首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The H,K-adenosine triphosphatase (ATPase) of gastric parietal cells is targeted to a regulated membrane compartment that fuses with the apical plasma membrane in response to secretagogue stimulation. Previous work has demonstrated that the alpha subunit of the H, K-ATPase encodes localization information responsible for this pump's apical distribution, whereas the beta subunit carries the signal responsible for the cessation of acid secretion through the retrieval of the pump from the surface to the regulated intracellular compartment. By analyzing the sorting behaviors of a number of chimeric pumps composed of complementary portions of the H, K-ATPase alpha subunit and the highly homologous Na,K-ATPase alpha subunit, we have identified a portion of the gastric H,K-ATPase, which is sufficient to redirect the normally basolateral Na,K-ATPase to the apical surface in transfected epithelial cells. This motif resides within the fourth of the H,K-ATPase alpha subunit's ten predicted transmembrane domains. Although interactions with glycosphingolipid-rich membrane domains have been proposed to play an important role in the targeting of several apical membrane proteins, the apically located chimeras are not found in detergent-insoluble complexes, which are typically enriched in glycosphingolipids. Furthermore, a chimera incorporating the Na, K-ATPase alpha subunit fourth transmembrane domain is apically targeted when both of its flanking sequences derive from H,K-ATPase sequence. These results provide the identification of a defined apical localization signal in a polytopic membrane transport protein, and suggest that this signal functions through conformational interactions between the fourth transmembrane spanning segment and its surrounding sequence domains.  相似文献   

2.
Epithelial layers of LLC-PK1/PKE20 cells, a renal epithelial cell line which expresses Na+/H+ exchange activities in the apical as well as basolateral membrane domains, are examined in the single cell mode by microspectrofluorometry. We provide evidence that basolateral Na+/H+ exchange is more sensitive to amiloride inhibition than is apical Na+/H+ exchange. Furthermore, we demonstrate that the two exchange activities differ in their regulatory control: kinase A activation (forskolin, 8-Br-cAMP) leads to inhibition of both exchange activities, whereas kinase C activation (phorbol ester) stimulates basolateral and inhibits apical Na+/H+ exchange. Thus, renal epithelial cells may contain two Na+/H+ exchange activities: an apical ("epithelial") and basolateral ("housekeeping") which may serve different cellular functions and are under separate regulatory controls.  相似文献   

3.
Newly synthesized apical and basolateral membrane proteins are sorted from one another in polarized epithelial cells. The trans-Golgi network participates in this sorting process, but some basolateral proteins travel from the Golgi to recycling endosomes (REs) before their surface delivery. Using a novel system for pulse–chase microscopy, we have visualized the postsynthetic route pursued by a newly synthesized cohort of Na,K-ATPase. We find that the basolateral delivery of newly synthesized Na,K-ATPase occurs via a pathway distinct from that pursued by the vesicular stomatitis virus G protein (VSV-G). Na,K-ATPase surface delivery occurs at a faster rate than that observed for VSV-G. The Na,K-ATPase does not pass through the RE compartment en route to the plasma membrane, and Na,K-ATPase trafficking is not regulated by the same small GTPases as other basolateral proteins. Finally, Na,K-ATPase and VSV-G travel in separate post-Golgi transport intermediates, demonstrating directly that multiple routes exist for transport from the Golgi to the basolateral membrane in polarized epithelial cells.  相似文献   

4.
The human non-gastric H,K-ATPase, ATP1AL1, belongs to the gene family of P-type ATPases. Consistent with their physiological roles in ion transport, members of this group, including the Na,KATPase and the gastric and non-gastric H,K-ATPases, are differentially polarized to either the basolateral or apical plasma membrane in epithelial cells. However, their polarized distribution is highly complex and depends on specific sorting signals or motifs which are recognized by the subcellular targeting machinery. For the gastric H,K-ATPase it has been suggested that the 4(th) transmembrane spanning domain (TM4) and its flanking regions induce conformational sorting motifs which direct the ion pump exclusively to the epithelial apical membrane. Here, we show in transfected Madin-Darby canine kidney (MDCK) cells that the related non-gastric H,KATPase, ATP1AL1, does contain similar sorting motifs in close proximity to TM4. A short extracellular loop between TM3 and TM4 is critical for this pump's apical delivery. A single point mutation in the corresponding region redirects ATP1AL1 to the basolateral membrane. In conclusion, our work provides further evidence that the cellular distribution of P-type ATPases is determined by conformational sorting motifs.  相似文献   

5.
Polarized sorting of membrane proteins in epithelial cells is mediated by cytoplasmic basolateral signals or by apical signals in the transmembrane or exoplasmic domains. Basolateral signals were generally found to be dominant over apical determinants. We have generated chimeric proteins with the cytoplasmic domain of either the asialoglycoprotein receptor H1 or the transferrin receptor, two basolateral proteins, fused to the transmembrane and exoplasmic segments of aminopeptidase N, an apical protein, and analyzed them in Madin-Darby canine kidney cells. Whereas both cytoplasmic sequences induced endocytosis of the chimeras, only that of the transferrin receptor mediated basolateral expression in steady state. The H1 fusion protein, although still largely sorted to the basolateral side in biosynthetic surface transport, was subsequently resorted to the apical cell surface. We tested whether the difference in sorting between trimeric wild-type H1 and the dimeric aminopeptidase chimera was caused by the number of sorting signals presented in the oligomers. Consistent with this hypothesis, the H1 signal was fully functional in a tetrameric fusion protein with the transmembrane and exoplasmic domains of influenza neuraminidase. The results suggest that basolateral signals per se need not be dominant over apical determinants for steady-state polarity and emphasize an important contribution of the valence of signals in polarized sorting.  相似文献   

6.
Na,K-ATPase activity has been identified in the apical membrane of rat distal colon, whereas ouabain-sensitive and ouabain-insensitive H,K-ATPase activities are localized solely to apical membranes. This study was designed to determine whether apical membrane Na,K-ATPase represented contamination of basolateral membranes or an alternate mode of H,K-ATPase expression. An antibody directed against the H, K-ATPase alpha subunit (HKcalpha) inhibited apical Na,K-ATPase activity by 92% but did not alter basolateral membrane Na,K-ATPase activity. Two distinct H,K-ATPase isoforms exist; one of which, the ouabain-insensitive HKcalpha, has been cloned. Because dietary sodium depletion markedly increases ouabain-insensitive active potassium absorption and HKcalpha mRNA and protein expression, Na, K-ATPase and H,K-ATPase activities and protein expression were determined in apical membranes from control and sodium-depleted rats. Sodium depletion substantially increased ouabain-insensitive H, K-ATPase activity and HKcalpha protein expression by 109-250% but increased ouabain-sensitive Na,K-ATPase and H,K-ATPase activities by only 30% and 42%, respectively. These studies suggest that apical membrane Na,K-ATPase activity is an alternate mode of ouabain-sensitive H,K-ATPase and does not solely represent basolateral membrane contamination.  相似文献   

7.
A dynamic equilibrium between multiple sorting pathways maintains polarized distribution of plasma membrane proteins in epithelia. To identify sorting pathways for plasma membrane delivery of the gastric H,K-ATPase beta subunit in polarized cells, the protein was expressed as a yellow fluorescent protein N-terminal construct in Madin-Darby canine kidney (MDCK) and LLC-PK1 cells. Confocal microscopy and surface-selective biotinylation showed that 80% of the surface amount of the beta subunit was present on the apical membrane in LLC-PK1 cells, but only 40% was present in MDCK cells. Nondenaturing gel electrophoresis of the isolated membranes showed that a significant fraction of the H,K-ATPase beta subunits associate with the endogenous Na,K-ATPase alpha(1) subunits in MDCK but not in LLC-PK cells. Hence, co-sorting of the H,K-ATPase beta subunit with the Na,K-ATPase alpha(1) subunit to the basolateral membrane in MDCK cells may determine the differential distribution of the beta subunit in these two cell types. The major fraction of unassociated monomeric H,K-ATPase beta subunits is detected in the apical membrane. Quantitative analysis showed that half of the apical pool of the beta subunit originates directly from the trans-Golgi network and the other half from transcytosis via the basolateral membrane in MDCK cells. A minor fraction of monomeric beta subunits detected in the basolateral membrane represents a transient pool of the protein that undergoes transcytosis to the apical membrane. Hence, the steady state distribution of the H,K-ATPase beta subunit in polarized cells depends on the balance between (a) direct sorting from the trans-Golgi network, (b) secondary associative sorting with a partner protein, and (c) transcytosis.  相似文献   

8.
In striking contrast to most other transporting epithelia (e.g., urinary or digestive systems), where Na,K-ATPase is expressed basolaterally, the retinal pigment epithelium (RPE) cells display Na,K-ATPase pumps on the apical membrane. We report here studies aimed to identify the mechanisms underlying this polarity "reversal" of the RPE Na,K-ATPase. By immunofluorescence on thin frozen sections, both alpha and beta subunits were localized on the apical surface of both freshly isolated rat RPE monolayers and RPE monolayers grown in culture. The polarity of the RPE cell is not completely reversed, however, since aminopeptidase, an apically located protein in kidney epithelia, was also found on the apical surface of RPE cells. We used subunit- and isoform-specific cDNA probes to determine that RPE Na,K-ATPase has the same isoform (alpha 1) as the one found in kidney. Ankyrin and fodrin, proteins of the basolateral membrane cytoskeleton of kidney epithelial cells known to be associated with the Na,K-ATPase (Nelson, W. J., and R. W. Hammerton. 1989. J. Cell Biol. 110:349-357) also displayed a reversed apical localization in RPE and were intimately associated to Na,K-ATPase, as revealed by cross-linking experiments. These results indicate that an entire membrane-cytoskeleton complex is assembled with opposite polarity in RPE cells. We discuss our observations in the context of current knowledge on protein sorting mechanisms in epithelial cells.  相似文献   

9.
Drosophila melanogaster photoreceptors are highly polarized cells and their plasma membrane is organized into distinct domains. Zonula adherens junctions separate a smooth peripheral surface, the equivalent of the basolateral surface in other epithelial cells, from the central surface (approximately equal to apical surface). The latter consists of the microvillar rhabdomere and the juxtarhabdomeric domain, a nonmicrovillar area between the rhabdomere and the zonulae adherens. The distribution of Na/K-ATPase over these domains was examined by immunocytochemical, developmental, and genetic approaches. Immunofluorescence and immunogold labeling of adult compound eyes reveal that the distribution of Na/K-ATPase is concentrated at the peripheral surface in the photoreceptors R1-R6, but extends over the juxtarhabdomeric domain to the rhabdomere in the photoreceptors R7/R8. Developmental analysis demonstrates further that Na/K-ATPase is localized over the entire plasma membrane in all photoreceptors in early pupal eyes. Redistribution of Na/K-ATPase in R1-R6 occurs at about 78% of pupal life, coinciding with the onset of Rh1-rhodopsin expression on the central surface of these cells. Despite the essential role of Rh1 in structural development and intracellular trafficking, Rh1 mutations do not affect the distribution of Na/K-ATPase. These results suggest that Na/K-ATPase and rhodopsin are involved in distinct intracellular localization mechanisms, which are maintained independent of each other.  相似文献   

10.
Epithelial polarization involves the segregation of apical and basolateral membrane domains, which are stabilized and maintained by tight junctions and membrane traffic. We report that unlike most apical and basolateral proteins in MDCK cells, which separate only after junctions have formed, the apical marker gp135 signifies an early level of polarized membrane organization established already in single cells. We identified gp135 as the dog orthologue of podocalyxin. With a series of domain mutants we show that the COOH-terminal PSD-95/Dlg/ZO-1 (PDZ)-binding motif is targeting podocalyxin to the free surface of single cells as well as to a subdomain of the terminally polarized apical membrane. This special localization of podocalyxin is shared by the cytoplasmic PDZ-protein Na+/H+ exchanger regulatory factor (NHERF)-2. Depleting podocalyxin by RNA interference caused defects in epithelial polarization. Together, our data suggest that podocalyxin and NHERF-2 function in epithelial polarization by contributing to an early apical scaffold based on PDZ domain-mediated interactions.  相似文献   

11.
In most polarized cells, the Na,K-ATPase is localized on the basolateral plasma membrane. However, an unusual location of the Na,K-ATPase was detected in polarized HGT-1 cells (a human gastric adenocarcinoma cell line). The Na,K-ATPase alpha1 subunit was detected along with the beta2 subunit predominantly on the apical membrane, whereas the Na,K-ATPase beta1 subunit was not found in HGT-1 cells. However, when expressed in the same cell line, a yellow fluorescent protein-linked Na,K-ATPase beta1 subunit was localized exclusively to the basolateral surface and resulted in partial redistribution of the endogenous alpha1 subunit to the basolateral membrane. The human beta2 subunit has eight N-glycosylation sites, whereas the beta1 isoform has only three. Accordingly, up to five additional N-glycosylation sites homologous to the ones present in the beta2 subunit were successively introduced in the beta1 subunit by site-directed mutagenesis. The mutated beta1 subunits were detected on both apical and basolateral membranes. The fraction of a mutant beta1 subunit present on the apical membrane increased in proportion to the number of glycosylation sites inserted and reached 80% of the total surface amount for the beta1 mutant with five additional sites. Clustered distribution and co-localization with caveolin-1 was detected by confocal microscopy for the endogenous beta2 subunit and the beta1 mutant with additional glycosylation sites but not for the wild type beta1 subunit. Hence, the N-glycans linked to the beta2 subunit of the Na,K-ATPase contain apical sorting information, and the high abundance of the beta2 subunit isoform, which is rich in N-glycans, along with the absence of the beta1 subunit, is responsible for the unusual apical location of the Na,K-ATPase in HGT-1 cells.  相似文献   

12.
Oligodendrocytes possess two distinct membrane compartments--uncompacted plasma membrane (cell body, processes) and compact myelin. Specific targeting mechanisms must exist to establish and maintain these membrane domains. Polarized epithelial cells have the best characterized system for targeting components to apical and basolateral compartments. Since oligodendrocytes arise from neuroepithelial cells, we investigated whether they might utilize targeting paradigms similar to polarized epithelial cells. Myelin/oligodendrocyte glycoprotein (MOG) is a transmembrane Ig-like molecule restricted to uncompacted oligodendroglial plasma membrane. We stably expressed MOG in Madin-Darby canine kidney (MDCK) Type II epithelial cells, which have been extensively used in protein-targeting studies. Data from surface biotinylation assays and confocal microscopy revealed that MOG sorts exclusively to the basolateral membrane of MDCK cells. Expression vectors containing progressive truncations of MOG from the cytoplasmic C-terminus were expressed in MDCK cells to localize basolateral sorting signals. A loss of only four C-terminal residues results in some MOG expression at the apical surface. More strikingly, removal of the C-terminal membrane associated hydrophobic domain from MOG results in complete loss of basolateral sorting and specific targeting to the apical membrane. These data suggest that myelinating oligodendrocytes may utilize a sorting mechanism similar to that of polarized epithelia.  相似文献   

13.
Active potassium absorption in the rat distal colon is electroneutral, Na(+)-independent, partially chloride-dependent, and energized by an apical membrane H,K-ATPase. Both dietary sodium and dietary potassium depletion substantially increase active potassium absorption. We have recently reported that sodium depletion up-regulates H,K-ATPase alpha-subunit mRNA and protein expression, whereas potassium depletion up-regulates H,K-ATPase beta-subunit mRNA and protein expression. Because overall potassium absorption is non-conductive, K-Cl cotransport (KCC) at the basolateral membrane may also be involved in potassium absorption. Although KCC1 has not been cloned from the colon, we established, in Northern blot analysis with mRNA from the rat distal colon using rabbit kidney KCC1 cDNA as a probe, the presence of an expected size mRNA in the rat colon. This KCC1 mRNA is substantially increased by potassium depletion but only minimally by sodium depletion. KCC1-specific antibody identified a 155-kDa protein in rat colonic basolateral membrane. Potassium depletion but not sodium depletion resulted in an increase in KCC1 protein expression in basolateral membrane. The increase of colonic KCC1 mRNA abundance and KCC1 protein expression in potassium depletion of the rat colonic basolateral membrane suggests that K-Cl cotransporter: 1) is involved in transepithelial potassium absorption and 2) regulates the increase in potassium absorption induced by dietary potassium depletion. We conclude that active potassium absorption in the rat distal colon involves the coordinated regulation of both apical membrane H,K-ATPase and basolateral membrane KCC1 protein.  相似文献   

14.
15.
The physiologic function of an ion pump is determined, in part, by its subcellular localization and by the cellular mechanisms that modulate its activity. The Na,K-ATPase and the gastric H,K-ATPase are two closely related members of the P-type family of ion transporting ATPases. Despite their homology, these pumps are sorted to different domains in polarized epithelial cells and their enzymatic activities are subject to distinct regulatory pathways. The molecular signals responsible for these properties have begun to be elucidated. It appears that a complex array of inter- and intra-molecular interactions govern these proteins' trafficking, distribution and catalytic capacity.  相似文献   

16.
We investigated acid-base permeability properties of electrically resistive monolayers of alveolar epithelial cells (AEC) grown in primary culture. AEC monolayers were grown on tissue culture-treated polycarbonate filters. Filters were mounted in a partitioned cuvette containing two fluid compartments (apical and basolateral) separated by the adherent monolayer, cells were loaded with the pH-sensitive dye 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein, and intracellular pH was determined. Monolayers in HCO-free Na(+) buffer (140 mM Na(+), 6 mM HEPES, pH 7.4) maintained a transepithelial pH gradient between the two fluid compartments over 30 min. Replacement of apical fluid by acidic (6.4) or basic (8.0) buffer resulted in minimal changes in intracellular pH. Replacement of basolateral fluid by acidic or basic buffer resulted in transmembrane proton fluxes and intracellular acidification or alkalinization. Intracellular alkalinization was blocked > or =80% by 100 microM dimethylamiloride, an inhibitor of Na(+)/H(+) exchange, whereas acidification was not affected by a series of acid/base transport inhibitors. Additional experiments in which AEC monolayers were grown in the presence of acidic (6.4) or basic (8.0) medium revealed differential effects on bioelectric properties depending on whether extracellular pH was altered in apical or basolateral fluid compartments bathing the cells. Acid exposure reduced (and base exposure increased) short-circuit current from the basolateral side; apical exposure did not affect short-circuit current in either case. We conclude that AEC monolayers are relatively impermeable to transepithelial acid/base fluxes, primarily because of impermeability of intercellular junctions and of the apical, rather than basolateral, cell membrane. The principal basolateral acid exit pathway observed under these experimental conditions is Na(+)/H(+) exchange, whereas proton uptake into cells occurs across the basolateral cell membrane by a different, undetermined mechanism. These results are consistent with the ability of the alveolar epithelium to maintain an apical-to-basolateral (air space-to-blood) pH gradient in situ.  相似文献   

17.
Changes in Na+/H+ antiport activity and transepithelial electrical resistance were analyzed in a clone of LLC-PK1 cells as the dispersed cells became organized into an epithelial membrane. The clone designated LLC-PK1A showed a 250% increase in Na+/H+ exchange activity as compared with the parent cell line. Na+ influx induced by an outwardly oriented H+ gradient is almost completely abolished during active cell proliferation or after cell dispersion. The activity of the Na+/H+ antiport system increases after plating the cells at high density. This increase precedes the increase in the transepithelial electrical resistance. The increase in the Na+/H+ antiport activity was not observed when the cells were plated at low density in the presence of an antimitotic agent indicating that close cell contact is an absolute requirement for the development of the system. The increase in Na+ influx correlated with an increase in Vmax, while the Km for Na+ remained essentially unchanged. Unidirectional Na+ influx measured from the apical or basolateral side as the dispersed cells became reorganized into an epithelial membrane indicated that the insertion of the Na+/H+ antiporter proteins occurred directly in the apical membrane of the epithelial cells. This finding is consistent with the hypothesis that the sorting of native proteins occurs intracellularly prior to their insertion in the apical membrane of the epithelial cells. The delay in the increase of transepithelial electrical resistance as compared with the increase in Na+ influx indicates that the settlement of the limits between the apical and basolateral membrane (fence function) precedes the closing of the intercellular space (barrier function) during the development of the occluding junctions. Further, the development of the Na+/H+ antiporter was inhibited by cycloheximide but not by actinomycin D, suggesting that the expression of epithelial cell polarization is a translational or posttranslational event.  相似文献   

18.
Intracellular protein distribution and sorting were examined in rat parotid striated duct cells, in which tissue kallikrein is apical, and Na,K-ATPase is basolateral. Electron-microscopic immunogold cytochemistry, with both polyclonal and monoclonal antibodies, demonstrated these enzymes at opposite poles of the cells and in distinct intracellular sites. Kallikrein was found within apical secretory granules, whereas Na,K-ATPase was present on basolateral cell membranes. In addition, kallikrein was localized throughout cisternae of all Golgi profiles, whereas Na,K-ATPase (-subunit) was found only in small peripheral vesicles and/or lateral cisternal extensions of a basal subset of Golgi profiles. These differences in the subcellular distribution of the two marker antigens were most clearly seen with double immunogold labelling. Our results suggest that kallikrein, an apical, regulated secretory protein, and Na,K-ATPase, a basolateral, constitutively transported membrane protein, are segregated at (or prior to) the level of the Golgi apparatus rather than in the trans-Golgi network (TGN), as was expected.Abbreviations ATP adenosine tri-phosphate - HBSS Hanks' balanced salt solution - GaM goat anti-mouse - GaR goat anti-rabbit - PBS phosphate-buffered saline - RaM rabbit anti-mouse - RER rough endoplasmic reticulum - TGN trans-Golgi network  相似文献   

19.
Recent evidence indicates that newly synthesized membrane proteins that share the same distributions in the plasma membranes of polarized epithelial cells can pursue a variety of distinct trafficking routes as they travel from the Golgi complex to their common destination at the cell surface. In most polarized epithelial cells, both the Na,K-ATPase and E-cadherin are localized to the basolateral domains of the plasma membrane. To examine the itineraries pursued by newly synthesized Na,K-ATPase and E-cadherin in polarized MDCK epithelial cells, we used the SNAP and CLIP labeling systems to fluorescently tag temporally defined cohorts of these proteins and observe their behaviors simultaneously as they traverse the secretory pathway. These experiments reveal that E-cadherin is delivered to the cell surface substantially faster than is the Na,K-ATPase. Furthermore, the surface delivery of newly synthesized E-cadherin to the plasma membrane was not prevented by the 19°C temperature block that inhibits the trafficking of most proteins, including the Na,K-ATPase, out of the trans-Golgi network. Consistent with these distinct behaviors, populations of newly synthesized E-cadherin and Na,K-ATPase become separated from one another within the trans-Golgi network, suggesting that they are sorted into different carrier vesicles that mediate their post-Golgi trafficking.  相似文献   

20.
An open circuit kinetic model was developed to calculate the time course of proximal tubule cell pH, solute concentrations, and volume in response to induced perturbations in luminal or peritubular fluid composition. Solute fluxes were calculated from electrokinetic equations containing terms for known carrier saturabilities, allosteric dependences, and ion coupling ratios. Apical and basolateral membrane potentials were determined iteratively from the requirements of cell electroneutrality and equal opposing transcellular and paracellular currents. The model converged to membrane potentials accurate to 0.05% in one to four iterations. Model variables included cell concentrations of Na, K, HCO3, glucose, pH (uniform CO2), volume, and apical and basolateral membrane potentials. The basic model contained passive apical membrane transport of Na/H, Na/glucose, H and K, basolateral transport of Na/3HCO3, K, H, and glucose, and paracellular transport of Na, K, Cl, and HCO3; apical H and basolateral 3Na/2K-ATPases were present. Apical Na/H and basolateral K transport were regulated allosterically by pH. Apical Na/H transport, basolateral Na/3HCO3 transport, and the 3Na/2K-ATPase were saturable. Model parameters were chosen from data in the rat proximal tubule. Model predictions for the magnitude and time course of cell pH, Na, and membrane potential in response to rapid changes in apical and peritubular Na and HCO3 were in excellent agreement with experiment. In addition, the model requires that there exist an apical H-ATPase, basolateral Na/3HCO3 transport saturable with HCO3, and electroneutral basolateral K transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号