首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Cells of unicellular cyanobacteria of typological group Ia, containing approximately 50 mol% guanine + cytosine (G+C) in their DNA (R. Y. Stanier, R. Kunisawa, M. Mandel, and G. Cohen-Bazire, Bacteriol. Rev. 35:171-205, 1971), were susceptible to infection by the cyanophage AS-1. Cyanobacteria of the same typological group, containing approximately 65 mol% G+C in their DNA, did not adsorb the cyanophage AS-1 or adsorbed it at a low rate. AS-1 was not propagated by any of the investigated strains with a high G+C content in their DNA. However, cells of strains 6907 and 6911 were lysed by cyanophage AS-1. A comparison of the host range of this phage with the lipopolysaccharide composition of host and non-host cell walls suggests that lipopolysaccharides are involved in the adsorption process. About 8 microgram of lipopolysaccharide per ml from host strains inactivated 50% of the particles of a solution containing 100 PFU/ml after 60 min of incubation at 30 degrees C. Material with receptor activity was extracted from the host strain Anacystis nidulans KM. The extract was purified of glycolipids and pigments, and a fraction showing receptor activity was isolated. This fraction contained three polypeptides of molecular weights between 54,000 and 64,000. Heat and protease treatment of whole cells and of isolated receptor material decreased the receptor activity. The fluorescence intensity of A. nidulans cells labeled with 1-anilino-8-naphthalene sulfonate was increased when AS-1 was adsorbed to these cells. The participation of lipopolysaccharides and proteins in the formation of the receptor complex is discussed.  相似文献   

2.

Background  

It has been reported that some marine cyanophage are temperate and can be induced from a lysogenic phase to a lytic phase by different agents such as heavy metals. However, to date no significant reports have focused on the temperate nature of freshwater cyanophage/cyanobacteria. Previous experiments with cyanophage AS-1 and cyanobacteria Anacystis nidulans have provided some evidence that AS-1 may have a lysogenic life cycle in addition to the characterized lytic cycle.  相似文献   

3.
In this paper we describe the isolation and characterization of a temperate cyanophage N(S)1 of the genus cyanopodovirus which produces turbid plaques on the host Anabaena 77S15 isolated from tropical soil. Its properties have been compared to those of other well-characterized cyanophages. In addition, two strains of Anabaena 77S15 lysogenic for N(S)1 were isolated. N(S)1 seems to be integrated into the chromosome of the two lysogens, and a 2 kb plasmid present at a low copy number in the non-lysogenic strain is amplified significantly.  相似文献   

4.
TwoNostoc muscorum cyanophages were isolated from a domestic sewage in Kuwait. N-1L cyanophage had a hexagonal head with a long tail, while N-2S cyanophage was a short-tailed virus. N-1L cyanophage was active at 50°C and at acidic pH, compared with N-2S, which was more heat stable and active at pH 7.0. Seasonal variations in the total number of plaque-forming units ofN. muscorum cyanophages were determined for sewage samples collected at each treatment step.  相似文献   

5.
Black light effected photorecovery of AS-1 cyanophage and wild-type cells. However, only partial photoreactivation of AS-1 was observed in a partially photoreactivable mutant of Anacystis nidulans.  相似文献   

6.
In Synechococcus sp. cells AS-1 cyanophage infection gradually inhibits the photosystem II mediated photosynthetic electron flow whereas the activity of photosystem I is apparently unaffected by the cyanophage infection. Transient fluorescence induction and flash-induced delayed luminescence decay studies revealed that the inhibition may occur at the level of the secondary acceptor, QB of photosystem II. In addition, the breakdown of D1-protein is inhibited, comparable to DCMU-induced protection of D1-protein turnover, in AS-1-infected cells.  相似文献   

7.
Summary A cyanophage AS-1-resistant mutant strain of Anacystis nidulans exhibited a slow rate of nutrient uptake compared to the wild type. The increased Cu++ sensitivity of the mutant could be correlated with higher rates of Cu++ uptake. The results are discussed in the light of alterations in the proteins involved in permeability of the outer membrane.  相似文献   

8.
In order to characterize the genetic diversity and phylogenetic affiliations of marine cyanophage isolates and natural cyanophage assemblages, oligonucleotide primers CPS1 and CPS8 were designed to specifically amplify ca. 592-bp fragments of the gene for viral capsid assembly protein g20. Phylogenetic analysis of isolated cyanophages revealed that the marine cyanophages were highly diverse yet more closely related to each other than to enteric coliphage T4. Genetically related marine cyanophage isolates were widely distributed without significant geographic segregation (i.e., no correlation between genetic variation and geographic distance). Cloning and sequencing analysis of six natural virus concentrates from estuarine and oligotrophic offshore environments revealed nine phylogenetic groups in a total of 114 different g20 homologs, with up to six clusters and 29 genotypes encountered in a single sample. The composition and structure of natural cyanophage communities in the estuary and open-ocean samples were different from each other, with unique phylogenetic clusters found for each environment. Changes in clonal diversity were also observed from the surface waters to the deep chlorophyll maximum layer in the open ocean. Only three clusters contained known cyanophage isolates, while the identities of the other six clusters remain unknown. Whether or not these unidentified groups are composed of bacteriophages that infect different Synechococcus groups or other closely related cyanobacteria remains to be determined. The high genetic diversity of marine cyanophage assemblages revealed by the g20 sequences suggests that marine viruses can potentially play important roles in regulating microbial genetic diversity.  相似文献   

9.
In order to characterize the genetic diversity and phylogenetic affiliations of marine cyanophage isolates and natural cyanophage assemblages, oligonucleotide primers CPS1 and CPS8 were designed to specifically amplify ca. 592-bp fragments of the gene for viral capsid assembly protein g20. Phylogenetic analysis of isolated cyanophages revealed that the marine cyanophages were highly diverse yet more closely related to each other than to enteric coliphage T4. Genetically related marine cyanophage isolates were widely distributed without significant geographic segregation (i.e., no correlation between genetic variation and geographic distance). Cloning and sequencing analysis of six natural virus concentrates from estuarine and oligotrophic offshore environments revealed nine phylogenetic groups in a total of 114 different g20 homologs, with up to six clusters and 29 genotypes encountered in a single sample. The composition and structure of natural cyanophage communities in the estuary and open-ocean samples were different from each other, with unique phylogenetic clusters found for each environment. Changes in clonal diversity were also observed from the surface waters to the deep chlorophyll maximum layer in the open ocean. Only three clusters contained known cyanophage isolates, while the identities of the other six clusters remain unknown. Whether or not these unidentified groups are composed of bacteriophages that infect different Synechococcus groups or other closely related cyanobacteria remains to be determined. The high genetic diversity of marine cyanophage assemblages revealed by the g20 sequences suggests that marine viruses can potentially play important roles in regulating microbial genetic diversity.  相似文献   

10.
The bacteriocinogenic strain RJ16 isolated from goat cheese has been identified as Enterococcusfaecium by species-specific PCR, DNA-rRNA hybridization and rDNA sequencing. Purified bacteriocin from strain RJ16 is a carboxypeptidase A-resistant peptide with a molecular mass (7125 Da) very close to the cyclic peptide enterocin AS-48. Bacteriocin from strain RJ16 and AS-48 show identical antibacterial spectra, although the former is slightly less active on strains of Listeria monocytogenes and Bacillus cereus. Producer strains show cross-immunity. PCR amplification of total DNA from strain RJ16 with primers for the AS-48 structural gene and sequencing of the amplified fragment revealed an almost identical sequence (99.5%), except for a single mutation that predicts the change of Glu residue at position 20 of AS-48 to Val. Therefore, bacteriocin produced by E. faecium RJ16 should be considered a variant of AS-48, which we call AS-48RJ. PCR amplification revealed that strain RJ16 contains the complete as-48. gene cluster. Hybridization with probes for as-48 gene cluster revealed a chromosomal location of as-48 genes in strain RJ16, being the first example of a chromosomal location of this bacteriocin trait. Strain RJ16 produced enzymes of interest in food processing (esterase, esterase lipase and phytase activities), and did not decarboxylate amino acids precursors for biogenic amines. Strain RJ16 did not exhibit haemolytic or gelatinase activities, and PCR amplification revealed the lack of genes encoding for known virulence determinants (aggregation substance, collagen adhesin, enterococcal surface protein, endocarditis antigens, as well as haemolysin and gelatinase production). Strain RJ16 was resistant to ciprofloxacin (MIC > 2 mgl(-1)) and levofloxacin (MIC > 4 mgl(-1)) and showed intermediate resistance to nitrofurantoin and erythromycin, but was sensitive to ampicillin, penicillin, streptomycin, gentamicin, rifampicin, chloramphenicol, tetracycline, quinupristin/dalfopristin, vancomycin and teicoplanin. Altogether, results from this study suggest that this broad-spectrum bacteriocin-producing strain may have a potential use in food preservation.  相似文献   

11.
Anacystis nidulans infected by AS-1 cyanophage contains an endonuclease (AS-1 endonuclease) which splits host DNA but not AS-1 phage DNA [Szekeres, M. (1981) Virology, 111, 1-10]. AS-1 phage DNA proved to be resistant not only to AS-1 endonuclease but also to a number of restriction endonucleases the recognition sites of which contain a central dG-dC dinucleotide. Since an unmodified 5'dG-dC dinucleotide was shown to be present at the sites at which DNA is cleaved by AS-1 endonuclease, the results suggest that the sites attacked preferentially by the AS-1 endonuclease are specifically protected on the AS-1 DNA molecule. The modification of AS-1 DNA was shown to occur specifically in infected Anacystis because AS-1 DNA fragments which are normally resistant to AS-1 endonuclease became susceptible to this enzyme if inserted into pBR322 plasmid and cloned in Escherichia coli. AS-1 DNA was shown to contain about 5% of a modified nucleotide which was not 5-methyldeoxycytidylic acid. Results presented and our earlier data suggest that in Anacystis infected by AS-1 phage, a restriction/modification-like system operates which is able to eliminate 'unwanted' (host) DNA selectively.  相似文献   

12.
A cyanophage, PaV-LD, has been isolated from harmful filamentous cyanobacterium Planktothrix agardhii in Lake Donghu, a shallow freshwater lake in China. Here, we present the cyanophage's genomic organization and major structural proteins. The genome is a 95,299-bp-long, linear double-stranded DNA and contains 142 potential genes. BLAST searches revealed 29 proteins of known function in cyanophages, cyanobacteria, or bacteria. Thirteen major structural proteins ranging in size from 27 kDa to 172 kDa were identified by SDS-PAGE and mass-spectrometric analysis. The genome lacks major genes that are necessary to the tail structure, and the tailless PaV-LD has been confirmed by an electron microscopy comparison with other tail cyanophages and phages. Phylogenetic analysis of the major capsid proteins also reveals an independent branch of PaV-LD that is quite different from other known tail cyanophages and phages. Moreover, the unique genome carries a nonbleaching protein A (NblA) gene (open reading frame [ORF] 022L), which is present in all phycobilisome-containing organisms and mediates phycobilisome degradation. Western blot detection confirmed that 022L was expressed after PaV-LD infection in the host filamentous cyanobacterium. In addition, its appearance was companied by a significant decline of phycocyanobilin content and a color change of the cyanobacterial cells from blue-green to yellow-green. The biological function of PaV-LD nblA was further confirmed by expression in a model cyanobacterium via an integration platform, by spectroscopic analysis and electron microscopy observation. The data indicate that PaV-LD is an exceptional cyanophage of filamentous cyanobacteria, and this novel cyanophage will also provide us with a new vision of the cyanophage-host interactions.  相似文献   

13.
Marine cyanobacteria of the genera Synechococcus and Prochlorococcus are the most abundant photosynthetic organisms on earth, spanning vast regions of the oceans and contributing significantly to global primary production. Their viruses (cyanophages) greatly influence cyanobacterial ecology and evolution. Although many cyanophage genomes have been sequenced, insight into the functional role of cyanophage genes is limited by the lack of a cyanophage genetic engineering system. Here, we describe a simple, generalizable method for genetic engineering of cyanophages from multiple families, that we named REEP for REcombination, Enrichment and PCR screening. This method enables direct investigation of key cyanophage genes, and its simplicity makes it adaptable to other ecologically relevant host-virus systems. T7-like cyanophages often carry integrase genes and attachment sites, yet exhibit lytic infection dynamics. Here, using REEP, we investigated their ability to integrate and maintain a lysogenic life cycle. We found that these cyanophages integrate into the host genome and that the integrase and attachment site are required for integration. However, stable lysogens did not form. The frequency of integration was found to be low in both lab cultures and the oceans. These findings suggest that T7-like cyanophage integration is transient and is not part of a classical lysogenic cycle.Subject terms: Microbial ecology, Bacteriophages  相似文献   

14.
The cyanophage community in Rhode Island's coastal waters is genetically diverse and dynamic. Cyanophage abundance ranged from over 10(4) phage ml(-1) in the summer months to less then 10(2) phage ml(-1) during the winter months. Thirty-six distinct cyanomyovirus g20 genotypes were identified over a 3-year sampling period; however, only one to nine g20 genotypes were detected at any one sampling date. Phylogenetic analyses of g20 sequences revealed that the Rhode Island cyanomyoviral isolates fall into three main clades and are closely related to other known viral isolates of Synechococcus spp. Extinction dilution enrichment followed by host range tests and PCR restriction fragment length polymorphism analysis was used to detect changes in the relative abundance of cyanophage types in June, July, and August 2002. Temporal changes in both the overall composition of the cyanophage community and the relative abundance of specific cyanophage g20 genotypes were observed. In some seawater samples, the g20 gene from over 50% of isolated cyanophages could not be amplified by using the PCR primer pairs specific for cyanomyoviruses, which suggested that cyanophages in other viral families (e.g., Podoviridae or Siphoviridae) may be important components of the Rhode Island cyanophage community.  相似文献   

15.
Freshwater cyanophages are poorly characterised in comparison to their marine counterparts, however, the level of genetic diversity that exists in freshwater cyanophage communities is likely to exceed that found in marine environments, due to the habitat heterogeneity within freshwater systems. Many cyanophages are specialists, infecting a single host species or strain; however, some are less fastidious and infect a number of different host genotypes within the same species or even hosts from different genera. Few instances of host growth characterisation after infection by broad host-range phages have been described. Here we provide an initial characterisation of interactions between a cyanophage isolated from a freshwater fishing lake in the south of England and its hosts. Designated ΦMHI42, the phage is able to infect isolates from two genera of freshwater cyanobacteria, Planktothrix and Microcystis. Transmission Electron Microscopy and Atomic Force Microscopy indicate that ΦMHI42 is a member of the Podoviridae, albeit with a larger than expected capsid. The kinetics of host growth after infection with ΦMHI42 differed across host genera, species and strains in a way that was not related to the growth rate of the uninfected host. To our knowledge, this is the first characterisation of the growth of cyanobacteria in the presence of a broad host-range freshwater cyanophage.  相似文献   

16.
Microbial inulinases are an important class of industrial enzymes, which are used for the production of fructooligosaccharides and high-fructose syrup. Endoinulinase producing bacterial strains were isolated from soil samples taken from the vicinity of Asparagus sp. root tubers. All the bacterial strains were screened for inulinase activity. The primary screening was carried out based on hydrolytic zone on agar plates containing inulin-based medium and Lugol’s iodine solution. Thus 30 inulinase producing bacterial strains were isolated. Out of 30 strains, 5 bacterial strains were found endoinulolytic, whereas 25 were exoinulolytic on the basis of action pattern of the enzyme. In tertiary screening, the bacterial isolate AS-08 was found to be most efficient for inulinase activity. Morphological, biochemical and physiological characteristics of the bacterial isolate AS-08 confirmed it as Bacillus sp. Furthermore, species-specific identification by 16S rDNA sequencing and phylogenetic analysis revealed the isolate as Bacillus safensis. Bacillus pumilus SH-B30 was found to be the nearest homolog. The strain showed maximum inulinase activity (12.56 U/mL) after 20 h of incubation at 37°C.  相似文献   

17.
Hall MJ  Wharam SD  Weston A  Cardy DL  Wilson WH 《BioTechniques》2002,32(3):604-6, 608-11
Here, we describe the application of an isothermal nucleic acid amplification assay, signal-mediated amplification of RNA technology (SMART), to detect DNA extracted from marine cyanophages known to infect unicellular cyanobacteria from the genus Synechococcus. The SMART assay is based on the target-dependent production of multiple copies of an RNA signal, which is measured by an enzyme-linked oligosorbent assay. SMART was able to detect both synthetic oligonucleotide targets and genomic cyanophage DNA using probes designed against the portal vertex gene (g20). Specific signals were obtained for each cyanophage strain (S-PM2 and S-BnMI). Nonspecific genomic DNA did not produce false signals or inhibit the detection of a specific target. In addition, we found that extensive purification of target DNA may not be required since signals were obtained from crude cyanophage lysates. This is the first report of the SMART assay being used to discriminate between two similar target sequences.  相似文献   

18.
噬藻体(Cyanophage)是一类感染蓝藻的病毒,形态上同于噬菌体,近期的研究表明,噬藻体作为水体环境中活跃的动态因子,在控制水体初级生产力和有害藻类水华(Harmful Algal Bloom,HAB)方面可能发挥着重要的作用,甚至影响水体生态系统中食物链的结构,因此研究水体中噬藻体的生理生态学特性对于了解其生态功能是非常重要的,但是由于自然水体中的噬藻体浓度往往较低,难以直接对其进行定性或定量研究,所以对天  相似文献   

19.
The development cycle of the cyanophage AS-1 was studied in the host blue-green alga, Anacystis nidulans, under conditions that impair photosynthesis and under various light/dark regimes. Under standard conditions of incubation the 16-h development cycle consisted of a 5-h eclipse period and an 8-h latent period. Burst size was decreased by dark incubation to 2% of that observed in the light. An inhibitor of photosystem II, 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU), reduced the burst size to 27% of that of the uninhibited control, whereas cyanophage production was completely abolished by carbonyl-cyanide m-chlorophenyl hydrazone (CCCP), an inhibitor of photosynthetic electron transport. Dark incubation of infected cells decreased the latent period by 1–2 h and the eclipse period by 1 h, once the cultures were illuminated. This suggests that adsorption took place in the dark. Intracellular growth curves indicated that light is necessary for viral development. Infected cells must be illuminated at least 13 h to produce a complete burst at the same rate as the continuously illuminated control. Low light intensities retarded the development cycle, and at lowest light intensities no phage yield was obtained. AS-1 is highly dependent on host cell photophosphorylation for its development.List of Abbreviations CCCP Carbonyl-cyanide m-chlorophenyl hydrazone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl urea - m.o.i. multiplicity of infection - O.D. optical density - PFU plaque-forming unit Dedicated to Prof. Roger Y. Stanier on the occasion of his 60th birthday  相似文献   

20.
Enterococcus faecalis S-48 produces a peptide antibiotic, AS-48, and a bacteriocin, Bc-48. We have isolated mutants that lack these inhibitory characteristics. Further analysis of the mutants indicates that a plasmid of 56 kilobases (pMB2) may harbor the genes for AS-48. In conjugation experiments, pMB2 has been transferred into a plasmid-free OG1X strain of E. faecalis. The OG1X(pMB2) transconjugant produces the antibiotic AS-48 in solid medium, and the MIC of AS-48 for this strain is the same as that of the donor strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号