首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined limit values for decomposition and lignocellulose index (LCI, the ratio of acid-soluble holocellulose to acid-soluble holocellulose plus acid-insoluble lignin and lignin-like substances) in leaf litter decomposition of 14 tree species over 3 years. The study was carried out on upper (moder) and lower parts (mull) of a forest slope that showed different humus accumulation forms in a cool temperate forest in Japan. Limit values for accumulated mass loss of litter ranged from 46.8% to 94.1% and were not different between the sites. Limit values were positively correlated to initial LCI and lignin content. Final values of LCI of 14 litter types at the end of the study period showed a convergent trend among litter types at 0.25–0.26 as compared to their initial values (0.41 mean). The final LCI was not different between the sites. A review of limit values and initial and final values of LCI in leaf litter of temperate and boreal forests indicated that the limit values and final LCI in litter types in Japan were lower than those in Europe and North America, which can be primarily ascribed to lower initial LCI in Japan.  相似文献   

2.
亚热带不同树种凋落叶分解对氮添加的响应   总被引:1,自引:0,他引:1       下载免费PDF全文
为探究不同质量凋落物对氮(N)沉降的响应, 该研究采用尼龙网袋分解法, 在亚热带福建三明格氏栲(Castanopsis kawakamii)自然保护区的米槠(Castanopsis carlesii)天然林, 选取4种本区常见的具有不同初始化学性质的树种凋落叶进行模拟N沉降(N添加)分解实验(施N水平为对照0和50 kg·hm -2·a -1)。研究结果表明: 在2年的分解期内, 对照处理的各树种凋落叶的分解速率依次为观光木(Michelia odora, 0.557 a -1)、米槠(0.440 a -1)、台湾相思(Acacia confusa, 0.357 a -1)、杉木(Cunninghamia lanceolata, 0.354 a -1); N添加处理凋落叶分解速率依次为观光木(0.447 a -1)、米槠(0.354 a -1)、杉木(0.291 a -1)、台湾相思(0.230 a -1), 除杉木凋落叶外, N添加显著降低了其他3种凋落叶分解速率。N添加不仅使4种树木凋落叶分解过程中的N释放减慢, 同时还抑制凋落叶化学组成中木质素和纤维素的降解; N添加在凋落叶分解过程中总体上提高β-葡萄糖苷酶(βG)和酸性磷酸酶活性, 对纤维素水解酶的活性影响不一致, 而降低β-N-乙酰氨基葡萄糖苷酶活性和酚氧化酶活性。凋落叶分解速率与凋落叶中的碳获取酶(βG)活性以及其化学组分中的可萃取物含量极显著正相关, 与初始碳浓度、纤维素和木质素含量极显著负相关, 与初始N含量没有显著相关性。凋落物类型和N添加的交互作用虽未影响干质量损失速率, 但对木质素和纤维素的降解具有显著效应。综上所述, 化学组分比初始N含量能更好地预测凋落叶分解速率, 而N添加主要通过抑制分解木质素的氧化酶(如PHO)来降低凋落叶分解速率。  相似文献   

3.
Immobilization and mobilization of nitrogen and phosphorus were investigated in relation to the nitrogen (L/N) ratio and lignin to the phosphorus (L/P) ratio as indicators of the nitrogen and phosphorus dynamics. The present study was carried out on upper and lower parts of a forest slope in a cool temperate forest in Japan. Net immobilization and net mobilization characterized the dynamics of nitrogen and phosphorus in 14 litter types and were related to the changes in the L/N and L/P ratio. The critical values of the L/N and L/P ratio at which the mobilization began were 23–25 and 500–620, respectively. In litter types with the L/N and L/P ratio higher than critical values, nitrogen and phosphorus were immobilized until the ratios reached at the critical values and then nitrogen and phosphorus began decreasing. In litter types with initial L/N and L/P ratios lower than or equal to the critical values, nitrogen and phosphorus were released from litter. The critical values of the L/N and L/P ratios showed convergent trends among litter types as compared to their initial values, and were approached to those of underlying humus layers. These results indicated the usefulness of L/N and L/P ratios as indicators of the nitrogen and phosphorus dynamics in the study site. The general validity of the L/N ratio as an indicator of nitrogen dynamics and the convergent trend of critical L/N ratio at 25–30 were demonstrated by a review of literature on lignin and nitrogen dynamics in 47 litter types in temperate and boreal forests.  相似文献   

4.
Decomposition processes of beech leaf litter were studied over a 3-year period in a cool temperate deciduous forest in Japan. Organic chemical and nutrient dynamics, fungal biomass and succession were followed on upper (Moder) and lower (Mull) of a forest slope. Litter decomposition rates were similar between the sites. Nutrient dynamics of the decomposing litter was categorized into two types: weight changes in nitrogen and phosphorus showed two phases, the immobilization (0–21 months) and the mobilization phase (21–35 months), while those in potassium, calcium and magnesium showed only the mobilization phase. The rate of loss of organic chemical constituents was lignin < holocellulose < soluble carbohydrate < polyphenol in order. The changes in lignocellulose index (LCI), the ratio of holocellulose in lignin and holocellulose, were significantly correlated to the changes in nitrogen and phosphorus concentrations during the decomposition. During the immobilization phase, increase in total fungal biomass contributed to the immobilization of nitrogen and phosphorus. The percentage of clamp-bearing fungal biomass (biomass of the Basidiomycota) to total fungal biomass increased as the decomposition proceeded and was significantly correlated to LCI. Two species in the xylariaceous Ascomycota were dominantly isolated by the surface sterilization method from decomposing litter collected in the 11th month. The organic chemical, nitrogen and phosphorus dynamics during the decomposition were suggested to be related to the ingrowth, substrate utilization and succession of the Xylariaceae and the Basidiomycota. Twenty-one species in the other Ascomycota and the Zygomycota isolated by the washing method were classified into three groups based on their occurrence patterns: primary saprophytes, litter inhabitants and secondary sugar fungi. These species showed different responses to LCI and soluble carbohydrate concentration of the litter between the groups.  相似文献   

5.
We assessed 62 fungal strains in 31 species of wood decay fungi in the ability to decompose wood blocks of Japanese beech (Fagus crenata) under a pure culture condition. Fungi were collected in a cool temperate beech forest in Japan and isolated from the inside of beech logs and from sporocarps fruiting on logs and snags of beech that were different in diameter and decay class. Fungi in Holobasidiomycetidae showed marked decomposition of lignin and carbohydrate. These fungi were divided into three groups according to the pattern of lignin and carbohydrate utilization. Phanerochaete filamentosa decomposed lignin selectively. Lampteromyces japonicus, Steccherinum rhois, Trichaptum biforme, Stereum ostrea, Mycena haematopoda, Antrodiella albocinnamomea, Daedalea dickinsii, Daedaleopsis tricolor, Ganoderma tsunodae, and Trametes versicolor decomposed lignin and carbohydrates simultaneously. Psathyrella candolleana, Lenzites betulinus, and Trametes hirsuta decomposed carbohydrates selectively. Species in the Phragmobasidiomycetidae and in the Ascomycota caused low mass loss of wood.  相似文献   

6.
Litter nutrient dynamics contribute significantly to biogeochemical cycling in forest ecosystems. We examined how site environment and initial substrate quality influence decomposition and nitrogen (N) dynamics of multiple litter types. A 2.5-year decomposition study was installed in the Oregon Coast Range and West Cascades using 15N-labeled litter from Acer macrophyllum, Picea sitchensis, and Pseudotsuga menziesii. Mass loss for leaf litter was similar between the two sites, while root and twig litter exhibited greater mass loss in the Coast Range. Mass loss was greatest from leaves and roots, and species differences in mass loss were more prominent in the Coast Range. All litter types and species mineralized N early in the decomposition process; only A. macrophyllum leaves exhibited a net N immobilization phase. There were no site differences with respect to litter N dynamics despite differences in site N availability, and litter N mineralization patterns were species-specific. For multiple litter × species combinations, the difference between gross and net N mineralization was significant, and gross mineralization was 7–20 % greater than net mineralization. The mineralization results suggest that initial litter chemistry may be an important driver of litter N dynamics. Our study demonstrates that greater amounts of N are cycling through these systems than may be quantified by only measuring net mineralization and challenges current leaf-based biogeochemical theory regarding patterns of N immobilization and mineralization.  相似文献   

7.
Xiaoniu Xu  Eiji Hirata 《Plant and Soil》2005,273(1-2):279-289
Litter decomposition, governing nutrient and C cycling, is strongly influenced by the chemical litter quality. In order to determine the interspecific variation in leaf decomposition rates and to understand the chemical basis for such variation, decomposition dynamics of seven common canopy species was investigated over 2year using the litterbag technique in a subtropical evergreen broad-leaved forest on Okinawa Island, Japan. The species studied are representatives of the vegetation in the study area and differed significantly in their chemical litter quality. Dry mass loss at the end of study varied in the order: Distylium racemosum< Quercus miyagii< Rapanea neriifolia< Symplocos confusa< Castanopsis sieboldii< Schima wallichii< Daphniphyllum glaucescens. All species showed a pattern characterized by a rapid initial decomposition followed by lower rates except for D. glaucescenswhich decomposition rate appeared to be rather constant. In the late phase, decomposition rates were correlated positively to initial N and ash contents and negatively to lignin content, lignin:N, C:N, and C:P ratios. The effects of N and lignin content or lignin:N ratio were stronger than other quality parameters. There was a wide range in patterns of N and P concentrations, from a net accumulation to a rapid loss in decomposition. The correlation between N and P release suggests that N and P dynamics may have influenced each other during litter decomposition. Analysis of initial quality for species showed that the C:P ratios were extremely high (range 1639–3811) but the N:P ratios were from 28 to 56, indicating a likely P-limitation for this forest. Our results suggest that P is an important control of litter decomposition and N and P dynamics.  相似文献   

8.
温带森林不同树种具有不同的非结构性碳水化合物(NSC)存储和利用策略, 树干是成年树木NSC主体储存库。但树干NSC径向变异和种间差异仍不清楚, 无孔材(裸子植物)、散孔材和环孔材(被子植物)所代表的木材孔性功能群对树干NSC浓度的影响尚缺乏定论。为探索温带森林主要树种树干NSC浓度随树木木材孔性和组织的变化特征, 该研究在黑龙江省穆棱市的东北典型阔叶红松(Pinus koraiensis)林中选择32个树种, 采集胸高位置树皮、边材和心材3种组织, 分析NSC浓度随木材孔性和组织的变化特征。结果表明: (1)树种、组织和木材孔性均显著影响树干的NSC浓度。3种组织可溶性糖、淀粉、总NSC浓度和糖/淀粉的种间变异较大, 变异系数最低为37% (树皮总NSC浓度), 最高达到101% (心材淀粉浓度), 树干组织、树种及其交互作用均显著影响NSC浓度。(2)总体上可溶性糖、淀粉和总NSC浓度均随径向深度增加而降低。无孔材树皮的可溶性糖浓度和糖/淀粉显著高于散孔材和环孔材, 而边材中的淀粉和总NSC浓度为环孔材>散孔材>无孔材。(3)无孔材可溶性糖、淀粉和总NSC浓度边材和心材比均在1左右, 显著低于散孔材和环孔材, 而且无孔材边材和心材之间淀粉浓度相关较紧密, 表明被子植物的边材、心材功能分化较裸子植物更为明显。研究结果表明木材孔性影响了温带树种树干NSC存储策略, 研究整树NSC以及树木生理生态学功能需要区分树干组织。  相似文献   

9.
Fine root mass in relation to soil N supply in a cool temperate forest   总被引:1,自引:0,他引:1  
Soil inorganic nitrogen supply and fine root mass in the top layers of mineral soil (0–5 and 5–10cm) were investigated at upper and lower sites of a cool temperate forest where Fagus crenata and Quercus crispula dominate. At both sites, soil inorganic nitrogen supply was greatest in the 0–5cm layer. The predominant forms of soil inorganic nitrogen supply were NH4+-N at the upper site and NO3-N at the lower site. Fine roots were concentrated in the 0–5cm layer at the upper site, but not at the lower site. The form of supplied soil inorganic nitrogen supply can be important in determining the vertical distribution of fine roots.  相似文献   

10.
Decomposition of branch litter of four angiosperm and one conifer species was studied over a two-year period. Litter species and the corresponding forest type are: (i) Shorea robusta, sal forest at 329 m; (ii) Lyonia ovalifolia, mixed-pine broadleaf forest at 1 350 m; (iii) Pinus roxburghii, pine forest at 1 750 m; (iv) Quercus leucotrichophora, mixed oak-pine forest at 1 850 m; and (v) Quercus lanuginosa, mixed oak forest at 2 150 m. The weight loss ranged from 44–89%. Litter moisture and air temperature had significant positive effect on decomposition. The decomposition rate decreased with an increase in altitude and was inversely related with lignin content. Linear combinations of lignin content with rainfall and with temperature indicated significant interactive influence on decomposition.Authorities for plant names are given in Table 1.We gratefully acknowledge financial support from the Department of Science and Technology, Government of India.  相似文献   

11.
In trees, leaf life span is closely related to successional status. Although leaves are attached to shoots, shoot life span has been insufficiently studied in the context of ecological systems. Interspecific variation in shoot survivorship was investigated over 27 months in 15 temperate hardwood tree species. Relationships between shoot architecture and shoot survival were also investigated. Shoot life span was shortest in early successional species, and longest in late successional species, in each of the families Betulaceae and Fagaceae. In Salicaceae, all of which were early successional species, shoot life span was longer in mountainous than in riparian species. Early successional or riparian species distributed longer shoots densely, even in proximal positions on mother shoots, resulting in mutual shading and consequent early and massive shoot shedding. By contrast, late successional or mountainous species concentrated shoots in distal positions, allowing shoots to receive equally favorable light, resulting in a longer life span. These results reveal close relationships between shoot life span and environmental resource availability or successional status and suggest a causal relationship between shoot shedding and shoot architecture.  相似文献   

12.
Fungi play a crucial role in dead wood decay, being the major decomposers of wood and affecting microbiota associated with dead wood. We sampled dead wood from five deciduous tree species over more than forty years of decay in a natural European floodplain forest with high tree species diversity. While the assembly of dead wood fungal communities shows a high level of stochasticity, it also indicates clear successional patterns, with fungal taxa either specific for early or late stages of wood decay. No clear patterns of fungal biomass content over time were observed. Out of 220 major fungal operational taxonomic units, less than 8% were associated with a single tree species, most of them with Quercus robur. Tree species and wood chemistry, particularly pH, were the most important drivers of fungal community composition. This study highlights the importance of dead wood and tree species diversity for preserving the biodiversity of fungi.  相似文献   

13.
Plant species effects on soil nutrient availability are relatively well documented, but the effects of species differences in litter chemistry on soil carbon cycling are less well understood, especially in the species-rich tropics. In many wet tropical forest ecosystems, leaching of dissolved organic matter (DOM) from the litter layer accounts for a significant proportion of litter mass loss during decomposition. Here we investigated how tree species differences in soluble dissolved organic C (DOC) and nutrients affected soil CO2 fluxes in laboratory incubations. We leached DOM from freshly fallen litter of six canopy tree species collected from a tropical rain forest in Costa Rica and measured C-mineralization. We found significant differences in litter solubility and nutrient availability. Following DOM additions to soil, rates of heterotrophic respiration varied by as much as an order of magnitude between species, and overall differences in total soil CO2 efflux varied by more than four-fold. Variation in the carbon: phosphorus ratio accounted for 51% of the variation in total CO2 flux between species. These results suggest that tropical tree species composition may influence soil C storage and mineralization via inter-specific variation in plant litter chemistry.  相似文献   

14.
We developed an individual-based stochastic-empirical model to simulate the carbon dynamics of live and dead trees in a Central Amazon forest near Manaus, Brazil. The model is based on analyses of extensive field studies carried out on permanent forest inventory plots, and syntheses of published studies. New analyses included: (1) growth suppression of small trees, (2) maximum size (trunk base diameter) for 220 tree species, (3) the relationship between growth rate and wood density, and (4) the growth response of surviving trees to catastrophic mortality (from logging). The model simulates a forest inventory plot, and tracks recruitment, growth, and mortality of live trees, decomposition of dead trees (coarse litter), and how these processes vary with changing environmental conditions. Model predictions were tested against aggregated field data, and also compared with independent measurements including maximum tree age and coarse litter standing stocks. Spatial analyses demonstrated that a plot size of ~10 ha was required to accurately measure wood (live and dead) carbon balance. With the model accurately predicting relevant pools and fluxes, a number of model experiments were performed to predict forest carbon balance response to perturbations including: (1) increased productivity due to CO2 fertilization, (2) a single semi-catastrophic (10%) mortality event, (3) increased recruitment and mortality (turnover) rates, and (4) the combined effects of increased turnover, increased tree growth rates, and decreased mean wood density of new recruits. Results demonstrated that carbon accumulation over the past few decades observed on tropical forest inventory plots (~0.5 Mg C ha–1 year–1) is not likely caused by CO2 fertilization. A maximum 25% increase in woody tissue productivity with a doubling of atmospheric CO2 only resulted in an accumulation rate of 0.05 Mg C ha–1 year–1 for the period 1980–2020 for a Central Amazon forest, or an order of magnitude less than observed on the inventory plots. In contrast, model parameterization based on extensive data from a logging experiment demonstrated a rapid increase in tree growth following disturbance, which could be misinterpreted as carbon sequestration if changes in coarse litter stocks were not considered. Combined results demonstrated that predictions of changes in forest carbon balance during the twenty-first century are highly dependent on assumptions of tree response to various perturbations, and underscores the importance of a close coupling of model and field investigations.  相似文献   

15.
《植物生态学报》2018,42(9):955
细根分解是森林生态系统土壤碳和养分的主要输入途径, 但目前人们对于影响细根分解的主要因素和细根分解模式的了解仍然很少。该研究采用根序划分等级方法, 将红松(Pinus koraiensis)落叶松(Larix gmelinii)水曲柳(Fraxinus mandschurica)和白桦(Betula platyphylla)细根组分前四级根划分为两个等级: 一级和二级根混合为低级根, 三级和四级根混合为高级根。利用埋袋法对东北地区4个树种不同根序细根进行连续4年的分解实验, 并对其分解速率以及影响因素进行研究。结果显示, 红松低级根和高级根分解系数分别为0.342和0.461, 落叶松依次分别为0.304和0.436, 水曲柳分别为0.450和0.555, 白桦为0.441和0.579。4个树种均显示低级根分解速率较慢, 而高级根分解速率较快。实验表明, 根系分解系数与酸不溶性物质(AUF)和非结构性碳水化合物(TNC)均具有显著相关性。出现上述结果的主要原因是低级根含有较多的AUF, 很难被分解, 以及含有较少的TNC, 为分解者提供能量较少。  相似文献   

16.
The degradability and chemical characteristics of water-extractable dissolved organic carbon (DOC) and nitrogen (DON) from the humus layer of silver birch (Betula pendula Roth), Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.) stands were compared in short-term incubation of soil solutions. For all extracts the degradation of DOC and DON was low (12-17% loss) and increased in the order: birch, spruce and pine. In the humus layer under pine a relatively larger pool of rapidly degrading dissolved soil organic matter (DOM) was indicated by the [3H]thymidine incorporation technique, which measures the availability of DOM to bacteria. The degradation of DOC was explained by a decrease in the hydrophilic fraction. For DON, however, both the hydrophilic and hydrophobic fractions tended to decrease during incubation. No major differences in concentrations of hydrophilic and hydrophobic fractions were detected between tree species. Molecular size distribution of DOC and DON, however, revealed slight initial differences between birch and conifers as well as a change in birch extract during incubation. The depletion of very rapidly degrading fractions (e.g., root exudates and compounds from the litter) may explain the low degradability of DOM in the humus layer under birch.  相似文献   

17.
细根分解是森林生态系统土壤碳和养分的主要输入途径, 但目前人们对于影响细根分解的主要因素和细根分解模式的了解仍然很少。该研究采用根序划分等级方法, 将红松(Pinus koraiensis)落叶松(Larix gmelinii)水曲柳(Fraxinus mandschurica)和白桦(Betula platyphylla)细根组分前四级根划分为两个等级: 一级和二级根混合为低级根, 三级和四级根混合为高级根。利用埋袋法对东北地区4个树种不同根序细根进行连续4年的分解实验, 并对其分解速率以及影响因素进行研究。结果显示, 红松低级根和高级根分解系数分别为0.342和0.461, 落叶松依次分别为0.304和0.436, 水曲柳分别为0.450和0.555, 白桦为0.441和0.579。4个树种均显示低级根分解速率较慢, 而高级根分解速率较快。实验表明, 根系分解系数与酸不溶性物质(AUF)和非结构性碳水化合物(TNC)均具有显著相关性。出现上述结果的主要原因是低级根含有较多的AUF, 很难被分解, 以及含有较少的TNC, 为分解者提供能量较少。  相似文献   

18.
Question: How do broadleaf tree species affect humus characteristics, herb layer composition and species diversity through their leaf litter quality and canopy structure? Location: Mixed broadleaf forests in Brandenburg, NE Germany. Methods: We studied the herb and tree layer composition in 129 undisturbed stands using a 10‐degree cover‐abundance and percentage scale, respectively. The main floristic gradients were extracted by non‐metric multidimensional scaling. Effects of tree species on the herb layer were analysed with partial Spearman rank correlation. We assessed affinities for specific tree species using indicator species analysis. Results: Both beech and oak influenced herb layer composition mainly through their litter quality, which resulted in deep Ol and Of horizons, respectively. The less dense canopy of oak, in contrast to the dense beech canopy, enhanced species diversity in favour of indifferent herb species (species not closely tied to forests). Lime was correlated with a distinct floristic gradient, but a direct effect on the herb layer cannot be proven with the available data. Effects of hornbeam were less pronounced. Conclusions: The relationship between the tree and herb layer must be partly attributed to pH differences. However, tree species effects on humus characteristics and on light flux to the ground were largely responsible as well. The results suggest that tree species can influence herb layer composition and diversity, but the missing correlation with lime and hornbeam raise questions requiring further detailed investigation.  相似文献   

19.
三种温带树种叶片呼吸的时间动态及其影响因子   总被引:1,自引:0,他引:1  
王兆国  王传宽 《生态学报》2013,33(5):1456-1464
为认知叶片呼吸(RL)的季节变化格局及其影响因子,以东北东部山区3个主要树种(红松Pinus koraiensis、樟子松P.sylvestris var.mongolica和白桦Betula platyphylla)为对象,采用红外气体分析法在2011年生长季(常绿树4月至10月;落叶树6月至9月)测定了自然条件下叶片气体交换及其相关生理特征的季节变化,探索了RL与空气温度(Tair)和相关叶片特征之间的关系.结果表明:红松和樟子松基于叶面积的RL(RL-area)表现为生长季初期和末期较大,而白桦RL-area则随生长季进程而逐渐减小.在生长季中,RL-area与叶片总光合之比的时间动态明显.红松、樟子松RL-area与Tair关系显著,而白桦RL-area与Tair关系不显著;但3种树种基于叶质量的RL(RL-mass)与Tair均呈显著的指数函数关系.叶片特征(包括可溶性糖、淀粉、氮、比叶面积等参数)也有明显的季节变化.影响RL的叶片特征参数因树种而异,其中可溶性糖浓度对3种树种的RL均有显著影响.可见,RL的季节变化格局受树木的生长节律、温度和叶片特征的联合控制.  相似文献   

20.
Osada  Noriyuki 《Plant Ecology》2020,221(10):939-950
Plant Ecology - Spring leaf phenology has been intensively studied in temperate deciduous broad-leaved tree species, but the phenology of evergreen broad-leaved tree species has seldom been focused...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号