首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pancreatic stem cells or progenitor cells posses the ability of directed differentiation into pancreatic β cells. However, these cells usually have limited proliferative capacity and finite lifespan in vitro. In the present study, Nestin-positive progenitor cells (NPPCs) from mouse pancreas that expressed the pancreatic stem cells or progenitor cell marker Nestin were isolated to obtain a sufficient number of differentiated pancreatic β cells. Tet-on system for SV40 large T-antigen expression in NPPCs was used to achieve reversible immortalization. The reversible immortal Nestin-positive progenitor cells (RINPPCs) can undergo at least 80 population doublings without senescence in vitro while maintaining their biological and genetic characteristics. RINPPCs can be efficiently induced to differentiate into insulin-producing cells that contain a combination of glucagon-like peptide-1 (GLP-1) and sodium butyrate. The results of the present study can be used to explore transplantation therapy of type I diabetes mellitus.  相似文献   

2.
Recently significant progress has been made in differentiating embryonic stem (ES) cells toward pancreatic cells. However, little is known about the generation and identification of pancreatic progenitor cells from ES cells. Here we explored the influence of sodium butyrate on pancreatic progenitor differentiation, and investigated the different effects of sodium butyrate on pancreatic and hepatic progenitor formation. Our results indicated that different concentration and exposure time of sodium butyrate led to different differentiating trends of ES cells. A relatively lower concentration of sodium butyrate with shorter exposure time induced more pancreatic progenitor cell formation. When stimulated by a higher concentration and longer exposure time of sodium butyrate, ES cells differentiated toward hepatic progenitor cells rather than pancreatic progenitor cells. These progenitor cells could further mature into pancreatic and hepatic cells with the supplement of exogenous inducing factors. The resulting pancreatic cells expressed specific markers such as insulin and C‐peptide, and were capable of insulin secretion in response to glucose stimulation. The differentiated hepatocytes were characterized by the expression of a number of liver‐associated genes and proteins, and had the capability of glycogen storage. Thus, the current study demonstrated that sodium butyrate played different roles in inducing ES cells toward pancreatic or hepatic progenitor cells. These progenitor cells could be further induced into mature pancreatic cells and hepatocytes. This finding may facilitate the understanding of pancreatic and hepatic cell differentiation from ES cells, and provide a potential source of transplantable cells for cell‐replacement therapies. J. Cell. Biochem. 109: 236–244, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
胰高血糖素样肽1与干细胞定向分化   总被引:2,自引:0,他引:2  
糖尿病已经成为21世纪严重威胁人类健康的疾病之一。胰岛移植被认为是治疗Ⅰ型和部分Ⅱ型糖尿病的最有效方法。然而,供体组织来源的匮乏限制了其应用。随着细胞移植和组织工程的日益发展,干细胞研究为新型胰岛的来源开辟了新的途径。干细胞定向诱导分化的关键是筛选合适的诱导剂以及优化诱导微环境,使干细胞培养微环境尽可能接近体内正常细胞发育分化的微环境,从而有利于干细胞适宜生长及定向分化。最近研究证实,胰高血糖素样肽1(Glucagon- Like PeptideⅠ,GLP-1)在干细胞向胰岛样细胞诱导分化中具有显著作用。因此,为了更好地应用GLP-1在干细胞定向分化中的潜能、促进应用干细胞治疗糖尿病新疗法研究的进程及干细胞定向分化技术逐渐成熟,本文就胰高血糖素样肽-1及它诱导干细胞定向分化胰岛样细胞的研究进展作一阐述。  相似文献   

4.
A major problem in the treatment of type 1 diabetes mellitus is the limited availability of alternative sources of insulin-producing cells for islet transplantation. In this study, we investigated the effect of bone morphogenetic protein 4 (BMP-4) treatments of gnotobiotic porcine skin-derived stem cells (gSDSCs) on their reprogramming and subsequent differentiation into insulin-producing cells (IPCs). We isolated SDSCs from the ear skin of a gnotobiotic pig. During the proliferation period, the cells expressed stem-cell markers Oct-4, Sox-2, and CD90; nestin expression also increased significantly. The cells could differentiate into IPCs after treatments with activin-A, glucagon-like peptide-1 (GLP-1), and nicotinamide. After 15 days in the differentiation medium, controlled gSDSCs began expressing endocrine progenitor genes and proteins (Ngn3, Neuro-D, PDX-1, NKX2.2, NKX6.1, and insulin). The IPCs showed increased insulin synthesis after glucose stimulation. The results indicate that stem cells derived from the skin of gnotobiotic pigs can differentiate into IPCs under the appropriate conditions in vitro. Our three-stage induction protocol could be applied without genetic modification to source IPCs from stem cells in the skin of patients with diabetes for autologous transplantation.  相似文献   

5.
Human induced pluripotent stem (hiPS) cells have potential uses for drug discovery and cell therapy, including generation of pancreatic β-cells for diabetes research and treatment. In this study, we developed a simple protocol for generating insulin-producing cells from hiPS cells. Treatment with activin A and a GSK3β inhibitor enhanced efficient endodermal differentiation, and then combined treatment with retinoic acid, a bone morphogenic protein inhibitor, and a transforming growth factor-β (TGF-β) inhibitor induced efficient differentiation of pancreatic progenitor cells from definitive endoderm. Expression of the pancreatic progenitor markers PDX1 and NGN3 was significantly increased at this step and most cells were positive for anti-PDX1 antibody. Moreover, several compounds, including forskolin, dexamethasone, and a TGF-β inhibitor, were found to induce the differentiation of insulin-producing cells from pancreatic progenitor cells. By combined treatment with these compounds, more than 10% of the cells became insulin positive. The differentiated cells secreted human c-peptide in response to various insulin secretagogues. In addition, all five hiPS cell lines that we examined showed efficient differentiation into insulin-producing cells with this protocol.  相似文献   

6.
Feng RQ  Du LY  Guo ZQ 《Cell research》2005,15(5):401-405
During embryonic development, pluripotent endoderm tissue in the developing foregut may adopt pancreatic fate or hepatic fate depending on the activation of key developmental regulators. Transdifferentiation occurs between hepatocytes and pancreatic cells under specific conditions. Hepatocytes and pancreatic cells have the common endodermal progenitor cells. In this study we isolated hepatic stem/progenitor cells from embryonic day (ED) 12-14 Kun-Ming mice with fluorescence-activated cell sorting (FACS). The cells were cultured under specific conditions. The cultured cells deploy dithizone staining and immunocytochemical staining at the 15th, 30th and 40th day after isolation. The results indicated the presence of insulin-producing cells. When the insulin-producing cells were transplanted into alloxaninduced diabetic mice, the nonfasting blood glucose level was reduced. These results suggested that fetal liver stem/progenitor cells could be converted into insulin-producing cells under specific culture conditions. Fetal liver stem/progenitor cells could become the potential source of insulin-producing cells for successful cell transplantation therapy strategies of diabetes.  相似文献   

7.
Tissue stem cells participate in the repopulation of tissue after injury. Tissue injury stimulates the normally quiescent tissue stem cells to differentiate and proliferate, in the process of replacing and/or repairing the damaged cells, and hence effecting tissue regeneration. The salivary glands retain the ability for frequent regeneration. Previously, we isolated progenitor cells from the injured salivary glands of mice and rats that differentiated into hepatic and pancreatic lineages. The isolated progenitors were CD49f-positive and intracellular laminin-positive, and proliferated on type I collagen while maintaining their multipotency. In this study, we analyzed the tissue stem cells induced by ligating the main excretory duct of the salivary gland in swine. After duct ligation of the gland, acinar cells receded due to apoptosis, and epithelial cells subsequently proliferated. We cultured cells obtained from the duct-ligated salivary gland and purified the cells by limited dilution. The isolated cells were positive for CD29, CD49f, intracellular laminin, AFP, CK19, CK18, and Thy-1(CD90), and weakly positive for c-Kit (CD117). After three-dimensional formation, the cells expressed insulin and albumin. We designated the cells as swine salivary gland-derived progenitor cells. Gene expression of insulin and albumin was significantly increased (five-fold) and that of insulin was also increased (3.8-fold) with differentiation medium with nicotinamide and/or GLP-1 treatment in spherical culture. The expressions of albumin and insulin were 1/10-fold and 1/4-fold compared to porcine hepatocytes and pancreatic endocrine cells. The differentiated SGP cells could release insulin, which were stimulated by glucose and potassium. These results indicate that swine SGP cells could differentiate into hepatocytes and beta-cells, functionally. Swine SGP cells were useful tools for therapy and analyzing endodermal regenerative models in large animals.  相似文献   

8.
Early-trimester human fetal pancreas is a promising potential source of pancreatic progenitor cells. However, the ethical controversy associated with the source of these cells, and technical difficulties associated with their differentiation into insulin-producing cells have limited both their availability and utility. This study aimed to characterize a population of pancreatic progenitor cells (PPCs) isolated from human fetus and describe the effects of a novel factor, PDZ-domain containing-2 (PDZD2), and its secreted form (sPDZD2), on PPC proliferation and differentiation. In particular, we examined and characterized the expression of several stem cell (nestin, ABCG2, c-kit), growth and differentiation markers (GLP-1R, c-met, erbB1), and PDZD2 in PPCs by RT-PCR, Western blot, and immunocytochemistry. We also examined the effects of sPDZD2 on PPC proliferation and differentiation by examining BrdU incorporation, MTT, cell number, and real-time PCR as well as ELISA. PPCs were isolated, cultured and characterized from human fetal pancreas. PDZD2 and sPDZD2 were detected at high levels in both human fetal pancreas and in PPCs. sPDZD2 acted as a potent mitogen on PPCs, and inhibited the differentiation of PPC-derived islet-like cell-clusters (ICCs), evidenced by the downregulation of Isl-1, Pdx-1, and insulin mRNA levels. sPDZD2 treatment also reduced levels of C-peptide in ICCs. These results show that a novel pancreatic developmental factor, PDZD2, is sufficient to promote the proliferation of human fetal PPCs while limiting differentiation of ICCs into islet/endocrine cells. Findings from this study will contribute to the development of improved methods for islet transplantation therapy in the treatment of diabetes.  相似文献   

9.
Hori Y  Gu X  Xie X  Kim SK 《PLoS medicine》2005,2(4):e103
BackgroundSuccess in islet-transplantation-based therapies for type 1 diabetes, coupled with a worldwide shortage of transplant-ready islets, has motivated efforts to develop renewable sources of islet-replacement tissue. Islets and neurons share features, including common developmental programs, and in some species brain neurons are the principal source of systemic insulin.Methods and FindingsHere we show that brain-derived human neural progenitor cells, exposed to a series of signals that regulate in vivo pancreatic islet development, form clusters of glucose-responsive insulin-producing cells (IPCs). During in vitro differentiation of neural progenitor cells with this novel method, genes encoding essential known in vivo regulators of pancreatic islet development were expressed. Following transplantation into immunocompromised mice, IPCs released insulin C-peptide upon glucose challenge, remained differentiated, and did not form detectable tumors.ConclusionProduction of IPCs solely through extracellular factor modulation in the absence of genetic manipulations may promote strategies to derive transplantable islet-replacement tissues from human neural progenitor cells and other types of multipotent human stem cells.  相似文献   

10.
The role of GLP-1 in the life and death of pancreatic beta cells.   总被引:5,自引:0,他引:5  
Glucagon-like peptide-1 (GLP-1), a peptide hormone produce by intestinal cells, has recently been shown to be capable of modulating islet cell mass. Administration of GLP-1 to rodent models of type 2 diabetes ameliorates insulin secretion, induces the replication of islet cells, and promotes islet-cell neogenesis from pancreatic ductal cells susceptible to transdifferentiate in insulin-producing cells. In addition, an anti-apoptotic effect of GLP-1 has been described in hyperglycemic animal models, using freshly isolated human islets or cultured beta cell lines exposed to various pro-apoptotic stimuli. The aim of this article is to review those reports that have emphasized the role of GLP-1 as a regulator of islet cell mass.  相似文献   

11.
Stem/progenitor cells hold promise for alleviating/curing type 1 diabetes due to the capacity to differentiate into functional insulin-producing cells. The current study aims to assess the differentiation potential of human pancreatic IPCs (islet-derived progenitor cells). IPCs were derived from four human donors and subjected to more than 2000-fold expansion before turning into ICCs (islet-like cell clusters). The ICCs expressed ISL-1 Glut2, PDX-1, ngn3, insulin, glucagon and somatostatin at the mRNA level and stained positive for insulin and glucagon by immunofluorescence. Following glucose challenge in vitro, C-peptide was detected in the sonicated ICCs, instead of in the conditioned medium. To examine the function of the cells in vivo, IPCs or ICCs were transplanted under the renal capsule of immunodeficient mice. One month later, 19 of 28 mice transplanted with ICCs and 4 of 14 mice with IPCs produced human C-peptide detectable in blood, indicating that the in vivo environment further facilitated the maturation of ICCs. However, among the hormone-positive mice, only 9 of 19 mice with ICCs and two of four mice with IPCs were able to secrete C-peptide in response to glucose.  相似文献   

12.
13.
Cellular replacement therapy holds promise for the treatment of diabetes mellitus but donor tissue is severely limited. Therefore, we investigated whether insulin-secreting cells could be differentiated in vitro from a monolayer of cells expanded from human donor pancreatic islets. We describe a three-step culture protocol that allows for the efficient generation of insulin-producing cell clusters from in vitro expanded, hormone-negative cells. These clusters express insulin at levels of up to 34% that of average freshly isolated human islets and secrete C-peptide upon membrane depolarization. They also contain cells expressing the other major islet hormones (glucagon, somatostatin, and pancreatic polypeptide). The source of the newly differentiated endocrine cells could either be indigenous stem/progenitor cells or the proliferation-associated dedifferentiation and subsequent redifferentiation of mature endocrine cells. The in vitro generated cell clusters may be efficacious in providing islet-like tissue for transplantation into diabetic recipients.  相似文献   

14.
Type 1 diabetes is characterized by the selective destruction of pancreatic beta-cells caused by an autoimmune attack. Type 2 diabetes is a more complex pathology which, in addition to beta-cell loss caused by apoptotic programs, includes beta-cell dedifferentiation and peripheric insulin resistance. beta-Cells are responsible for insulin production, storage and secretion in accordance to the demanding concentrations of glucose and fatty acids. The absence of insulin results in death and therefore diabetic patients require daily injections of the hormone for survival. However, they cannot avoid the appearance of secondary complications affecting the peripheral nerves as well as the eyes, kidneys and cardiovascular system. These afflictions are caused by the fact that external insulin injection does not mimic the tight control that pancreatic-derived insulin secretion exerts on the body's glycemia. Restoration of damaged beta-cells by transplantation from exogenous sources or by endocrine pancreas regeneration would be ideal therapeutic options. In this context, stem cells of both embryonic and adult origin (including beta-cell/islet progenitors) offer some interesting alternatives, taking into account the recent data indicating that these cells could be the building blocks from which insulin secreting cells could be generated in vitro under appropriate culture conditions. Although in many cases insulin-producing cells derived from stem cells have been shown to reverse experimentally induced diabetes in animal models, several concerns need to be solved before finding a definite medical application. These refer mainly to the obtainment of a cell population as similar as possible to pancreatic beta-cells, and to the problems related with the immune compatibility and tumor formation. This review will summarize the different approaches that have been used to obtain insulin-producing cells from embryonic and adult stem cells, and the main problems that hamper the clinical applications of this technology.  相似文献   

15.
Bone marrow mesenchymal stem cells (BMSCs) have the ability of self-renewal and multi-directional differentiation. Recent reports showed that BMSCs could differentiate into endocrine cells of pancreas. However, the differentiation is not efficient enough to produce insulin-producing cells for the future therapeutic use. Pdx-1 is a crucial regulator for pancreatic development. Therefore we constructed a eukaryotic expression vector containing Pdx-1 to determine the effect of Pdx-1 expression on differentiation of BMSCs in vitro. The results showed that BMSCs could self-assemble to form functional pancreatic islet-like structures after differentiation in vitro. The proportion of insulin-producing cells differentiated from Pdx-1+BMSCs was 28.23%±2.56%, higher than that from BMSCs transfected with vacant vector and Pdx-1 BMSCs (7.23%±1.56% and 4.08%±2.69% respectively) by flow cytometry. Immunocytochemical examination also testified the expression of multiple β-cells-specific genes such as insulin, glucagons, somatostatin in differentiated BMSCs. The results also revealed that the expressions of genes mentioned above in Pdx-1+BMSCs were higher than that in Pdx-1BMSCs, which was confirmed by Western blotting analysis and RT-PCR. Glucose-induced insulin secretion from Pdx-1+BMSCs in 5mmol/L and 25mmol/L glocuse was (56.61±4.82) μU/mL and (115.29±2.56) μU/mL respectively, which were much higher than those from Pdx-1BMSCs((25.53±6.49) μU/mL and (53.26±7.56) μU/mL respectively). Grafted animals were able to maintain their body weight and survive for relatively longer periods of time than hyperglycemic sham-grafted controls, which demonstrated an overall beneficial effect of the grafted cells on the health of the animals. These findings thus suggested that exogenous expression of Pdx-1 should provide a promising approach for efficiently producing islet-like cells from BMSCs for the future therapeutic use in diabetic patients.  相似文献   

16.
17.
GLP-1(1~37) 诱导人类胚胎小肠 上皮细胞表达胰岛素   总被引:1,自引:0,他引:1  
胶原酶消化法分离培养人类胚胎小肠的上皮细胞,应用胰高血糖素样肽 1 (glucagon-like peptide 1 (1~37),GLP-1) 诱导小肠上皮细胞向胰岛素分泌细胞分化,免疫组化方法对分化的和未分化的细胞进行鉴定, RT-PCR 检测胰岛内分泌细胞相关基因的表达 . 结果成功分离培养出人类小肠上皮细胞,免疫组化证明细胞表达小肠上皮的标志物细胞角蛋白 18 和 19 ,同时细胞也表达胰高血糖素和生长抑素,但无胰岛素表达 . GLP-1(1~37) 诱导小肠上皮细胞 6 天, RT-PCR 显示胰十二指肠同源异型基因盒 1 (pancreatic duodenal homeobox-1 , PDX-1) 、葡萄糖转运蛋白 2 (glucose transporter-2 , GLUT-2) 和胰岛素基因均有表达,免疫组化也检测到胰岛素阳性小肠上皮细胞 . 未用 GLP-1(1~37) 诱导小肠上皮细胞为对照的 RT-PCR 显示 PDX-1 、 GLUT-2 也表达,但无胰岛素 mRNA 和蛋白质的表达 . 研究表明 GLP-1(1~37) 能够诱导人类胚胎小肠上皮细胞向胰岛素分泌细胞分化 .  相似文献   

18.
19.
In vitro generation of insulin-producing cells from stem / progenitor cells presents a promising approach to overcome the scarcity of donor pancreas for cell replacement therapy in diabetes. In this regard, pancreatic islet-derived progenitors are proposed to be a better alternative as they are obtained from cells that can efficiently produce insulin under physiological conditions and are supposed to retain the epigenetic memory for producing 'insulin' even after transition to a mesenchymal-like cell type. However, in last few years there has been significant debate in understanding the origin of such islet-derived mesenchymal-like progenitor cells in vitro. The initial idea proposed that human insulin-producing β-cells contribute to generation of a population of islet-derived endocrine progenitor cells by a process of epithelial-to-mesenchymal transition (EMT) in vitro. This idea was challenged by a series of lineage-tracing studies in mice demonstrating the non-beta origin of mesenchymal cells in culture. However, recent observations made by two independent groups confirm that human islet insulin-producing cells can proliferate and contribute to mesenchymal-like cell populations in vitro. Here, we provide a fact sheet about the observations that are till now reported by several groups regarding origin of mesenchymal-like cells in the cultures of pancreatic islets.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号