film is influenced by local stimuli such as nutrient and neural inputs and that this hormone plays a metabolic role in ocular surface tissues. These data also indicate that under normal conditions the insulin secreted by LG is stored, but it is not clear that is locally produced in the LG.  相似文献   

17.
L Plesner 《FEBS letters》1984,172(2):149-154
When glucose was added to fasted human leukocytes in a final concentration of 0.5-5 mM there was a phase of glycogen synthesis followed by a phase of glycogen breakdown. The duration of the phase of net glycogen synthesis increased with increasing concentrations of glucose applied, but the net rate of glycogen synthesis was inversely related to this figure and decreased from approx. 7 nmol/10(7) cells per min at 0.5 mM glucose to an average of 4 nmol/10(7) cells per min at 5 mM glucose.  相似文献   

18.
Exercise training reduces the muscle insulin resistance of the obese Zucker rat. The purpose of the present study was to determine whether the magnitude of this training response is exercise intensity specific. Obese Zucker rats were randomly divided into sedentary (SED), low-intensity (LI), and high-intensity (HI) exercise groups. For the LI rats, exercise training consisted of running on a rodent treadmill at 18 m/min up an 8% grade for 90 min. Rats in the HI group ran at 24 m/min up an 8% grade for four 17-min bouts with 3 min between bouts. Both exercise groups performed the same amount of work and trained 5 days/wk for 7 wk. To evaluate muscle insulin resistance, rat hindlimbs were perfused for 30 min with perfusate containing 6 mM glucose (0.15 mu Ci of D-[14C(U)] glucose/ml) and either a maximal (10.0 mU/ml) or a submaximal (0.50 mU/ml) insulin concentration. Perfusions were performed 48-56 h after the last exercise bout and a 12-h fast. In the presence of 0.5 mU/ml insulin, the rate of muscle glucose uptake was found to be significantly faster for the HI (9.56 +/- 0.66 mumol.h-1.g-1) than for the LI (7.72 +/- 0.65 mumol.h-1.g-1) and SED (6.64 +/- 0.44 mumol.h-1.g-1) rats. The difference in glucose uptake between the LI and SED rats was not significant. In the presence of 10.0 mU/ml insulin, the rate of glucose uptake was significantly faster for the HI (16.43 +/- 1.02 mumol.h-1.g-1) than for the LI rats (13.76 +/- 0.84 mumol.h-1.g-1) and significantly faster for the LI than for the SED rats (11.02 +/- 0.35 mumol.h-1.g-1).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Myocardial glucose oxidation is markedly reduced in the uncontrolled diabetic. We determined whether this was due to direct biochemical changes in the heart or whether this was due to altered circulating levels of insulin and substrates that can be seen in the diabetic. Isolated working hearts from control or diabetic rats (streptozotocin, 55 mg/kg iv administered 6 wk before study) were aerobically perfused with either 5 mM [(14)C]glucose and 0.4 mM [(3)H]palmitate (low-fat/low-glucose buffer) or 20 mM [(14)C]glucose and 1.2 mM [(3)H]palmitate (high-fat/high-glucose buffer) +/-100 microU/ml insulin. The presence of insulin increased glucose oxidation in control hearts perfused with low-fat/low-glucose buffer from 553 +/- 85 to 1,150 +/- 147 nmol x g dry wt(-1) x min(-1) (P < 0. 05). If control hearts were perfused with high-fat/high-glucose buffer, palmitate oxidation was significantly increased by 112% (P < 0.05), but glucose oxidation decreased to 55% of values seen in the low-fat/low-glucose group (P < 0.05). In diabetic hearts, glucose oxidation was very low in hearts perfused with low-fat/low-glucose buffer (9 +/- 1 nmol x g dry wt(-1) x min(-1)) and was not altered by insulin or high-fat/high-glucose buffer. These results suggest that neither circulating levels of substrates nor insulin was responsible for the reduced glucose oxidation in diabetic hearts. To determine if subcellular changes in the control of fatty acid oxidation contribute to these changes, we measured the activity of three enzymes involved in the control of fatty acid oxidation; AMP-activated protein kinase (AMPK), acetyl-CoA carboxylase (ACC), and malonyl-CoA decarboxylase (MCD). Although AMPK and ACC activity in control and diabetic hearts was not different, MCD activity and expression in all diabetic rat heart perfusion groups were significantly higher than that seen in corresponding control hearts. These results suggest that an increased MCD activity contributes to the high fatty acid oxidation rates and reduced glucose oxidation rates seen in diabetic rat hearts.  相似文献   

20.
The purpose of this study was to determine the factors contributing to the ability of exercise to enhance insulin-stimulated glucose disposal. Sixteen insulin-resistant nondiabetic and seven Type 2 diabetic subjects underwent two hyperinsulinemic (40 mU x m-2 x min-1) clamps, once without and once with concomitant exercise at 70% peak O2 consumption. Exercise was begun at the start of insulin infusion and was performed for 30 min. Biopsies of the vastus lateralis were performed before and after 30 min of insulin infusion (immediately after cessation of exercise). Exercise synergistically increased insulin-stimulated glucose disposal in nondiabetic [from 4.6 +/- 0.4 to 9.5 +/- 0.8 mg x kg fat-free mass (FFM)-1x min-1] and diabetic subjects (from 4.3 +/- 1.0 to 7.9 +/- 0.7 mg. kg FFM-1x min-1) subjects. The rate of glucose disposal also was significantly greater in each group after cessation of exercise. Exercise enhanced insulin-stimulated increases in glycogen synthase fractional velocity in control (from 0.07 +/- 0.02 to 0.22 +/- 0.05, P < 0.05) and diabetic (from 0.08 +/- 0.03 to 0.15 +/- 0.03, P < 0.01) subjects. Exercise also enhanced insulin-stimulated glucose storage (glycogen synthesis) in nondiabetic (2.9 +/- 0.9 vs. 4.9 +/- 1.1 mg x kg FFM-1x min-1) and diabetic (1.7 +/- 0.5 vs. 4.2 +/- 0.8 mg x kg FFM-1. min-1) subjects. Increased glucose storage accounted for the increase in whole body glucose disposal when exercise was performed during insulin stimulation in both groups; effects of exercise were correlated with enhancement of glucose disposal and glucose storage (r = 0.93, P < 0.001). Exercise synergistically enhanced insulin-stimulated insulin receptor substrate 1-associated phosphatidylinositol 3-kinase activity (P < 0.05) and Akt Ser473 phosphorylation (P < 0.05) in nondiabetic subjects but had little effect in diabetic subjects. The data indicate that exercise, performed in conjunction with insulin infusion, synergistically increases insulin-stimulated glucose disposal compared with insulin alone. In nondiabetic and diabetic subjects, increased glycogen synthase activation is likely to be involved, in part, in this effect. In nondiabetic, but not diabetic, subjects, exercise-induced enhancement of insulin stimulation of the phosphatidylinositol 3-kinase pathway is also likely to be involved in the exercise-induced synergistic enhancement of glucose disposal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号