首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. Variation in response was measured for live identical steady-state porometers manufactured and calibrated by Li-Cor, Lincoln, NE, U.S.A. Mean values for relative humidity, air and leaf temperature, transpiration and leaf conductance were compared in two experiments, one with random measurements among a population of leaves and the other using paired observations on the lateral sides of individual leaves. Comparisons were made using young newly expanded leaves of potato (Solarium tuberosum, cv. Norland) plants grown under controlled environmental conditions in the Biotron at the University of Wisconsin-Madison. Average mean differences among porometers were 5, 11 and 12% for relative humidity, leaf conductance and transpiration, respectively.  相似文献   

2.
A stomatal diffusion porometer is described which measures directlythe diffusion of radioactive krypton through amphistomatousleaves. The porometer is relatively small and portable and iseasily used under field conditions. It consists of a miniaturediffusion chamber above an acrylic plastic reservoir which contains1200 cm3 of air enriched with 85Kr. Geiger tubes in the diffusionchamber and in the reservoir monitor the relative concentrationsof 85Kr. Krypton is allowed to diffuse from the larger reservoirthrough the leaf into the diffusion chamber and the time forits concentration in relation to that in the reservoir to changebetween two fixed values is recorded. When this time lapse wascalibrated against known resistances a linear relationship,independent of temperature was found. Sources of error are analysedand some experiments are described in which the porometer wasused to measure diurnal changes in stomatal resistance. Resistancesof potted sunflower plants (Helianthus annuus L.) grown in agreenhouse were measured with both the krypton diffusion porometerand a condensation-type porometer and the results were usedto calculate both cuticular and stomatal resistances. Demonstrationof field measurements with the porometer include data from eucalyptustrees {Eucalyptus camaldulensis Dehn) and from an unirrigatedcotton crop {Gossypium hirsutum var. SJ 2) growing under semi-aridconditions. Stomatal conductance of the cotton crop during theopening phase was linearly related to solar radiation.  相似文献   

3.
Increases in the deposition of atmospheric nitrogen (N) influence N cycling in forest ecosystems and can result in negative consequences due to the leaching of nitrate into groundwaters. From December 1995 to February 1998, the Pan-European Programme for the Intensive and Continuous Monitoring of Forest Ecosystems measured forest conditions at a plot scale for conifer and broadleaf forests, including the performance of time series of soil solution chemistry. The influence of various ecosystem conditions on soil solution nitrate concentrations at these forest plots (n = 104) was then analyzed with a statistical model. Soil solution nitrate concentrations varied by season, and summer concentrations were approximately 25% higher than winter ones. Soil solution nitrate concentrations increased dramatically with throughfall (and bulk precipitation) N input for both broadleaf and conifer forests. However, at elevated levels of throughfall N input (more than 10 kg N ha–1 y–1), nitrate concentrations were higher in broadleaf than coniferous stands. This tree-specific difference was not observed in response to increased bulk precipitation N input. In coniferous stands, throughfall N input, foliage N concentration, organic layer carbon–nitrogen (C:N) ratio, and nitrate concentrations covaried. Soil solution nitrate concentrations in conifer plots were best explained by a model with throughfall N and organic layer C:N as main factors, where C:N ratio could be replaced by foliage N. The organic layer C:N ratio classes of more than 30, 25–30, and less than 25, as well as the foliage N (mg N g–1) classes of less than 13, 13–17, and more than 17, indicated low, intermediate, and high risks of nitrate leaching, respectively. In broadleaf forests, correlations between N characteristics were less pronounced, and soil solution nitrate concentrations were best explained by throughfall N and soil pH (0–10-cm depth). These results indicate that the responses of soil solution nitrate concentration to changes in N input are more pronounced in broadleaf than in coniferous forests, because in European forests broadleaf species grow on the more fertile soils.  相似文献   

4.
Two diffusion porometers of different design, dynamic and steady-state,were used to measure diffusive conductance of wheat leaves inthe field. The two values of conductance measured for each leafwere compared by two statistical methods which revealed a systematicdifference of between 20 and 30% between the measurements. Randomdeviations from this averaged around 35%. The cause of the systematicdifference is not known, but was considered unlikely to be theresult of rapid stomatal response to abnormal exposure withinthe instruments. It must therefore come from a systematic errorin one or both instruments or be a consequence of the differentprinciples of operation. The random variation was found to bea combination of the random errors inherent in the measurementof relative humidity in both instruments plus a similar contributionfrom the variation in leaf diffusive conductance measured atdifferent points on the leaf.  相似文献   

5.
The design and construction of a handpiece for the simultaneousmeasurement of photosynthetic rate and diffusive conductanceof cereal leaves in almost natural conditions in the field isdescribed. Photosynthetic rate is found from the assimilationof 14CO2 by part of the leaf which is temporarily enclosed ina small hand-held chamber. This chamber also acts as a stirred,steady-state water vapour diffusion porometer, allowing thesimultaneous measurement of relative humidity from which theleaf diffusive conductance is estimated. The instrument alsomeasures the leaf and air temperatures and incident photon fluxdensity. The important criteria of the performance of such ahandpiece are discussed, and the sensors which measure the physicalvariables of humidity, temperature, and photon flux densityare described. An automatic sequencing system built from logiccircuits which displays the measured values of these variablesand times the operations is also described.  相似文献   

6.
基于高分辨率遥感影像的森林地上生物量估算   总被引:4,自引:0,他引:4  
黄金龙  居为民  郑光  康婷婷 《生态学报》2013,33(20):6497-6508
以南京市紫金山林区为研究区,利用e-Cognition面向对象分类方法,基于光谱和空间信息融合后的IKONOS影像提取单木树冠阳性冠幅(PoCA, Positive crown area)信息,并结合野外实测的样方生物量数据,分别建立了针叶林和阔叶林地上生物量 (AGB, Aboveground Biomass)的遥感估算模型,并利用实测森林生物量数据对模型进行了验证。结果表明,基于遥感影像提取的PoCA与实测AGB存在较好的非线性相关关系,所建针叶林AGB估算模型的可靠性优于阔叶林模型。对建模样本而言,估算的针叶林和阔叶林AGB与观测数据比较的R2分别为0.62 (P<0.01,n=9) 和0.56(P<0.01,n=16)。验证表明,所建AGB估算模型的可靠性较好,估算的针叶林和阔叶林AGB与观测数据比较的R2分别为0.55(P<0.01,n=6) 和0.52(P<0.01,n=10),但当AGB较低时,模型结果偏高,AGB较低时,模型结果偏低。研究说明通过高分辨率遥感数据的融合、提取树冠信息进行生物量估算是可行性的。  相似文献   

7.
Abstract The dynamic response of stomata to changes in atmospheric humidity was investigated in Fragaria × ananassa Duch., Picea engelmannii Parry, and Pseudotsuga menziesii (Mirb.) Franco; and the effect of water stress on this response was determined in Pseudotsuga menziesii. The plants were rotated through three regimes of ambient temperature and vapour pressure deficit: 35°C–3. 5kPa, 35°C–0. 5 kPa, and 20°C–1. 5kPa. Branch and leaflet conductance were measured with a steady-state porometer, first at ambient vapour pressure deficit and then at one of four treatment conditions achieved by increasing or decreasing vapour pressure within the porometer cuvette. All three species showed similar stomatal response: enhanced conductance at low vapour pressure deficit and depressed conductance at high vapour pressure deficit. Engelmann spruce was more sensitive than Douglas fir and strawberry. Plant water status significantly altered stomatal response to vapour pressure deficit. The relationship of conductance of xylem water potential was linear under ambient conditions but became curvilinear when conductance was measured above and below ambient vapour pressure deficit. Between ?0. 5 MPa and ?2. 0 MPa xylem water potential, the stomata were sensitive to vapour pressure deficit, but below ? 2. 0 MPa, the sensitivity decreased.  相似文献   

8.
Aim The objectives of this study were to determine the relationships between climatic factors and litterfall in coniferous and broadleaf forests in Eurasia and to explore the difference in litterfall between coniferous and broadleaf forests as related to climate at a continental scale. Location We have used data from across Eurasia. Methods The relationships between litterfall and climatic factors were examined using linear regression analysis of a compilation of published data from coniferous and broadleaf forests in Eurasia. Results The relationships between litterfall and climatic factors show that in the temperate, subtropical, and tropical areas, broadleaf forests had higher litterfall than coniferous ones, whilst the opposite was found for boreal forests. Combining all climatic zones, a multiple regression analysis using annual mean temperature (T) and annual precipitation (P) as independent variables gave an adjusted R2 () of 0.272 for total litterfall in coniferous forests (n = 199, P < 0.001), 0.498 for broadleaf litterfall (n = 240, P < 0.001), and 0.535 for combined coniferous and broadleaf litterfall (n = 439, P < 0.001). The linear models for broadleaf stands have significantly higher coefficients for T and P than those for coniferous ones but the intercepts were similar. Thus, litterfall in broadleaf forests increased faster with T and P than that in coniferous forests. Further, a transformation of temperature and precipitation to relative units showed that a relative‐unit change in T had a larger impact than P on total litterfall in broadleaf forests. The results indicate that at a continental scale, climatic controls over litterfall differ between coniferous and broadleaf forests. Conclusions A relative unit change in annual mean temperature has a greater effect on litterfall compared to the same change in annual precipitation across the Eurasian forests. Further, the higher response to T for broadleaf forests indicates a difference in climate control between coniferous and broadleaf forests at a continental scale, and consequently different litterfall responses to climate change.  相似文献   

9.
Subtropical China has more than 60% of the total plantation area in China and over 70% of these subtropical plantations are composed of pure coniferous species. In view of low ecosystem services and ecological instability of pure coniferous plantations, indigenous broadleaf plantations are being advocated as a prospective silvicultural management for substituting in place of large coniferous plantations in subtropical China. However, little information is known about the effects of tree species conversion on stock and stability of soil organic carbon (SOC). The four adjacent monospecific plantations were selected to examine the effects of tree species on the stock and chemical composition of SOC using elemental analysis and solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. One coniferous plantation was composed of Pinus massoniana (PM), and the three broadleaf plantations were Castanopsis hystrix (CH), Michelia macclurei (MM), and Mytilaria laosensis (ML). We found that SOC stock differed significantly among the four plantations in the upper (0–10 cm) layer, but not in the underneath (10–30 cm) layer. SOC stocks in the upper (0–10 cm) layer were 11, 19, and 18% higher in the CH, MM, and ML plantations than in the PM plantation. The differences in SOC stock among the four plantations were largely attributed to fine root rather than aboveground litterfall input. However, the soils in the broadleaf plantations contained more decomposable C proportion, indicated by lower percentage of alkyl C, higher percentage of O-alkyl C and lower alkyl C/O-alkyl C ratio compared to those in the PM plantation. Our findings highlight that future strategy of tree species selection for substituting in place of large coniferous plantations in subtropical China needs to consider the potential effects of tree species on the chemical composition in addition to the quantity of SOC stock.  相似文献   

10.
A diffusion gradient plate was constructed and evaluated for its potential use in the isolation of degradative microbial consortia from natural habitats. In this model, a steady-state concentration gradient of diclofop methyl, established by diffusion through an agarose gel, provided the carbon for microbial growth. Colonization of the gel surface was observed with epifluorescence and scanning confocal laser microscopy to determine microbial responses to the diclofop gradient. A detectable gradient developed over a narrow band (<10 mm). Consequently, quantitative analyses of the microbial response to the gradient were difficult to obtain. A two-dimensional, finite-element numerical transport model for advective-diffusive transport was used to simulate concentration and flux profiles in the physical model. The simulated profiles were correlated with the measured concentration gradient (R2 = 0.89) and the cell numbers on the gel surface (R2 = 0.85). The numerical model was subsequently used to redesign the physical model. The detectable concentration gradient in the modified physical model extended over the length of the gel (38 mm). The simulated profile again showed a good correlation with the measured profile (R2 = 0.96) and the microbial responses to the concentration gradient (R2 = 0.99). It was concluded that these gradients provide the steady-state environments needed to sustain steady-state consortia. They also provide a physical pathway for the development of degradative biofilms from low to high concentrations of toxicants and simulate conditions under which low concentrations of toxicant are supplied at a constant flux over long periods of time, such as the conditions that could occur in natural environments.  相似文献   

11.
The hypothesis that water relations and growth of phreatophytic Tamarix ramosissima Ledeb. and Populus euphratica Oliv. on dunes of varying height in an extremely arid Chinese desert depend on vertical distance to a permanent water table was tested. Shoot diameter growth of P. euphratica was inversely correlated with groundwater depth (GD) of 7 to 23 m (adj. R2 = 0.69, P = 0.025); growth of T. ramosissima varied independent of GD between 5 and 24 m (P = 0.385). Pre‐dawn (pd) and midday (md) water potentials were lower in T. ramosissima (minimum pd ?1.25 MPa, md ?3.6 MPa at 24 m GD) than in P. euphratica (minimum pd ?0.9 MPa, md ?3.05 MPa at 23 m GD) and did not indicate physiologically significant drought stress for either species. Midday water potentials of P. euphratica closely corresponded to GD throughout the growing season, but those of T. ramosissima did not. In both species, stomatal conductance was significantly correlated with leaf water potential (P. euphratica: adj. R2 = 0.84, P < 0.0001; T. ramosissima: adj. R2 = 0.64, P = 0.011) and with leaf‐specific hydraulic conductance (P. euphratica: adj. R2 = 0.79, P = 0.001; T. ramosissima: adj. R2 = 0.56, P = 0.019); the three variables decreased with increasing GD in P. euphratica. Stomatal conductance of P. euphratica was more strongly reduced (> 50% between ?2 and ?3 MPa) in response to decreasing leaf water potential than that of T. ramosissima (30% between ?2 and ?3 MPa). Tolerance of lower leaf water potentials due to higher concentrations of leaf osmotically active substances partially explains why leaf conductance, and probably leaf carbon gain and growth, of T. ramosissima was less severely affected by GD. Additionally, the complex below‐ground structure of large clonal T. ramosissima shrub systems probably introduces variability into the assumed relationship of xylem path length with GD.  相似文献   

12.
Responses of apple leaf stomata to environmental factors   总被引:5,自引:4,他引:1  
Abstract. Stomatal conductances ( g s) were measured on the leaves of 3–4 year old Golden Delicious trees and of seedlings of two other cultivars. Measurements were made on container grown trees in the field with a diffusion porometer in 1975 and 1976, and in controlled conditions in a leaf chamber in the laboratory in 1976. Stomatal densities in the Golden Delicious leaves were assessed from scanning electron micrographs. Stomatal density on extension shoot leaves was higher than on other leaf types after June.
The response to irradiance shown by both the porometer and the leaf chamber results could be described by a rectangular hyperbola: where g max is maximum conductance and β indicates the sensitivity of gs to photon influx density ( Q p). The values of β were in the range 60–90 μmol m−2 s−1.
There was no evidence that apple stomata are sensitive to temperature per se, but g s was reduced by increasing leaf to air vapour pressure deficits ( D ). There was a linear relationship between g s and D which was not attributable to feed-back to leaf water potential (ψL) as the latter did not affect g s until a threshold of about −2.0 to −2.5 MPa was reached. Conductance generally declined with increasing ambient CO2 concentration.  相似文献   

13.
皖皇埔山大型真菌的组成及生态分布   总被引:3,自引:0,他引:3  
为了解及合理开发大型真菌资源,本文对安徽省皇埔山自然保护区大型真菌的种类组成及生态分布进行了初步调查,并对其资源进行了综合评价.结果表明,该区共有大型真菌87种,隶属4纲6目22科46属,它们广泛分布于阔叶林、混交林、针叶林、竹林、荒地等植被类型中.按经济价值可分为食用菌42种,药用菌31种,毒菌6种;依生态习性可分为土生菌44种,木生菌30种,外生菌根真菌19种,虫生真菌2种.该区大型真菌资源在食用、药用、营林等方面具有很好的开发前景.  相似文献   

14.
Rapid stomatal responses to humidity   总被引:2,自引:0,他引:2  
L. Fanjul  H. G. Jones 《Planta》1982,154(2):135-138
The response of leaf conductance in apple to rapid changes in atmospheric humidity was studied using a continuous flow porometer. Leaf-air vapour pressure difference was changed by adjusting the humidity of the inlet air or by altering the flow rate of the air through the chamber. The time course of the response of leaf conductance to leaf-air vapour pressure difference was monitored for periods up to 10 min using a chart-recorder. There were significant changes in leaf conductance within seconds of changing humidity. These were attributed to alterations in stomatal aperture.Abbreviations E evaporation rate - g leaf conductance - PAR photosynthetically active radiation  相似文献   

15.
It is generally known that instantaneous values of leaf conductance as measured with a dynamic porometer need to be corrected for the temperature difference, ΔT, between the porometer cup and the sampled leaf. Leaf conductances, obtained with a Delta-T AP4 dynamic porometer, with and without correction for ΔT are compared for a bush species (Guiera senegalensis) and two forb species (Jacquemontia tamnifolia and Mitracarpus scaber). With temperature differences predominantly varying within the ±2.5 °C recommended by the manufacturer, it appears that the differences between uncorrected and corrected conductances are very large, up to 100% on average, especially for the two forbs. Furthermore, it is shown that, using the Mitracarpus data, a relatively small error of ±0.5 °C in ΔT can cause a difference of 25–50% in the final conductance value, in particular for the high conductance range. An error of ±0.5 °C may easily occur: the accuracy of ΔT as measured by the thermistors in the porometer is 0.2 °C and the temperature variation within a leaf can be much larger. This result will have implications for upscaling of leaf conductances to canopy values or may explain why upscaled values appear not to correspond with down-scaled values, obtained from eddy correlation measurements and an inverted canopy transpiration model.  相似文献   

16.
The effect of six Siberian tree species on two stages of denitrification—N2O production and consumption—was studied. Broadleaf species (aspen and birch) proved to have lower rates of N2O consumption compared to coniferous species. The factors influencing production and consumption of N2O were also evaluated. The replacement of coniferous forests with broadleaf trees will double the N2O/N2 ratio in the denitrification end-products. Doubled N2O emission from Siberian forest soils to the atmosphere can be expected due to changes in tree species composition of forest ecosystems even without considering changes in water and temperature regimes in soil.  相似文献   

17.
The Measurement of Stomatal Responses to Stimuli in Leaves and Leaf Discs   总被引:4,自引:0,他引:4  
A comparison has been made of stomatal responses in intact leaves,leaf discs supplied with water via their cut edges and leafdiscs floating on water. Xanthium pennsylvanicum leaf discswatered via their cut edges appeared to be more turgid thanintact leaves; this considerably slowed down the rate of stomatalopening but it slightly increased the final steady-state stomatalopening. When the water potential of such leaf discs was loweredby pre-treatment with mannitol solutions rates of stomatal openingincreased whereas maximum steady-state openings decreased. In tobacco leaf discs floating on water the stomata in contactwith water were wider open than those in contact with normalair and they did not respond to treatment with carbon dioxide-freeair. The rate of photosynthesis was severely reduced in tobaccoleaf discs floating with the lower epidermis on water, mostprobably owing to the slow rate of diffusion of carbon dioxidein water. By floating such discs on osmotica the degree of stomatalopening was increased, however, a response to treatment withcarbon dioxide-free air was still not measurable. It is postulatedthat, on account of the relative unavailability of carbon dioxidefrom the water, the carbon dioxide concentration in the substomatalcavities of the lower surface is abnormally low, irrespectiveof whether ordinary air or carbon dioxide-free air is availableto the upper surface. A comparison between porometer readings and measurements ofsiliconerubber impressions of stomatal pores taken from insidethe porometer cup confirmed that the silicone-rubber impressionmethod of assessing stomatal responses to stimuli has severelimitations, especially at small stomatal apertures.  相似文献   

18.
不同CO2浓度下长白山3种树木幼苗的光合特性   总被引:16,自引:9,他引:16  
选取长白山针叶树红松 (Pinuskoraiensis)、长白赤松 (Pinussylvestriformis)和阔叶树水曲柳(Fraxinusmandshurica)幼苗为研究对象 ,以开顶箱的方式控制CO2 浓度为 5 0 0和 70 0 μmol·mol-1,经过 3个生长季CO2 处理后 ,分别测定了 3个树种的 3年生幼苗在高浓度CO2 和大气CO2 浓度下的光合特性 .结果表明 ,前两个生长季高浓度CO2 处理增强了 3个树种幼苗的光合能力 ;不同树种在相同CO2 浓度下 ,最大净光合速率及光响应参数值不同 ;第 3个生长季 ,除 5 0 0 μmol·mol-1CO2 下生长的长白赤松外 ,各树种的幼苗在高浓度CO2 下并未发生“光合驯化”现象 ;最大净光合速率及光响应参数值随CO2 处理时间的延长有不同幅度的增减 ;高浓度CO2 改变了树木幼苗对强光和弱光的利用能力 .  相似文献   

19.
Indigenous broadleaf plantations are increasingly developing as a prospective silvicultural management approach for substituting in place of large pure conifer plantations in subtropical China. However, little information is known about the effects of tree species conversion on soil-atmosphere greenhouse gas (GHG) exchanges. Four adjacent monospecific plantations were selected in subtropical China to examine the effects of tree species on soil-atmosphere exchanges of N2O, CH4 and CO2. One coniferous plantation was composed of Pinus massoniana (PM), and the three broadleaf plantations were Castanopsis hystrix (CH), Michelia macclurei (MM) and Mytilaria laosensis (ML). We found that mean soil N2O and CO2 emissions in the PM plantation were 4.34 μg N m?2?h?1 and 43.25 mg C m?2?h?1, respectively, lower than those in the broadleaf plantations (>5.25 μg N m?2?h?1 and >56.38 mg C m?2?h?1). The PM plantation soil had higher mean CH4 uptake (39.03 μg C m?2?h?1) than the broadleaf plantation soils (<32.67 μg C m?2?h?1). Variations in soil N2O emissions among tree species could be primarily explained by the differences in litter C:N ratio and soil total N stock. Differences in soil CH4 uptake among tree species could be mostly attributed to the differences in mean soil CO2 flux and water filled pore space (WFPS). Litter C:N ratio could largely account for variations in soil CO2 emissions among tree species. This study confirms that there is no GHG benefit of converting PM plantation to broadleaf plantations in subtropical China. Therefore, the future strategy of tree species selection for substituting in place of large coniferous plantations in subtropical China needs to consider the potential effects of tree species on soil-atmosphere GHG exchanges.  相似文献   

20.
A New Porometer Based upon the Electrical Current Produced by Guard Cells   总被引:1,自引:0,他引:1  
Stomatal guard cells extrude protons when the stomata open.This gives rise to an electrical current which is proportionalto the degree of stomatal opening. An instrument has been developedto measure this leaf surface current which is, in effect, anew type of porometer. The performance of the new porometerhas been compared with that of a commercially available diffusionporometer and a close relationship between leaf surface currentand stomatal conductance was observed for all the species investigated.It is concluded that the instrument has several advantages overthe diffusion porometer, in particular, its small size and simplicityof operation, making it especially suitable for use in the field. Key words: Leaves, stomata, electrical currents, porometry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号