首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Five nurses have been investigated for the two nights of a rapidly rotating shift schedule on four occasions: once with normal ward lighting (40 lux on average) and three times while wearing a light visor (Bio-Brite Inc., MD, USA). The visor was worn for four periods of 40 minutes each, at about 2 hour intervals during each night shift, the intensity giving 400-600, 1500 and 3200 lux for the three studies. The nurses recorded subjective evaluations of mood, physical fitness, sleepiness and fatigue, and carried out some performance measures (Simple Auditory Reaction Time, Flicker Fusion Frequency, Search and Memory test) at the start, middle and end of each night shift. Plasma cortisol was measured at the end of the shift, and 6-sulphatoxymelatonin was measured in urine collected at the middle and end of each shift. Oral temperature was also recorded for 48 h covering the two shifts. No significant effects of light treatment (even at 3200 lux) upon within-shift decline in mood and performance were seen. The acceptability of the wearer of the visor was moderate since the upper visual field was impaired and, at the highest light intensity, there was difficulty in seeing clearly objects in the dimly-lit environment. Furthermore, no significant falls in melatonin excretion and cortisol excretion were noted, but there was some evidence that the circadian rhythm of oral temperature was stabilised by the light visors. This is thoroughly desirable in rapidly rotating shift systems.  相似文献   

2.
The efficacy of a light/darkness intervention designed to promote circadian adaptation to night shift work was tested in this combined field and laboratory study. Six full-time night shift workers (mean age ± SD:37.1 ± 8.1 yrs) were provided an intervention consisting of an intermittent exposure to full-spectrum bright white light (~2000 lux) in the first 6 h of their 8 h shift, shielding from morning light by tinted lenses (neutral gray density, 15% visual light transmission), and regular sleep/darkness episodes in darkened quarters beginning 2 h after the end of each shift. Five control group workers (41.1 ± 9.9 yrs) were observed in the presence of a regular sleep/darkness schedule only. Constant routines (CR) performed before and after a sequence of ~12 night shifts over 3 weeks revealed that treatment group workers displayed significant shifts in the time of peak cortisol expression and realignment of the rhythm with the night-oriented schedule. Smaller phase shifts, suggesting an incomplete adaptation to the shift work schedule, were observed in the control group. Our observations support the careful control of the pattern of light and darkness exposure for the adaptation of physiological rhythms to night shift work.  相似文献   

3.
The aim of the study was to test whether a new dynamic light regime would improve alertness, sleep, and adaptation to rotating shiftwork. The illumination level in a control room without windows at a nuclear power station was ~200 lux (straight-forward horizontal gaze) using a weak yellow light of 200 lux, 3000 K (Philips Master TLD 36 W 830). New lighting equipment was installed in one area of the control room above the positions of the reactor operators. The new lights were shielded from the control group by a distance of >6 m, and the other operators worked at desks turned away from the new light. The new lights were designed to give three different light exposures: (i) white/blue strong light of 745 lux, 6000 K; (ii) weak yellow light of 650 lux, 4000 K; and (iii) yellow moderate light of 700 lux, 4000 K. In a crossover design, the normal and new light exposures were given during a sequence of three night shifts, two free days, two morning shifts, and one afternoon shift (NNN?+?MMA), with 7 wks between sessions. The operators consisted of two groups; seven reactor operators from seven work teams were at one time exposed to the new equipment and 16 other operators were used as controls. The study was conducted during winter with reduced opportunities of daylight exposure during work, after night work, or before morning work. Operators wore actigraphs, filled in a sleep/wake diary, including ratings of sleepiness on the Karolinska Sleepiness Scale (KSS) every 2 h, and provided saliva samples for analysis of melatonin at work (every 2nd h during one night shift and first 3 h during one morning shift). Results from the wake/sleep diary showed the new light treatment increased alertness during the 2nd night shift (interaction group × light × time, p < .01). Time of waking was delayed in the light condition after the 3rd night shift (group × light, p < .05), but the amount of wake time during the sleep span increased after the 2nd night shift (p < .05), also showing a tendency to affect sleep efficiency (p < .10). Effects on circadian phase were difficult to establish given the small sample size and infrequent sampling of saliva melatonin. Nonetheless, it seems that appropriate dynamic light in rooms without windows during the dark Nordic season may promote alertness, sleep, and better adaptation to quickly rotating shiftwork.  相似文献   

4.
This study investigated whether changes in illumination modify perception of day and night conditions in a diurnal species, the Indian weaver bird. Birds were initially subjected to a 12-h light:12-h dark regime (12L:12D; L=20 lux, D =0.5 lux). After every 2 wks, the combinations of light illumination in L and D phases were changed as follows: 20:2 lux, 20:5 lux, 20:10 lux, 20:20 lux, 20:100 lux, and 20:200 lux. Finally, birds were released into dim constant light (0.5 lux) for 2 wks to determine the phase and period of the circadian activity rhythm. They were also laparotomized at periodic intervals to examine the effects of the light regimes on the seasonal testicular cycle. All individuals showed a consistently similar response. As evident by the activity pattern under these light regimes, both in total activity during contrasting light phases and during the 2?h in the beginning and end of first light phase, birds interpreted the period of higher light intensity as day, and the period of lower intensity as the night. During the period of similar light intensity, i.e., under LL, birds free-ran with a circadian period ( ~ 24 h). In bright LL (20 lux), the activity rhythm was less distinct, but periodogram analysis revealed the circadian period for the group as 24.46 (+/-) 0.41 h (mean???SE). However, in dim LL at the end of the experiment, all birds exhibited a circadian pattern with average period of 25.52 (+/-) 0.70 h. All birds also showed testicular growth and regression during the 16-wks study. It is suggested that weaver birds interpret day and night subjectively based on both the light intensity and contrast between illuminations during two phases over the 24 h.  相似文献   

5.
The efficacy of a light/darkness intervention designed to promote circadian adaptation to night shift work was tested in this combined field and laboratory study. Six full-time night shift workers (mean age ± SD:37.1 ± 8.1 yrs) were provided an intervention consisting of an intermittent exposure to full-spectrum bright white light (∼2000 lux) in the first 6 h of their 8 h shift, shielding from morning light by tinted lenses (neutral gray density, 15% visual light transmission), and regular sleep/darkness episodes in darkened quarters beginning 2 h after the end of each shift. Five control group workers (41.1 ± 9.9 yrs) were observed in the presence of a regular sleep/darkness schedule only. Constant routines (CR) performed before and after a sequence of ∼12 night shifts over 3 weeks revealed that treatment group workers displayed significant shifts in the time of peak cortisol expression and realignment of the rhythm with the night-oriented schedule. Smaller phase shifts, suggesting an incomplete adaptation to the shift work schedule, were observed in the control group. Our observations support the careful control of the pattern of light and darkness exposure for the adaptation of physiological rhythms to night shift work.  相似文献   

6.
Shift work is associated with an increased risk of cardiovascular diseases (CVD). Disruption of cortisol production is a potential underlying mechanism. This study explored the associations of diurnal quantity and pattern of cortisol production in relation to (1) current shift work status (exclusive day versus rotating days and nights), (2) years of past shift work and (3) parameters of rotating shift work (timing, length and intensity). Female hospital employees (160 day workers and 168 rotating shift workers) from southeastern Ontario, Canada, participated in a cross-sectional study. Participants completed a baseline questionnaire and measures of body height, weight, and waist circumference were taken. Midstream urine samples were collected over two separate 24-hour periods to measure creatinine-adjusted cortisol. Total diurnal cortisol production and pattern were described with two measures of the area under the curve. The effect of shift work on cortisol was modeled using multivariable linear regression analyses. Cortisol production in day workers and shift workers on their day shift were similar; however, shift workers on the night shift had flatter diurnal cortisol curves and produced less cortisol. This suggests that night work is associated with an acute attenuation of cortisol production.  相似文献   

7.
The aim of the study was to test whether a new dynamic light regime would improve alertness, sleep, and adaptation to rotating shiftwork. The illumination level in a control room without windows at a nuclear power station was ~200 lux (straight-forward horizontal gaze) using a weak yellow light of 200 lux, 3000 K (Philips Master TLD 36 W 830). New lighting equipment was installed in one area of the control room above the positions of the reactor operators. The new lights were shielded from the control group by a distance of >6?m, and the other operators worked at desks turned away from the new light. The new lights were designed to give three different light exposures: (i) white/blue strong light of 745 lux, 6000 K; (ii) weak yellow light of 650 lux, 4000 K; and (iii) yellow moderate light of 700 lux, 4000 K. In a crossover design, the normal and new light exposures were given during a sequence of three night shifts, two free days, two morning shifts, and one afternoon shift (NNN?+?MMA), with 7 wks between sessions. The operators consisted of two groups; seven reactor operators from seven work teams were at one time exposed to the new equipment and 16 other operators were used as controls. The study was conducted during winter with reduced opportunities of daylight exposure during work, after night work, or before morning work. Operators wore actigraphs, filled in a sleep/wake diary, including ratings of sleepiness on the Karolinska Sleepiness Scale (KSS) every 2?h, and provided saliva samples for analysis of melatonin at work (every 2nd h during one night shift and first 3?h during one morning shift). Results from the wake/sleep diary showed the new light treatment increased alertness during the 2nd night shift (interaction group?×?light?×?time, p < .01). Time of waking was delayed in the light condition after the 3rd night shift (group?×?light, p < .05), but the amount of wake time during the sleep span increased after the 2nd night shift (p < .05), also showing a tendency to affect sleep efficiency (p < .10). Effects on circadian phase were difficult to establish given the small sample size and infrequent sampling of saliva melatonin. Nonetheless, it seems that appropriate dynamic light in rooms without windows during the dark Nordic season may promote alertness, sleep, and better adaptation to quickly rotating shiftwork. (Author correspondence: )  相似文献   

8.
This study investigated whether changes in illumination modify perception of day and night conditions in a diurnal species, the Indian weaver bird. Birds were initially subjected to a 12-h light:12-h dark regime (12L:12D; L?=?20 lux, D =?0.5 lux). After every 2 wks, the combinations of light illumination in L and D phases were changed as follows: 20:2 lux, 20:5 lux, 20:10 lux, 20:20 lux, 20:100 lux, and 20:200 lux. Finally, birds were released into dim constant light (0.5 lux) for 2 wks to determine the phase and period of the circadian activity rhythm. They were also laparotomized at periodic intervals to examine the effects of the light regimes on the seasonal testicular cycle. All individuals showed a consistently similar response. As evident by the activity pattern under these light regimes, both in total activity during contrasting light phases and during the 2?h in the beginning and end of first light phase, birds interpreted the period of higher light intensity as day, and the period of lower intensity as the night. During the period of similar light intensity, i.e., under LL, birds free-ran with a circadian period (~24?h). In bright LL (20 lux), the activity rhythm was less distinct, but periodogram analysis revealed the circadian period for the group as 24.46?±?0.41?h (mean?±?SE). However, in dim LL at the end of the experiment, all birds exhibited a circadian pattern with average period of 25.52?±?0.70?h. All birds also showed testicular growth and regression during the 16-wks study. It is suggested that weaver birds interpret day and night subjectively based on both the light intensity and contrast between illuminations during two phases over the 24?h. (Author correspondence: )  相似文献   

9.
Light intensity, spectrum and pattern may affect laying hen behaviors and production performance. However, requirements of these lighting parameters from the hens’ standpoint are not fully understood. This study was conducted to investigate hens’ needs for light intensity and circadian rhythm using a light tunnel with five identical compartments each at a different fluorescent light intensity of <1, 5, 15, 30 or 100 lux. The hens were able to move freely among the respective compartments. A group of four W-36 laying hens (23 to 30 weeks of age) were tested each time, and six groups or replicates were conducted. Behaviors of the hens were continuously recorded, yielding data on daily time spent, daily feed intake, daily feeding time, and eggs laid under each light intensity and daily inter-compartment movement. The results show that the hens generally spent more time in lower light intensities. Specifically, the hens spent 6.4 h (45.4%) at 5 lux, 3.0 h (22.1%) at 15 lux, 3.1 h (22.2%) at 30 lux and 1.5 h (10.3%) at 100 lux under light condition; and an accumulation of 10.0 h in darkness (<1 lux) per day. The 10-h dark period was distributed intermittently throughout the day, averaging 25.0±0.4 min per hour. This hourly light-dark rhythm differs from the typical commercial practice of providing continuous dark period for certain part of the day (e.g. 8 h at night). Distributions of daily feed intake (87.3 g/hen) among the different light conditions mirrored the trend of time spent in the respective light intensity, that is, highest at 5 lux (28.4 g/hen, 32.5% daily total) and lowest at 100 lux (5.8 g/hen, 6.7%). Hen-day egg production rate was 96.0%. Most of the eggs were laid in <1 lux (61.9% of total) which was significantly higher than under other light intensities (P<0.05). Findings from this study offer insights into preference of fluorescent light intensity by the laying hens. Further studies to assess or verify welfare and performance responses of the hens to the preferred lighting conditions and rhythm over extended periods are recommended.  相似文献   

10.
ABSTRACT

When shift nurses change shifts, it is likely to affect the cortisol patterns of their bodies and sleep quality. The objectives of this study was to verify the influence of monthly rotating day, evening and night shifts on the sleep quality of female nurses and determine whether the cortisol awakening response (CAR) mediates this relationship. A total of 132 female shift nurses were recruited, and ultimately 128 complete questionnaires and samples were obtained (subject loss rate = 3.0%) from 45 day-shift nurses, 44 evening-shift nurses and 39 night-shift nurses at a teaching hospital in Northern Taiwan. The Pittsburgh sleep quality index served as the research instrument that nurses used to collect saliva samples at home every day after waking and 30?min after waking so as to calculate the net increases in cortisol levels (CARi). Hierarchical multiple regression was employed to examine the influence of shift type on the sleep quality of the female nurses and the mediating effect of CARi. The results of this study indicate that shift type significantly influenced CARi (F = 19.66, p < 0.001) and that the regression coefficients of evening versus day shifts and night versus day shifts are both negative. Shift type also significantly influenced sleep quality (F = 15.13, p < 0.001), and the regression coefficients of evening versus day shifts and night versus day shifts are both positive. After controlling for the influence of shift type, CARi remained significantly correlated with sleep quality (ΔF = 5.17, p = 0.025). The results show that female evening-shift or night-shift nurses display significantly lower CARi and experience significantly poorer sleep quality than day-shift nurses. A greater CARi in the female shift nurses represents better sleep quality. Furthermore, the results prove that CARi is a mediating variable influencing the sleep quality of female shiftwork nurses.  相似文献   

11.
Quantal melatonin suppression by exposure to low intensity light in man   总被引:1,自引:0,他引:1  
Plasma melatonin concentrations were examined following three relatively low intensities of artificial light. Six normal, healthy control subjects were all exposed to (a) 200 lux, (b) 400 lux and (c) 600 lux for a three hour duration from midnight to 0300 h. Blood was also collected on a control night where light intensity was less than 10 lux throughout. Significant suppression of melatonin was observed following light of 400 lux and 600 lux intensity when compared to the control night (p less than 0.05; Mann-Whitney U-test). 200 lux light did not produce a statistically significant melatonin suppression when compared with control samples. Each light intensity produced its own individual maximal melatonin suppression by one hour of exposure. Increased duration of exposure to the light had no further influence on melatonin plasma concentrations. These data confirm a dose response relationship between light and melatonin suppression, and indicate that there is no reciprocal relationship between the effects of light intensity and the duration of exposure on maximal melatonin suppression in man.  相似文献   

12.
《Chronobiology international》2013,30(7):1443-1461
Long-term, night shiftwork has been identified as a potential carcinogenic risk factor. It is hypothesized that increased light at night exposure during shiftwork reduces melatonin production, which is associated with increased cancer risk. Sleep duration has been hypothesized to influence both melatonin levels and cancer risk, and it has been suggested that sleep duration could be used as a proxy for melatonin production. Finally, physical activity has been shown to reduce cancer risk, and laboratory studies indicate it may influence melatonin levels. A cross-sectional study of light exposure, sleep duration, physical activity, and melatonin levels was conducted among 61 female rotating shift nurses (work schedule: two 12?h days, two 12?h nights, five days off). Light intensity was measured using a light-intensity data logger, and sleep duration and physical activity were self-reported in a study diary and questionnaire. Melatonin concentrations were measured from urine and saliva samples. The characteristics of nurses working day and night shifts were similar. Light intensity was significantly higher during sleep for those working at night (p<?0.0001), while urinary melatonin levels following sleep were significantly higher among those working days (p?=?0.0003). Mean sleep duration for nurses working during the day (8.27?h) was significantly longer than for those working at night (4.78?h, p<?0.0001). An inverse association (p?=?0.002) between light exposure and urinary melatonin levels was observed; however, this was not significant when stratified by shift group. There was no significant correlation between sleep duration and melatonin, and no consistent relationship between physical activity and melatonin. Analysis of salivary melatonin levels indicated that the circadian rhythms of night workers were not altered, meaning peak melatonin production occurred at night. This study indicates that two nights of rotating shift work may not change the timing of melatonin production to the day among those working at night. Additionally, in this study, sleep duration was not correlated with urinary melatonin levels, suggesting it may not be a good proxy for melatonin production. (Author correspondence: )  相似文献   

13.
A cross-sectional survey was carried out for the purpose of examining the association of work stress with insomnia among nurses working rotating shift systems. A self-administered questionnaire on sleep and mental health was distributed to 875 nurses at five hospitals in Japan. Out of the data from 785 (89.7%) respondents, those from 555 women engaged in rapidly and irregularly rotating shift systems as full-time nurses were examined. The prevalence of insomnia (29.2%) was three to four times higher than that in the general population. Among the insomniacs, 23% were current users of medically prescribed hypnotics. Multiple logistic analysis revealed that being 24 or less years old, working three or less night shifts per month, having six or less non-working days per month, receiving less support from colleagues and superiors, and taking care of severely ill patients were independent risk factors for insomnia. The number of hours of a night shift was found not associated with insomnia, taking the above variables into account. These results suggest that at least three factors, i.e., 1) young nurses not adapted to shiftwork, 2) the nurses requiring to remedy sleep deficits on non-working days, and 3) the work stress partly characteristic of nurses, have an adverse influence on their sleep.  相似文献   

14.
《Chronobiology international》2013,30(10):1152-1159
Shift work have been thought to restrict participation in leisure time activities, but the knowledge about physical activity in rotating night shift nurses has been limited so far. We investigated the associations between the rotating night shift work and physical activity using data from a cross-sectional study among nurses and midwives. This study included 354 nurses and midwives (aged 40–60) currently working rotating night shifts and 371 ones working days only. The information on the work characteristics and potential covariates was collected via a personal interview. Weight and height were measured and BMI was calculated. Physical activity was assessed according to the international questionnaire on physical activity – IPAQ, and four domains: leisure time, occupational, transport related and household were analyzed. Women who reported none leisure time activity were defined as recreationally “inactive”. The associations were examined with multiple linear or logistic regression models adjusted for age, season of the year, number of full term births, marital status and BMI. Total and occupational physical activity was significantly higher among nurses working rotating night shifts. However, leisure time activity was significantly affected among rotating night shift nurses and midwives, compared to women working during the days only, with increased odds ratio for recreational “inactivity” (OR?=?1.57, 95% CI: 1.11–2.20). Rotating night shift work among nurses and midwives is associated with higher occupational physical activity but lower leisure time activity. Initiatives supporting exercising among night shift workers are recommended.  相似文献   

15.
The aim of the present combined field and laboratory study was to assess circadian entrainment in two groups of police officers working seven consecutive 8/8.5-h night shifts as part of a rotating schedule. Eight full-time police officers on patrol (mean age ± SD: 29.8 ± 6.5 yrs) were provided an intervention consisting of intermittent exposure to wide-spectrum bright light at night, orange-tinted goggles at sunrise, and maintenance of a regular sleep/darkness episode in the day. Orange-tinted goggles have been shown to block the melatonin-suppressing effect of light significantly more than neutral gray density goggles. Nine control group police officers (mean age ± SD: 30.3 ± 4.1 yrs) working the same schedule were enrolled. Police officers were studied before, after (in the laboratory), and during (ambulatory) a series of seven consecutive nights. Urine samples were collected at wake time and bedtime throughout the week of night work and during laboratory visits (1 × /3 h) preceding and following the work week to measure urinary 6-sulfatoxymelatonin (UaMT6s) excretion rate. Subjective alertness was assessed at the start, middle, and end of night shifts. A 10-min psychomotor vigilance task was performed at the start and end of each shift. Both laboratory visits consisted of two 8-h sleep episodes based on the prior schedule. Saliva samples were collected 2 × /h during waking episodes to assay their melatonin content. Subjective alertness (3 × /h) and performance (1 × /2 h) were assessed during wake periods in the laboratory. A mixed linear model was used to analyze the progression of UaMt6s excreted during daytime sleep episodes at home, as well as psychomotor performance and subjective alertness during night shifts. Two-way analysis of variance (ANOVA) (factors: laboratory visit and group) were used to compare peak salivary melatonin and UaMT6s excretion rate in the laboratory. In both groups of police officers, the excretion rate of UaMT6s at home was higher during daytime sleep episodes at the end compared to the start of the work week (p 相似文献   

16.
1. The locomotor activity of the night monkey (Aotus trivirgatus) has been shown to be related to light intensity by an optimum function; here entrainment by LD cycles is examined to see whether the mechanism of synchronization of circadian periodicity in Aotus is based on this function. 2. Eleven night monkeys of various ages, previously in either a free-running phase or in LD 12:12 (10(2):10(-1) lux), were recorded in LD 12:12 with the optimal intensity (10(-1) lux) in the light part of the cycle and a suboptimal intensity (10(-3) lux) in the dark part. 3. In all cases the monkeys synchronized in such a way that their activity phase fell in the dark part of the LD cycle. 4. The implication is that Aotus is a true dark-active species, that the illumination-dependent activity maximum at 10(-1) lux does not affect the synchronization mechanism, and that the differential (direction of change) rather than proportional (absolute level) actions of light provide the decisive cue for synchronization of the circadian activity rhythm.  相似文献   

17.
The present study aims to examine the influence of evening and night shift work, compared to day shift work, on melatonin secretion in nurses in a field setting. Effects were examined during a workday and during a day off. Both fixed schedules and mixed or rotating schedules were studied. In total, 170 nurses were studied: 89 nurses worked fixed schedules, 27 nurses worked the day shift, 12 nurses worked the evening shift, 50 nurses worked the night shift, and 82 nurses worked mixed schedules, with data collected during a day (n=17), evening (n=14), or night shift (n=50). All spot urine samples were collected during 24 h from the participants on a work day and on a day off and were analyzed for 6‐sulphatoxymelatonin. On the day of urine sampling, participants filled in the Karolinska Sleep Diary. Additional information was collected through a telephone interview. Data were analyzed using a mixed procedure with autoregressive covariance structure. The present study showed that shift work affected the concentrations of 6‐sulphatoxymelatonin in the short term by lower excretion in urine from nurses working the night compared to day shift on a workday and on a day off as well. No significant differences were observed between a workday and a day off when doing day and evening shifts, irrespective of mixed and fixed schedules. Sleep length was reduced workdays (from 6.1–6.8 h) among all nurses, compared to days off (from 7.8–8.7 h).  相似文献   

18.
The present study aims to examine the influence of evening and night shift work, compared to day shift work, on melatonin secretion in nurses in a field setting. Effects were examined during a workday and during a day off. Both fixed schedules and mixed or rotating schedules were studied. In total, 170 nurses were studied: 89 nurses worked fixed schedules, 27 nurses worked the day shift, 12 nurses worked the evening shift, 50 nurses worked the night shift, and 82 nurses worked mixed schedules, with data collected during a day (n=17), evening (n=14), or night shift (n=50). All spot urine samples were collected during 24 h from the participants on a work day and on a day off and were analyzed for 6-sulphatoxymelatonin. On the day of urine sampling, participants filled in the Karolinska Sleep Diary. Additional information was collected through a telephone interview. Data were analyzed using a mixed procedure with autoregressive covariance structure. The present study showed that shift work affected the concentrations of 6-sulphatoxymelatonin in the short term by lower excretion in urine from nurses working the night compared to day shift on a workday and on a day off as well. No significant differences were observed between a workday and a day off when doing day and evening shifts, irrespective of mixed and fixed schedules. Sleep length was reduced workdays (from 6.1-6.8 h) among all nurses, compared to days off (from 7.8-8.7 h).  相似文献   

19.
Our aim was to investigate how circadian adaptation to night shift work affects psychomotor performance, sleep, subjective alertness and mood, melatonin levels, and heart rate variability (HRV). Fifteen healthy police officers on patrol working rotating shifts participated to a bright light intervention study with 2 participants studied under two conditions. The participants entered the laboratory for 48 h before and after a series of 7 consecutive night shifts in the field. The nighttime and daytime sleep periods were scheduled during the first and second laboratory visit, respectively. The subjects were considered “adapted” to night shifts if their peak salivary melatonin occurred during their daytime sleep period during the second visit. The sleep duration and quality were comparable between laboratory visits in the adapted group, whereas they were reduced during visit 2 in the non-adapted group. Reaction speed was higher at the end of the waking period during the second laboratory visit in the adapted compared to the non-adapted group. Sleep onset latency (SOL) and subjective mood levels were significantly reduced and the LF∶HF ratio during daytime sleep was significantly increased in the non-adapted group compared to the adapted group. Circadian adaptation to night shift work led to better performance, alertness and mood levels, longer daytime sleep, and lower sympathetic dominance during daytime sleep. These results suggest that the degree of circadian adaptation to night shift work is associated to different health indices. Longitudinal studies are required to investigate long-term clinical implications of circadian misalignment to atypical work schedules.  相似文献   

20.
This study compared the effects of a brief pulse (60-minute) of three full spectrum light intensities (1000, 500 and 30 lux) and two green light intensities (1000 and 500 lux) administered between 0200 and 0300 hrs. Ten participants were involved in this repeated measures study. Each participant experienced one condition every week for five weekends. Sessions began at 1800 hours and ended at 0600 hours the following day. Outside of the 60-minute exposure period, each session was spent in 30 lux white light. Oral temperature, salivary melatonin, cognitive performance and subjective mood were sampled throughout the sessions. Analysis revealed that all of the experimental light conditions significantly reduced salivary melatonin concentrations immediately following the pulse. This effect was not maintained beyond the duration of the light pulse. There was no significant effect on oral temperature. There were also no significant effects on cognitive performance and subjective mood, though some positive trends were observed. These results argue that brief, moderate intensity, pulses of either green or full spectrum light are sufficient to suppress the normal nocturnal rise in melatonin. However, the level of suppression obtained does not translate into significant improvement in cognitive performance or subjective mood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号