首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Errata     
About ScienceDirect 《BBA》1980,590(3):415-430
  相似文献   

2.
(1) The concentration of aurovertin-binding sites calculated from fluorimetric titrations of submitochondrial particles is equal to the F1 concentration, calculated from the concentration of F1-binding sites in stripped particles. (2) Direct binding experiments show that the fluorescence enhancement of aurovertin bound to submitochondrial particles and the isolated ATPase complex is less (or absent) at higher concentrations than at lower concentrations. The binding data can be described by 'specific' and 'non-specific' binding. The concentration of the 'specific' sites is twice that derived from fluorimetric titrations. (3) After dissociation of the bound F1 with LiCl, fluorimetric titrations with aurovertin yield linear Scatchard plots. The fluorescence enhancement and KD are equal to those of the beta-subunit-aurovertin complex. The concentration of beta-subunits is double the concentration of F1. (4) It is concluded that both for submitochondrial particles and the isolated ATPase complex the most reliable and simple way to determine the F1 content is to dissociate the F1 with LiCl, spin down the insoluble material and titrate the supernatant (containing free beta-subunit) with aurovertin.  相似文献   

3.
R S Lee  J Pagan  M Satre  P V Vignais  A E Senior 《FEBS letters》1989,253(1-2):269-272
A mutation conferring aurovertin resistance on Escherichia coli F1-ATPase was identified as R398----H in the F1 beta-subunit. Beta-subunit from the mutant does not bind aurovertin; therefore our results suggest the region of sequence around residue beta-398 is involved in aurovertin binding. Since nucleotide and aurovertin binding to isolated beta-subunit are not mutually exclusive, the data further suggest that the beta-subunit catalytic nucleotide-binding domain does not include residue 398. The mutation prevented aurovertin inhibition of ATPase at pH 6 and 8.5, implying charge on the arginine side-chain is not a major determinant of aurovertin binding or that the pK of R398 is shifted due to a peculiar environment. The equivalent residue is usually arginine in F1 beta-subunits of different species; notably in the aurovertin-insensitive thermophilic bacterium PS3 F1-ATPase, this residue is phenylalanine.  相似文献   

4.
J Weber  R S Lee  E Grell  A E Senior 《Biochemistry》1992,31(22):5112-5116
(1) Previous mutational analyses have shown that residue beta R398 of the beta-subunit is a key residue for binding of the inhibitory antibiotic aurovertin to Escherichia coli F1Fo-ATP synthase. Here, we studied purified F1 from the beta R398C and beta R398W mutants. ATPase activity in both cases was resistant to aurovertin inhibition. The fluorescence spectrum (lambda exc = 278 or 295 nm) of beta R398W F1 showed a significant red-shift as compared to wild-type and beta R398C enzymes, indicating that residue beta R398 lies in a polar environment. On the basis of this and previous evidence, we propose that aurovertin binding to F1-ATPase involves a specific charged donor-acceptor H-bond between residue beta R398 and the 7-hydroxyl group of aurovertin. (2) The fluorescent substrate analog lin-benzo-ADP was shown to bind to beta R398W F1 catalytic sites with the same Kd values as to wild-type F1, and with the same quenching of the fluorescence of the analog. Fluorescence energy transfer was seen between the beta R398W residue and bound lin-benzo-ADP. Analysis of transfer efficiency at varying stoichiometry of bound lin-benzo-ADP showed that interaction occurred between one beta R398W residue and one catalytic-site-bound analog molecule at a distance of approximately 23 A. The relationships of the aurovertin and catalytic sites in the primary and tertiary structure are discussed.  相似文献   

5.
R.M. Bertina  P.I. Schrier  E.C. Slater 《BBA》1973,305(3):503-518
1. The fluorescence of aurovertin increases about 100-fold on binding to sub-mitochondrial particles.

2. The mitochondrial ATPase (F1) binds one mole aurovertin/mole F1 with a dissociation constant of 6·10−8 M.

3. The fluorescence of mitochondrion-bound aurovertin is maximal during State-3 respiration and is partially quenched on anaerobiosis, addition of respiratory inhibitor, oligomycin or uncoupler, or transition to State 4. This quenching is still present when the binding site is saturated with aurovertin, showing that the quantum yield of fluorescence is lowered.

4. Aurovertin is bound co-operatively to State-3 mitochondria.

5. The curve relating inhibition of State-3 respiration to aurovertin concentration is more sharply sigmoidal than the binding curve.

6. An analysis of the binding and inhibition data leads to the conclusion that aurovertin induces a conformation change in the binding site on F1 in two ways: (i) directly by acting as an allosteric effector of an oligomeric system, (ii) indirectly by inhibiting State-3 respiration which changes the allosteric constant of the oligomeric system.

7. The concentration of the aurovertin-binding site in both rat-liver and rat-heart mitochondria is about the same as that of the antimycin-binding and oligomycin-binding sites.  相似文献   


6.
(1) The concentration of aurovertin-binding sites calculated from fluorimetric titrations of submitochondrial particles is equal to the F1 concentration, calculated from the concentration of F1-binding sites in stripped particles.(2) Direct binding experiments show that the fluorescence enhancement of aurovertin bound to submitochondrial particles and the isolated ATPase complex is less (or absent) at higher concentrations than at lower concentrations. The binding data can be described by ‘specific’ and ‘non-specific’ binding. The concentration of the ‘specific’ sites is twice that derived from fluorimetric titrations.(3) After dissociation of the bound F1 with LiCl, fluorimetric titrations with aurovertin yield linear Scatchard plots. The fluorescence enhancement and KD are equal to those of the β-subunit-aurovertin complex. The concentration of β-subunits is double the concentration of F1.(4) It is concluded that both for submitochondrial particles and the isolated ATPase complex the most reliable and simple way to determine the F1 content is to dissociate the F1 with LiCl, spin down the insoluble material and titrate the supernatant (containing free β-subunit) with aurovertin.  相似文献   

7.
The effect of aurovertin on the binding parameters of ADP and ATP to native F1 from beef heart mitochondria in the presence of EDTA has been explored. Three exchangeable sites per F1 were titrated by ADP and ATP in the absence or presence of aurovertin. Curvilinear Scatchard plots for the binding of both ADP and ATP were obtained in the absence of aurovertin, indicating one high affinity site (Kd for ADP = 0.6-0.8 microM; Kd for ATP = 0.3-0.5 microM) and two lower affinity sites (Kd for ADP = 8-10 microM; Kd for ATP = 7-10 microM). With a saturating concentration of aurovertin capable of filling the three beta subunits of F1, the curvilinearity of the Scatchard plots was decreased for ATP binding and abolished for ADP binding, indicating homogeneity of ADP binding sites in the F1-aurovertin complex (Kd for ADP = 2 microM). When only the high affinity aurovertin site was occupied, maximal enhancement of the fluorescence of the F1-aurovertin complex was attained with 1 mol of ADP bound per mol of F1 and maximal quenching for 1 mol of ATP bound per mol of F1. When the F1-aurovertin complex was incubated with [3H]ADP followed by [14C]ATP, full fluorescence quenching was attained when ATP had displaced the previously bound ADP. In the case of the isolated beta subunit, both ADP and ATP enhanced the fluorescence of the beta subunit-aurovertin complex. The Kd values for ADP and ATP in the presence of EDTA were 0.6 mM and 3.7 mM, respectively; MgCl2 decreased the Kd values to 0.1 mM for both ADP and ATP. It is postulated that native F1 possesses three equivalent interacting nucleotide binding sites and exists in two conformations which are in equilibrium and recognize either ATP (T conformation) or ADP (D conformation). The negative interactions between the nucleotide binding sites of F1 are strongest in the D conformation. Upon addition of aurovertin, the site-site cooperativity between the beta subunits of F1 is decreased or even abolished.  相似文献   

8.
The Escherichia coli uncA gene codes for the alpha-subunit of the F1 sector of the membrane proton ATPase. In this work purified soluble F1 enzymes from three mutant strains ( uncA401 , uncA447 , and uncA453 ) have been compared to F1 from a normal strain in respect to (a) binding of 5'-adenylyl imidodiphosphate (AMPPNP) to native enzyme in both the presence and absence of Mg, (b) high-affinity binding of MgATP to native enzyme, (c) total reloading of MgAMPPNP to nucleotide-depleted F1 preparations, (d, e) ability to hydrolyze MgATP at both high MgATP concentrations (d) (steady-state conditions) and low MgATP concentrations (e) where substrate hydrolysis occurs under nonsteady-state (" unisite ") conditions, and (f) sensitivity of steady-state ATPase activities to inhibitors of normal F1-ATPase activity. uncA mutant F1 showed normal stoichiometry of MgAMPPNP binding to both native (three sites per F1) and nucleotide-depleted preparations (six sites per F1). Native uncA F1 preparations showed lower-than-normal affinity for MgAMPPNP and MgATP at the first site filled. Binding of AMPPNP in the absence of Mg was similar to normal, except that no increase in affinity for AMPPNP was induced by aurovertin. The uncA F1-ATPases had low but real steady-state rates of ATP hydrolysis, which were inhibited by aurovertin but relatively insensitive to inhibition by AMPPNP, efrapeptin, and sodium azide. Non-steady-state ( unisite ) ATP hydrolysis rates catalyzed at low substrate concentrations by uncA F1-ATPases were similar to normal.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Fourteen antibiotics have been found to inhibit oxidative phosphorylation and uncoupler-stimulated adenosinetriphosphatase in mitochondria. Four different types of binding sites for these inhibitors have been found. The first (1) binds aurovertin to purified MF1 ATPase in the stoichiometric ratio of two aurovertin molecules per molecule of ATPase. Site II is the locus for efrapeptin (A23871) and may be a catalytic site on purified ATPase. The remaining two sites have been demonstrated only in mitochondria or submitochondrial particles when the APTase is bound to other membrane components. Oligomycin, venturiciden, venturicidin X and ossamycin probably all bind at site III. Leucinostatin (A20668) binds at site IV. At low concentrations, this antibiotic acts like oligomycin; at higher concentrations it uncouples oxidative phosphorylation. Venturicidin appears to prevent leucinostation from binding at site IV for it allows uncoupling to occur at very low concentrations of the latter antibiotic. Venturicidin aglycone, which is a more effective inhibitor than its parent compound, does not exert this effect. It is concluded that sites III and IV are in juxtaposition and that when venturicidin binds at site III its sugar moiety projects into the area of site IV to prevent leucinostation from binding at its inhibitory site.  相似文献   

10.
F1-ATPase was treated so that it contained three tightly bound nucleotides per molecule. One of these was bound at a catalytic site and was rapidly exchangeable, the two remaining nucleotides were nonexchangeable. Incubation of this preparation with ADP in the presence of Mg2+ results in 40-45% inhibition of the ATPase activity. With 2-azido-ADP instead of ADP, the ligand was covalently bound to F1 by illumination, in the presence or absence of turnover of the enzyme, and the site of binding was determined. In this way, one site could be identified, which induces the inhibition. The attachment of the covalently bound 2-nitreno-ADP is at Tyr-368 of a beta-subunit, characterized in the literature as a non-catalytic site. A second, non-catalytic site also binds 2-azido-ADP, but this binding is partially reversed by the addition of ATP and does not cause further inhibition of the ATPase activity. It is concluded that the slowly exchangeable non-catalytic site is the site of inhibition by ADP.  相似文献   

11.
1. Beef-heart mitochondrial ATPase (F1) is inactivated and dissociated by incubation with 0.85 M LiCl. ATP partly protects against inactivation. Three dissociation products could be identified after chromatography on diethylaminoethylcellulose: the delta subunit which is not adsorbed, the beta subunit which may be eluted from the column, and the alpha and gamma subunits which remain bound to the column. 2. Aurovertin binds to dissociated F1 with a fluorescence enhancement equal to about 30% that found with F1. Unlike intact F1 which shows two kinetically separated phases of fluorescence enhancement, only a fast phase is found with dissociated enzyme. 3. Fluorescence measurements at varying aurovertin and protein concentrations indicate that aurovertin binds to dissociated F1 in a simple 3-component reaction with dissociation constant 0.4 muM. There are two indistinguishable binding sites, calculated on the basis of the initial F1 concentration before dissociation. 4. The beta subunit was isolated from dissociated F1 by DEAE-cellulose chromatography. It has no ATPase activity but reacts with aurovertin with a fluorescence enhancement similar to that of dissociated F1. 5. The isolated beta subunit contains one aurovertin binding site with a dissociation constant of 0.56 muM. 6. It is concluded that F1 contains two beta subunits.  相似文献   

12.
Reversible binding of Pi by beef heart mitochondrial adenosine triphosphatase.   总被引:110,自引:0,他引:110  
Beef heart mitochondrial ATPase (F1) exhibited a single binding site for Pi. The interaction with Pi was reversible, partially dependent on the presence of divalent metal ions, and characterized by a dissociation constant at pH 7.5 of 80 micronM. A variety of substances known to influence oxidative phosphorylation or the activity of the soluble ATPase (F1) also influenced Pi binding by the enzyme. Thus aurovertin, an inhibitor of oxidative phosphorylation, which was bound tightly by F1 and inhibited ATPase activity, enhanced Pi binding via a 4-fold increase in the affinity of the enzyme for Pi (KD = 20 micronM) but did not alter binding stoichiometry. Anions such as SO4(2-), SO3(2-), chromate, and 2,4-dinitrophenolate, which stimulated ATPase activity of F1, also enhanced Pi binding. Inhibitors of ATPase activity such as nickel/bathophenanthroline and the protein ATPase inhibitor of Pullman and Monroy (Pullman, M. E., and Monroy, G. C. (1963) J. Biol. Chem. 238, 3762-3769) inhibited Pi binding. The adenine nucleotides ADP, ATP, and the ATP analog adenylyl imidodiphosphate as well as the Pi analog arsenate, also inhibited Pi binding. The observations suggest that the Pi binding site was located in or near an adenine nucleotide binding site on the molecule.  相似文献   

13.
The rate of ATP hydrolysis under multi- and unisite conditions was determined in the native F1-inhibitor protein complex of bovine heart mitochondria (Adolfsen, R., MacClung, J.A., and Moudrianakis, E.N. (1975) Biochemistry 14, 1727-1735). Aurovertin was used to distinguish between hydrolytic activity catalyzed by the F1-ATPase or the F1-inhibitor protein (F1.I) complex. We found that incubation of aurovertin with the F1.I complex, prior to the addition of substrate, results in a stimulation of the hydrolytic activity from 1 to 8-10 mumol min-1 mg-1. The addition of aurovertin to a F1.I complex simultaneously with ATP results in a 30% inhibition with respect to the untreated F1.I. In contrast, if the F1.I complex is activated up to a hydrolytic activity of 80 mumol min-1 mg-1, aurovertin inhibits the enzyme in a manner similar to that described for F1-ATPase devoid of the inhibitor protein. The native F1.I complex catalyzes the hydrolysis of ATP under conditions for single catalytic site, liberating 0.16-0.18 mol of Pi/mol of enzyme. Preincubation with aurovertin before the addition of substrate had no effect under these conditions. On the other hand, if the F1.I ATPase was allowed to hydrolyze ATP at a single catalytic site, catalysis was inhibited by 98% by aurovertin. In F1-ATPase, the hydrolysis of [gamma-32P]ATP bound to the first catalytic site is promoted by the addition of excess ATP, in the presence or absence of aurovertin. Under conditions for single site catalysis, hydrolysis of [gamma-32P]ATP in the F1.I complex was not promoted by excess ATP. We conclude that the endogenous inhibitor protein regulates catalysis by promoting the entrapment of adenine nucleotides at the high affinity catalytic site, thus hindering cooperative ATP hydrolysis.  相似文献   

14.
1. Isolation of ATPase from rat liver submitochondrial particles by chloroform treatment requires the presence of ATP or ADP during enzyme solubilization. In the absence of adenine nucleotides the enzyme activity is very low although all protein components of F1-ATPase are released. The low concentrations of ATP or ADP required (5 microM) indicate that the high affinity nucleotide-binding sites are involved in enzyme stabilization. Other nucleotides tested (ITP, GTP, UTP, CTP) were found to be less effective. 2. Polyacrylamide gel electrophoresis and immunodiffusion in agar plates revealed that in the absence of adenine nucleotides a fraction of F1-ATPase released by chloroform treatment is split into fragments. The part of the dissociated enzyme molecule has a molecular weight identical with that of a beta-subunit of F1-ATPase. 3. Dissociation of the F1-ATPase molecule could also be prevented by aurovertin. 4. Crude F1-ATPase solubilized by chloroform treatment can be further purified by Sepharose 6B gel filtration. Specific ATPase activity of the purified enzyme was 90 mumol Pi/min per mg protein and the enzyme was composed of five protein subunits (alpha, beta, gamma, delta, epsilon) with molecular weights 58 000, 55 000, 28 000, 13 000 and 8000, respectively. 5. Chloroform-released F1-ATPase from rat liver mitochondria displayed immunochemical cross-reactivity with that isolated from beef heart mitochondria.  相似文献   

15.
F1ATPase from the Escherichia coli mutant of H+-ATPase, AN120 (uncA401), has less than 1% of the wild type activity and has been shown to be defective in the alpha subunit by in vitro reconstitution experiments. In the present study, the mutation site was located within a domain of the subunit by recombinant DNA technology. For this, a series of recombinant plasmids carrying various portions of the alpha subunit gene were constructed and used for genetic recombination with AN120. Analysis of the recombinants indicated that the mutation site could be located between amino acid residues 370 and 387. The biochemical properties of the mutant F1 were analyzed further using the fluorescent ATP analog DNS-ATP (2'-(5-dimethylaminonaphthalene-1-sulfonyl)-amino-2'-deoxy ATP). The single turnover process of E. coli F1ATPase proposed by Matsuoka et al. [(1982) J. Biochem. 92, 1383-1398.] was compared in the mutant and wild type F1's. Mutant F1 bound DNS-ATP and hydrolyzed it as efficiently as wild type F1. Results showed that binding of ATP to a low affinity site, possibly in the beta subunit, caused decrease of fluorescence of DNS-ATP in the wild type F1 and that this effect of ATP binding was inhibited by DCCD (dicyclohexyl carbodiimide). However, this effect was not inhibited by DCCD in the mutant F1, suggesting that in the proposed process some step(s) after ATP binding to the low affinity site differed in the mutant and wild F1's. When Pi was added to F1 bound to DNS-ATP or to aurovertin, a fluorescent probe capable of binding to the beta subunit, the opposite changes of fluorescence of these probes in the mutant and wild type F1's were observed, suggesting that the conformational change induced by phosphate binding was altered in the mutant F1. On the basis of the estimated mutation site and the biochemical properties of the mutant F1, the correlation of the domain of this site in the alpha subunit with the function of F1 ATPase is discussed.  相似文献   

16.
The epsilon subunit of Escherichia coli F1-ATPase is a tightly bound but dissociable partial inhibitor of ATPase activity. The effects of epsilon on the enzyme were investigated by comparing the ATPase activity and aurovertin binding properties of the epsilon-depleted F1-ATPase and the epsilon-replete complex. Kinetic data of multisite ATP hydrolysis were analyzed to give the best fit for one, two, or three kinetic components. Each form of F1-ATPase contained a high-affinity component, with a Km near 20 microM and a velocity of approximately 1 unit/mg. Each also exhibited a component with a Km in the range of 0.2 mM. The velocity of this component was 25 units/mg for epsilon-depleted ATPase but only 4 units/mg for epsilon-replete enzyme. The epsilon-depleted enzyme also contained a very low affinity component not present in the epsilon-replete enzyme. In unisite hydrolysis studies, epsilon had no effect on the equilibrium between substrate ATP and product ADP.P1 at the active site but reduced the rate of product release 15-fold. These results suggest that epsilon subunit slows a conformational change that is required to reduce the affinity at the active site, allowing dissociation of product. It is suggested that inhibition of multisite hydrolysis by epsilon is also due to a reduced rate of product release. epsilon-depleted F1-ATPase showed little of no modulation of aurovertin fluorescence by added ADP and ATP. Aurovertin fluorescence titrations in buffer containing ethylenediaminetetraacetic acid (EDTA) revealed that epsilon-depleted enzyme had high affinity for aurovertin (Kd less than 0.1 microM) regardless of the presence of nucleotides.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
1. Binding of aurovertin to submitochondrial particles deficient in ATPase inhibitor is accompanied by an enhancement of the fluorescence by at least 100-fold.2. This change in fluorescence proceeds in three phases. The slowest change may be due to a conformational change in F1, induced by the antibiotic bound during the rapid phases, giving rise to an increase in the quantum yield of the bound fluorochrome.3. Phosphate and ATP quench the fluorescence of the particle-aurovertin complex and ADP enhances it; the rate and extent of these changes are dependent on the availability of free Mg2+.4. There is at least one binding site on the submitochondrial particles, where ATP, ADP and phosphate can bind reversibly and for which these ligands compete. These interactions are dependent on the availability of free Mg2+ and are partly sensitive to oligomycin.5. Binding studies reveal two binding sites for aurovertin on inhibitor-free particles, one with high affinity and one with a lower affinity. Ligands such as phosphate and ATP decrease both the quantum yield and the affinity of the particles for aurovertin. They also increase the total concentration of binding sites, and affect the relative contribution of weak and strong binding sites.6. A model is presented in which changes of the aurovertin fluorescence reflect conformational changes of the ATPase induced by its ligands.  相似文献   

18.
Adenosine triphosphatase activity and nucleotide binding affinity of isolated beta-subunit preparations from Escherichia coli F1F0-ATP synthase were studied. The aim was to find out whether isolated beta-subunit would provide an experimental model in which effects of mutations on catalysis per se, unencumbered by complications due to their effects on positive catalytic cooperativity, could be studied. Three types of purified, isolated beta-subunit preparations were studied. Type I-beta was from a strain lacking all F1F0 subunits except beta and epsilon. Type II-beta was from F1 carrying the alpha S375F mutation which blocks positive catalytic cooperativity. Type III-beta was from normal F1. Type I- and II-beta had very low ATPase activity (less than 10(-4) s-1) which was azide-insensitive, aurovertin-insensitive, and unaffected by anti-beta antibody. Type I-beta activity was EDTA-insensitive. We conclude that isolated beta-subunit from E. coli F1F0 has zero or at most very low intrinsic ATPase activity. Type III-beta had low ATPase activity (8.4 x 10(-5) s-1 to 1.1 x 10(-3) s-1 in seven different preparations). This activity was aurovertin-sensitive, but varied in azide sensitivity from 0 to 34% inhibited. The azide-sensitive component, like F1 and alpha 3 beta 3 gamma oligomer, was inhibited by anti-beta and anti-alpha antibodies. The azide-insensitive component was stimulated by anti-beta and unaffected by anti-alpha. We show here that (alpha beta)-oligomer has ATPase activity which is azide-insensitive, aurovertin-sensitive, stimulated by anti-beta, and unaffected by anti-alpha. The intrinsic ATPase activity of Type III-beta could be due to contaminating (alpha beta)-oligomer plus alpha 3 beta 3 gamma-oligomer. Isolated beta had very low affinity for nucleotide as compared to the first catalytic site on F1. Taken together with the very low ATPase activity of isolated beta (even if real), the work shows that isolated beta is not a good experimental model of F1 catalysis.  相似文献   

19.
Beef heart mitochondrial F1 possesses three pyrophosphate-binding sites, which comprises one high affinity binding site (Kd approximately equal to 1 microM) and two lower affinity sites (Kd approximately equal to 20 microM). High affinity pyrophosphate binding required the presence of Mg2+ in the incubation medium. Pyrophosphate competed with ADP, but not with Pi for binding to mitochondrial F1. Upon binding of 3 mol of pyrophosphate/mol of F1, one of the three tightly bound nucleotides present in native F1 was released. Like ADP and in contrast to Pi, pyrophosphate enhanced the fluorescence intensity of F1-bound aurovertin, and it prevented the photolabeling of F1 by 2-azido-ADP. As aurovertin and 2-azido-ADP are ligands of the beta subunit of F1, it is likely that pyrophosphate binds preferentially to the beta subunit. Whereas the binding affinity of F1 for Pi was increased by concentrations of pyrophosphate lower than 100 microM, it was decreased by a higher concentration of pyrophosphate. This biphasic effect of pyrophosphate on Pi binding was not observed with ADP, which, at all concentrations tested, inhibited Pi binding. Except for the effect of pyrophosphate on Pi binding to F1, for all the other effects, pyrophosphate mimicked ADP. It is suggested that pyrophosphate and ADP share the same binding site on F1 and that pyrophosphate interacts with the same amino acid residues as those interacting with the alpha and beta phosphate groups of ADP.  相似文献   

20.
1. Isolated F1 contains 14.9% N, indicating the presence of at least 8% non-protein material. The Lowry method, standardized with bovine serum albumin, correctly measures the protein content. 2. An extinction coefficient of 28.5 mM-1.cm-1 at 367.5 nm was found for aurovertin D in ethanol. 3. The fluorescence enhancement of aurovertin bound to F1 at pH 7.5 was found to be more than 100-fold. 4. Binding parameters calculated from the fluorescence enhancement with fixed F1 and variable aurovertin concentrations, and vice versa, indicate two binding sites per F1 molecule. 5. The fluorescence data are not readily interpreted on the basis of successive binding of aurovertin by 3-component binding reactions of the form E + A in equilibrium EA, but fit closely a model of two non-interacting sites binding aurovertin in a 4-component reaction, EF + A in equilibrium EA + F, with an equilibrium constant of about 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号