首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Aims

The rhizosphere is a dynamic system strongly influenced by root activity. Roots modify the pH of their surrounding soil causing the soil pH to vary as a function of distance from root surface, location along root axes, and root maturity. Non-invasive imaging techniques provide the possibility to capture pH patterns around the roots as they develop.

Methods

We developed a novel fluorescence imaging set up and applied to the root system of two lupin (Lupinus albus L., Lupinus angustifolius L.) and one soft-rush (Juncus effusus L.) species. We grew plants in glass containers filled with soil and equipped with fluorescence sensor foils on the container side walls. We gained highly-resolved data on the spatial distribution of H+ around the roots by taking time-lapse images of the samples over the course of several days.

Results

We showed how the soil pH in the vicinity of roots developed over time to different values from that of the original bulk soil. The soil pH in the immediate vicinity of the root surface varied greatly along the root length, with the most acidic point being at 0.56–3.36 mm behind the root tip. Indications were also found for temporal soil pH changes due to root maturity.

Conclusion

In conclusion, this study shows that this novel optical fluorescence imaging set up is a powerful tool for studying pH developments around roots in situ.  相似文献   

2.
We studied the possibility whether the initiation of secondary roots is regulated by the air-filled porosity in soil, i.e. the availability of oxygen in the soil. Maize plants were grown in long PVC tubes (1 m long and 12 cm diameter) and were unwatered for different numbers of days so that variations of soil water content with depth were achieved on the same date with plants at the same age. The plants were harvested when their root systems were established in the whole soil column and watering had been withheld for 0, 15, 20, 25 days. A decrease of soil water content was significantly correlated with an increase of air-filled porosity in soil. The number of secondary lateral roots from segments of primary adventitious roots increased dramatically when soil water content decreased from field capacity to about 0.05 g water g-1 dried soil. The total dried mass of roots at different soil depths was also positively correlated with soil air-filled porosity. It was observed that the elongation of the initiated secondary roots responded differently to the variations of soil air-filled porosity. The length of secondary roots increased initially when the soil was dried from field capacity to 0.18 g g-1 dried soil (water potential at about−0.2 MPa, air-filled porosity 0.26 cm3 cm-3), but was drastically reduced when the soil was dried further. Obviously elongation of secondary roots was inhibited when soil water potential began to deviate substantially from an optimum value. The present results suggested that the initiation of secondary roots was greatly promoted by the increase of air-filled soil porosity, i.e. availability of oxygen. This conclusion was further verified in a separate experiment where solution-cultured maize seedlings were subjected to different aeration treatments. An obvious increase in secondary root initiation was found in plants which were aerated with normal air (21% O2) than in plants which were either not aerated or aerated with 5% O2 air. ei]Section editor: B E Clothier  相似文献   

3.
Roots naturally exert axial and radial pressures during growth, which alter the structural arrangement of soil at the root–soil interface. However, empirical models suggest soil densification, which can have negative impacts on water and nutrient uptake, occurs at the immediate root surface with decreasing distance from the root. Here, we spatially map structural gradients in the soil surrounding roots using non‐invasive imaging, to ascertain the role of root growth in early stage formation of soil structure. X‐ray computed tomography provided a means not only to visualize a root system in situ and in 3‐D but also to assess the precise root‐induced alterations to soil structure close to, and at selected distances away from the root–soil interface. We spatially quantified the changes in soil structure generated by three common but contrasting plant species (pea, tomato, and wheat) under different soil texture and compaction treatments. Across the three plant types, significant increases in porosity at the immediate root surface were found in both clay loam and loamy sand soils and not soil densification, the currently assumed norm. Densification of the soil was recorded, at some distance away from the root, dependent on soil texture and plant type. There was a significant soil texture × bulk density × plant species interaction for the root convex hull, a measure of the extent to which root systems explore the soil, which suggested pea and wheat grew better in the clay soil when at a high bulk density, compared with tomato, which preferred lower bulk density soils. These results, only revealed by high resolution non‐destructive imagery, show that although the root penetration mechanisms can lead to soil densification (which could have a negative impact on growth), the immediate root–soil interface is actually a zone of high porosity, which is very important for several key rhizosphere processes occurring at this scale including water and nutrient uptake and gaseous diffusion.  相似文献   

4.
A model is presented with which the contribution of longitudinal oxygen diffusion to total oxygen requirement of a root can be estimated. Oxygen transport in and respiration of the soil are taken into account. Given the air-filled root porosity, root diameter, coefficient of oxygen transfer between root and soil, root and soil respiration rate, and the coefficient for oxygen diffusion in the soil, the maximum length a root can attain with an adequate oxygen supply to the root tip can be calculated. Results show the importance of root porosity for root aeration, also in unsaturated soils. For thick roots (radius >0.03 cm), diffusion along the internal pathway can provide 50–75% of the total oxygen requirement even, at modest values of the root porosity.  相似文献   

5.
Previous studies relating root systems and drought tolerance in oil palm focused mainly on biomass. Yet, total root length (TRL), total root surface area (TRS), and root distribution in the soil better determine water uptake. These morphological traits were studied on 3 oil palm genotypes displaying a contrasting drought tolerance. A new concept of potential root water extraction ratio (PRER) was developed using measured half-distances between roots and some assumptions about the distance of water migration from soil to root. PRER was determined in conjunction with soil moisture extraction efficiency (SMEE). The presumed tolerant genotype (T) had higher TRL, TRS and PRER than the susceptible genotype (S), whilst the performance of the control genotype (I) was intermediate. Surprisingly, during a period of moderate water deficit, T had a lower SMEE than S, which was interpreted successfully with PRER, as the result of a better access to a large volume of soil and of a slower drying out of the soil around the roots. PRER appears as a helpful indicator for comparing or ranking genotypes, and for addressing better the complexity of the genetic variability of drought tolerance.  相似文献   

6.
为了了解落羽杉(Taxodium distichum)、乌桕(Sapium sebiferum)和美国山核桃(Carya illinoensis)等树种的耐涝机制, 采用盆栽模拟涝渍环境的试验方法, 设置了淹水、渍水和对照3个处理, 测定了一年生落羽杉、乌桕和美国山核桃实生苗的生长、组织孔隙度、根氧消耗等指标。结果表明, 涝渍处理抑制了落羽杉、乌桕和美国山核桃的生物量和生物量增量(渍水处理下落羽杉的生长得到了促进), 增加了3树种的根冠比, 从生物量和生物量增量下降幅度来评价, 落羽杉的耐涝性最强, 其次为美国山核桃。淹水和渍水处理下, 落羽杉、乌桕和美国山核桃的根、茎和叶中的组织孔隙度显著增加, 且随着处理时间的延长, 各器官的组织孔隙度有增加的趋势, 3个树种中, 落羽杉的根、茎和叶中的组织孔隙度均较其他2个树种高。淹水和渍水处理下, 移除茎明显增加了落羽杉、美国山核桃和乌桕的根的氧消耗, 表明涝渍处理增强了O2在3个树种体内的运输并通过根系扩散到涝渍土壤中的能力, 并且随着处理时间的延长, 3个树种体内运输O2并扩散到土壤中的能力有逐渐增强的趋势。因此, 涝渍环境总体上抑制了落羽杉、乌桕和美国山核桃等树种的生长, 但各树种为了适应这种生长环境, 形成了大量的通气组织, 从而导致各器官组织孔隙度的增加, 增强了O2通过植物体运输到根系并扩散到土壤中的能力, 解决了根系及根际缺氧的矛盾。  相似文献   

7.
陇东旱塬苹果根系分布规律及生理特性对地表覆盖的响应   总被引:1,自引:0,他引:1  
为探明陇东旱塬区不同覆盖物对苹果园土壤理化性状、根系分布及根系生理活性的影响,以14年生苹果树为试材,采用土壤剖面分层取样法,调查根系空间分布,并对根系生物量、根长、表面积等进行分析,测定根系活力、抗氧化酶类、活性氧代谢等相关生理指标,同时测定不同深度土层土壤容重、孔隙度等.结果表明: 覆草可有效增大土壤含水量、孔隙度、有机质含量,增幅分别为2.7%~11.6%、3.2%~27.7%、5.1%~36.0%,但土壤容重降低,为清耕(CK)的88.7%~96.4%.CK根系主要分布在距树干30~120 cm范围内的0~60 cm深土层中;覆草、覆膜处理主要分布在距树干0~150 cm、0~60 cm水平范围内的0~100 cm深土层中,以20~40 cm根系最为密集;覆膜处理细根总量仅为CK的96.4%,根系水平分布范围较CK有所减小,0~60 cm内细根占根系总量的51.6%.不同覆盖处理显著增强0~80 cm土层根系活力及抗氧化酶活性,其中覆草处理根系活力为CK的111.3%~136.7%.综合分析根系生长分布与生理活性、土壤理化性状等,认为覆草处理是陇东旱塬区苹果园较为适宜的地表覆盖方式.  相似文献   

8.
We analysed the abundance, spatial distribution and soil contact of wheat roots in dense, structured subsoil to determine whether incomplete extraction of subsoil water was due to root system limitations. Intact soil cores were collected to 1.6 m below wheat crops at maturity on a red Kandosol in southern Australia. Wheat roots, remnant roots, soil pores and root–soil contact were quantified at fresh breaks in the soil cores. In surface soil layers (<0.6 m) 30–40% of roots were clumped within pores and cracks in the soil, increasing to 85–100% in the subsoil (>0.6 m), where 44% of roots were in pores with at least three other roots. Most pores contained no roots, with occupancy declining from 20% in surface layers to 5% in subsoil. Wheat roots clumped into pores contacted the surrounding soil via numerous root hairs, whereas roots in cracks were appressed to the soil surface and had very few root hairs. Calculations assuming good root–soil contact indicated that root density was sufficient to extract available subsoil water, suggesting that uptake is constrained at the root–soil interface. To increase extraction of subsoil water, genetic targets could include increasing root–soil contact with denser root hairs, and increasing root proliferation to utilize existing soil pores.  相似文献   

9.
The gradient in soil characteristics from the bulk soil to the root surface is important to roots and to the organisms that live in the rhizosphere. Our ability to measure ion concentrations at the root surface is extremely limited, and models are largely untested. We used data from a well studied Norway spruce stand in SW Sweden to compare the measured difference in nutrient concentrations between rhizosphere and bulk soil with the difference predicted by a steady-state simulation model based on ecosystem budgets of nutrient uptake. The simulation model predicted depletion of NH4, Ca, Mg, K in the rhizosphere, which shows that budgeted uptake rates were greater than the mass flow of bulk solution towards the root. In plots treated with ammonium sulphate, the model predicted an accumulation of S in the rhizosphere. In contrast, the observed rhizosphere concentrations were generally enriched in nutrients, relative to bulk soil. Collecting rhizosphere soil adhering to root surfaces may not be an appropriate method for describing the concentration gradient around the root. In addition, the simulation model omits some processes affecting conditions in the rhizosphere that are important to explaining nutrient uptake.  相似文献   

10.
J. Vermeer  M. E. McCully 《Planta》1982,156(1):45-61
Some of the nodal roots of field-grown Zea mays L. bear a persistent soil sheath along their entire length underground except for a glistening white soil-free zone which extends approximately 25 mm behind the root cap. These roots are generally unbranched. The histology of the surface and the rhizosphere of the sheathed roots has been examined by correlated light and electron microscopy. All mature peripheral tissues including root hairs, are largely intact and apparently alive where enclosed by the soil sheath. The sheath is permeated by extracellular mucilage which is histochemically distinct from the mucilage at the epidermal surface, but similar to that produced by the root cap. Isolated cells resembling those sloughed from the sides of the root cap persist in the soil sheath along the length of these roots. Fresh whole mounts of the sheath show that these detached cells may be alive and streaming vigorously even at some distance from the root cap. Rhizosphere mucilage is associated with the isolated cells.To whom correspondence should be addressed  相似文献   

11.
Influence of root density on the critical soil water potential   总被引:1,自引:1,他引:0  
Estimation of root water uptake in crops is important for making many other agricultural predictions. This estimation often involves two assumptions: (1) that a critical soil water potential exists which is constant for a given combination of soil and crop and which does not depend on root length density, and (2) that the local root water uptake at given soil water potential is proportional to root length density. Recent results of both mathematical modeling and computer tomography show that these assumptions may not be valid when the soil water potential is averaged over a volume of soil containing roots. We tested these assumptions for plants with distinctly different root systems. Root water uptake rates and the critical soil water potential values were determined in several adjacent soil layers for horse bean (Vicia faba) and oat (Avena sativa) grown in lysimeters, and for field-grown cotton (Gossypium L.), maize (Zea mays) and alfalfa (Medicago sativa L.) crops. Root water uptake was calculated from the water balance of each layer in lysimeters. Water uptake rate was proportional to root length density at high soil water potentials, for both horse bean and oat plants, but root water uptake did not depend on root density for horse bean at potentials lower than −25 kPa. We observed a linear dependency of a critical soil water potential on the logarithm of root length density for all plants studied. Soil texture modified the critical water potential values, but not the linearity of the relationship. B E Clothier Section editor  相似文献   

12.
Water movement between a root and the soil depends on the hydraulic conductances of the soil, the root, and the intervening root-soil air gap (Lgap) created as roots shrink during soil drying. To measure Lgap, segments of young cylindrical roots of Agave deserti about 3 mm in diameter were placed concentrically or eccentrically within tubes of moistened filter paper at a known water potential. As the width of the air gap between the filter paper and a concentrically located root was made smaller, measured Lgap increased less than did predicted Lgap based on isothermal conditions. For gaps of the size expected in the soil during water loss from roots (e.g., 10% of the root radius), the underprediction was about 70% and was primarily caused by a lowering of the root surface temperature accompanying water evaporation. As a root segment was eccentrically moved toward the filter paper, the measured Lgap increased. For the most eccentric case of touching the filter paper, the measured Lgap was 2.4-fold greater than for the concentric case, compared with an infinite Lgap predicted if the water potential were constant around the root surface. When a root touched soil with a water potential of -1.0MPa, Lgap estimated using a graphical method increased about 2.3-fold and the overall conductance of the root-soil system increased by 31% compared with the concentric case. For markedly eccentric locations of roots in air gaps, Lgap, which can be the principal conductance initially limiting water loss from roots to a drying soil, can be about 60% of the value predicted for the concentric isothermal case.  相似文献   

13.
Summary Total porosity and pore-size distribution (p.s.d.) were determined in soil aggregates taken in plots planted with maize and treated with farmyard manure and three rates of compost. Soil aggregates were collected from the soil adherent to the maize roots (root soil aggregates) and from bulk soil (bulk soil aggregates). Mercury intrusion porosimetry was used to evaluate the total porosity and the p.s.d. Treatments did not affect the total porosity of the bulk soil aggregates. The same was observed for the root soil aggregates. However the total porosity of the root soil aggregates was always lower than that of the bulk soil aggregates. The loss of total porosity was found to be due to a decrease in the percentage of larger pores with respect to the total.  相似文献   

14.
Salt distribution around roots of wheat under different transpiration rates   总被引:2,自引:0,他引:2  
Summary Magnitude of Na and Cl accumulation around wheat roots was studied under different transpiration conditions in a loamy sand soil salinized with sodium chloride to an electrical conductivity of 4.1 mmho/cm in the saturation extract. A significant correlation was observed between rate of water loss per unit root length and Na and Cl content of the soil closely adhering to the roots. Under high transpiration condition, maximum ion accumulation occurred in the apparent free space of roots followed by the soil closely adhering to the roots. Results indicate that salt concentration at the root surface is markedly altered under the influence of transpiration rate such that under high transpiration conditions, the plant roots may be exposed to a much higher salt concentration than that anticipated from an analysis of the bulk soil samples.Department of Soil and Water EngineeringDepartment of Soils  相似文献   

15.
Summary The influence of different depths of submergence (6±1 and 3±1 cm) and moisture tensions (0, 20, 60, 350, 500 and 1000 millibar) of lateritic sandy loam soil on root porosity and growth parameters of rice, variety IR8 was studied at two different growth phases under controlled greenhouse conditions. Best rice growth occurred at 3±1 cm submergence and it significantly reduced with the increase of soil moisture tension. Unlike other growth parameters, root length increased as the soil moisture tension was raised. The development of pore spaces in rice roots decreased significantly with the increase in soil moisture tension. However, higher root porosity was observed under greater depths of submergence. Irrespective of soil water condition, the number and dry weight of the root system showed significant positive correlation with root porosity. Oxygen diffusion rate in soil, which increased with the increasing moisture tension, was significantly and inversely related with the porosity of rice root. Contribution from the Agricultural Engineering Department, Indian Institute of Technology, Kharagpur, West Bengal, India.  相似文献   

16.
Root effects on soil water and hydraulic properties   总被引:1,自引:0,他引:1  
Plants can affect soil moisture and the soil hydraulic properties both directly by root water uptake and indirectly by modifying the soil structure. Furthermore, water in plant roots is mostly neglected when studying soil hydraulic properties. In this contribution, we analyze effects of the moisture content inside roots as compared to bulk soil moisture contents and speculate on implications of non-capillary-bound root water for determination of soil moisture and calibration of soil hydraulic properties. In a field crop of maize (Zea mays) of 75 cm row spacing, we sampled the total soil volumes of 0.7 m × 0.4 m and 0.3 m deep plots at the time of tasseling. For each of the 84 soil cubes of 10 cm edge length, root mass and length as well as moisture content and soil bulk density were determined. Roots were separated in 3 size classes for which a mean root porosity of 0.82 was obtained from the relation between root dry mass density and root bulk density using pycnometers. The spatially distributed fractions of root water contents were compared with those of the water in capillary pores of the soil matrix. Water inside roots was mostly below 2–5% of total soil water content; however, locally near the plant rows it was up to 20%. The results suggest that soil moisture in roots should be separately considered. Upon drying, the relation between the soil and root water may change towards water remaining in roots. Relations depend especially on soil water retention properties, growth stages, and root distributions. Gravimetric soil water content measurement could be misleading and TDR probes providing an integrated signal are difficult to interpret. Root effects should be more intensively studied for improved field soil water balance calculations. Presented at the International Conference on Bioclimatology and Natural Hazards, Pol’ana nad Detvou, Slovakia, 17–20 September 2007.  相似文献   

17.
? Despite the importance of rhizosphere properties for water flow from soil to roots, there is limited quantitative information on the distribution of water in the rhizosphere of plants. ? Here, we used neutron tomography to quantify and visualize the water content in the rhizosphere of the plant species chickpea (Cicer arietinum), white lupin (Lupinus albus), and maize (Zea mays) 12 d after planting. ? We clearly observed increasing soil water contents (θ) towards the root surface for all three plant species, as opposed to the usual assumption of decreasing water content. This was true for tap roots and lateral roots of both upper and lower parts of the root system. Furthermore, water gradients around the lower part of the roots were smaller and extended further into bulk soil compared with the upper part, where the gradients in water content were steeper. ? Incorporating the hydraulic conductivity and water retention parameters of the rhizosphere into our model, we could simulate the gradual changes of θ towards the root surface, in agreement with the observations. The modelling result suggests that roots in their rhizosphere may modify the hydraulic properties of soil in a way that improves uptake under dry conditions.  相似文献   

18.
Because fine roots tend to be concentrated at the soil surface, exposure to dry surface soil can have a large influence on patterns of root growth, death and respiration. We studied the effects of arbuscular mycorrhizas (AM) formation on specific root length (SRL), respiration and mortality of fine roots of bearing red grapefruit (Citrus paradisi Macf.) trees on Volkamer lemon (C. volkameriana Tan. & Pasq.) rootstock exposed to drying soil. For each tree, the fine roots were removed from two woody lateral roots, the roots were surface sterilized and then each woody root was placed in a separate pair of vertically divided and independently irrigated soil compartments. The two split-pot systems were filled with sterilized soil and one was inoculated with arbuscular mycorrhizal fungi (Glomus etunicatum/G. intraradices). New fine lateral roots that emerged from the woody laterals were permitted to grow inside the pots over a 10-month period. Irrigation was then removed from the top compartment for a 15-week period. At the end of the study, roots inoculated with AM fungi exhibited about 20% incidence of AM formation, whereas the uninoculated roots were completely void of AM fungi. Arbuscular mycorrhizal roots exhibited lower SRL, lower root/soil respiration and about 10% lower fine root mortality than nonmycorrhizal roots after 15 weeks of exposure to dry surface soil. This study demonstrates the feasibility of examining mycorrhizal effects on the fine roots of adult trees in the field using simple inexpensive methods.  相似文献   

19.
Root caps provide a protective layer in front of the meristemthat protects the meristem from abrasion by soil particles.The continuous production and sloughing of the root cap cellsmay be an adaptation to decrease the friction at the soil-rootinterface by acting as a low-friction lining to the channelformed by the root. Experiments were performed which providethe first direct evidence that such cell sloughing decreasesfrictional resistance to root penetration. The penetration resistance (force per unit crosssectional area)to maize roots, which were pushed mechanically into the soil,was compared with the penetration resistance to growing rootsand to 1 mm diameter metal probes (cone semi-angles of 7.5or 30). The pushed roots experienced only about 40% of thepenetration resistance experienced by the 7.5 metal probe thatwas pushed into the soil at the same rate. Thus, the frictionbetween the soil and the pushed root was much smaller than betweenthe soil and the metal probe. The penetration resistance tothe growing root was between 50% and 100% of that to the pushedroot, indicating that the relief of friction and slower rateof soil compression were more efficient around the growing root.SEM examination of the surface of roots pushed or grown intothe soil showed that numerous root cap cells had detached fromthe cap and slid for several millimetres relative to the root.The low friction properties of roots may be due largely to thelow coefficient of friction between sloughing root cap cells,and may be decreased further by intracellular mucilage secretions. Key words: Zea mays, root cap, frictional resistance, root penetration, cell sloughing  相似文献   

20.
隔沟交替灌溉条件下玉米根系形态性状及结构分布   总被引:9,自引:0,他引:9  
为揭示根系对土壤环境的适应机制,研究了隔沟交替灌溉条件下玉米根系形态性状及结构分布。以垄位和坡位的玉米根系为研究对象,利用Minirhizotrons法研究了根系(活/死根)的长度、直径、体积、表面积、根尖数和径级变化及其与土壤水分、土温和水分利用效率(WUE)的相关关系。结果表明,对于活根,在坡位非灌水区域复水后根系平均直径减小,而根系日均生长速率、单位面积土壤根系体积密度、根尖数和表面积均增大,并随灌水区域土壤水分的消退逐渐减小;对于死根,在坡位非灌水区域复水后根系日均死亡速率、根系体积密度、根尖数和表面积变化均减小,其中根系死亡速率和死根直径随土壤水分的消退逐渐降低,而死根体积密度、根尖数和表面积分布随土壤水分降低呈增大趋势;在垄位,根系形态分布趋势与坡位一致,除根系直径与与坡位比较接近外,其他根系形态值均小于坡位。将根系分成4个径级区间分析根系的形态特征,结果表明在根系长度和体积密度分布中以2.5-4.5 mm径级的根系所占比例最大,在根尖数和根系表面积分布中以0.0-2.5 mm径级的根系为主。通过显著性相关分析,死根直径、体积密度、活根表面积等根系形态与土壤含水率、土壤温度和WUE间均存在显著或极显著的正相关关系,部分根系形态指标(如根系的生长速率、活根体积密度)只与坡位土壤含水量、土壤温度具有明显的相关性,表明隔沟交替灌溉对坡位根系形态的调控作用比垄位显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号