首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The extensive use of depleted uranium (DU) in today's society results in the increase of the number of human population exposed to this radionuclide. The aim of this work was to investigate in vivo the effects of a chronic exposure to DU on vitamin D3 metabolism, a hormone essential in mineral and bone homeostasis. The experiments were carried out in rats after a chronic contamination for 9 months by DU through drinking water at 40 mg/L (1 mg/rat/day). This dose corresponds to the double of highest concentration found naturally in Finland. In DU-exposed rats, the active vitamin D (1,25(OH)2D3) plasma level was significantly decreased. In kidney, a decreased gene expression was observed for cyp24a1, as well as for vdr and rxrα, the principal regulators of CYP24A1. Similarly, mRNA levels of vitamin D target genes ecac1, cabp-d28k and ncx-1, involved in renal calcium transport were decreased in kidney. In the brain lower levels of messengers were observed for cyp27a1 as well as for lxrβ, involved in its regulation. In conclusion, this study showed for the first time that DU affects both the vitamin D active form (1,25(OH)2D3) level and the vitamin D receptor expression, and consequently could modulate the expression of cyp24a1 and vitamin D target genes involved in calcium homeostasis.  相似文献   

2.
The hormonal form of vitamin D appears to be a physiological regulator of the epidermogenesis. While its differentiation-promoting effect is well accepted, there are conflicting reports of its action on keratinocyte proliferation. This study evaluates the specific changes induced by vitamin D treatment in the epidermis of rats nutritionally deprived of vitamin D by cell size analysis, acridine orange flowcytometry, and the immunohistochemical detection of proteins related to the different stages of differentiation (epidermal calcium binding protein and suprabasal keratins recognized by KL1 antibody) The total keratinocyte and isolated keratinocyte subpopulations were studied. Vitamin D deficiency was associated in the total population with a lower percentage of actively proliferating cells and with a lack of differentiation markers. Study of the isolated cell populations demonstrated, however, that small cells were actively proliferating, whereas they were mainly in the resting stage in the normal epidermis. Treatment with vitamin D dramatically increased cell proliferation and stimulated the appearance of differentiation markers. Some of the observed effects, such as an increase in proliferation and the appearance of epidermal calcium binding protein, were due to the normalisation of the vitamin D deficiency-induced hypocalcemia, whereas the expression of suprabasal keratins was directly dependent on vitamin D. We conclude that the action of vitamin D on the epidermis is associated with increases in both proliferation and differentiation of keratinocytes. Vitamin D itself and its resulting action on calcium homeostasis appear to contribute to the observed effects. © 1996 Wiley-Liss, Inc.  相似文献   

3.
Eight hours after intracerebral injection of a double-labeled 3-ketoceramide4, [1-14C]lignoceroyl 3-keto [1-3H]sphingosine, various brain sphingolipids were isolated. Free ceramide and the ceramide portions of nonhydroxy cerebroside and sphingomyelin were further fractionated into subgroups containing longer-chain or shorter-chain fatty acids. Nonhydroxy ceramide, nonhydroxy cerebroside and sphingomyelin containing longer-chain fatty acids had significant quantities of radioactivity with 3H/14C ratios similar to each other but lower than that of the injected material. The sphingolipids containing shorter-chain fatty acids were also significantly labeled; however, the 3H/14C ratios were much higher than that of the injected material. Hydroxy-ceramide and sulfatides contained very little radioactivity. However, hydroxy-cerebroside contained an amount of radioactivity comparable to that of the longer-chain nonhydroxy cerebroside with a similar 3H/14C ratio. It is proposed that the injected 3-ketoceramide was converted into ceramide, cerebroside, and sphingomyelin and that the fatty acids of these lipids were partly replaced by other fatty acids during the metabolic conversions.  相似文献   

4.
Summary Liver cells were prepared from rats fed a rachitogenic diet to investigate the hepatic metabolism of [ — 1,2 —3H2] vitamin D3. Rat hepatocytes suspended in Hanks medium rapidly took up labeled vitamin D3 from the incubation medium and converted this sterol to various metabolites, including 25-hydroxy vitamin D3 (25-OH-D3). There was a steady increment in the cellular production of 25-OH-D3 and of the more polar metabolites of vitamin D3 over 3 hr of incubation as determined by thin layer chromatography. Neither the addition of cyclic nucleotides or dexamethasone to, nor the removal of calcium or phosphate from the medium resulted in changes in the rate of conversion of vitamin D3 to its products. Rats pretreated with sodium diphenylhydantoin converted labeled vitamin D3 to its metabolites at the same rate as control rats. These data indicate that isolated liver cells retain the capacity for vitamin D3 hydroxylation, but suggest that the rate of this process does not undergo rapid changes in response to metabolic stimulation.Recipient of Research Career Development Award 1 K04 HL-00089.  相似文献   

5.
The effects of beta-endorphin (beta-Ep) on plasma glucose levels in rats and on glucose metabolism in isolated rat liver cells were examined. Intravenous injection of beta-Ep (5 micrograms/100 g BW) into ether-anaesthetized rats resulted in prompt and sustained hyperglycaemia with increases in the plasma glucagon and somatostatin levels and decrease in the plasma insulin level. When liver cells isolated from fed rats were incubated in the presence of beta-Ep at concentrations of 6 X 10(-8) M to 6 X 10(-7) M, glucose release into the medium increased within 15 min in a dose-related manner. Time course experiments showed that beta-Ep increased the level of cyclic AMP within 3 min. Significant increase in gluconeogenesis in liver cells isolated from fasted rats was also observed on addition of 10(-7) M beta-Ep in the presence of 10 mM L-lactate. These results suggest that the hyperglycaemia induced by beta-Ep may be caused, at least in part, by the effects of beta-Ep on releases of pancreatic hormones and glucose production in liver cells.  相似文献   

6.

Background

Kidney is known as the most sensitive target organ for depleted uranium (DU) toxicity in comparison to other organs. Although the oxidative stress and mitochondrial damage induced by DU has been well investigated, the precise mechanism of DU-induced nephrotoxicity has not been thoroughly recognized yet.

Methods

Kidney mitochondria were obtained using differential centrifugation from Wistar rats and mitochondrial toxicity endpoints were then determined in both in vivo and in vitro uranyl acetate (UA) exposure cases.

Results

Single injection of UA (0, 0.5, 1 and 2 mg/kg, i.p.) caused a significant increase in blood urea nitrogen and creatinine levels. Isolated mitochondria from the UA-treated rat kidney showed a marked elevation in oxidative stress accompanied by mitochondrial membrane potential (MMP) collapse as compared to control group. Incubation of isolated kidney mitochondria with UA (50, 100 and 200 μM) manifested that UA can disrupt the electron transfer chain at complex II and III that leads to induction of reactive oxygen species (ROS) formation, lipid peroxidation, and glutathione oxidation. Disturbances in oxidative phosphorylation were also demonstrated through decreased ATP concentration and ATP/ADP ratio in UA-treated mitochondria. In addition, UA induced a significant damage in mitochondrial outer membrane. Moreover, MMP collapse, mitochondrial swelling and cytochrome c release were observed following the UA treatment in isolated mitochondria.

General significance

Both our in vivo and in vitro results showed that UA-induced nephrotoxicity is linked to the impairment of electron transfer chain especially at complex II and III which leads to subsequent oxidative stress.  相似文献   

7.
The 25-hydroxylation of vitamin D2 and vitamin D3 was studied in the mitochondrial fraction from rat liver and in a reconstituted system containing cytochrome P-450 from rat liver microsomes. The mitochondrial fraction catalyzed the 25-hydroxylation of vitamin D3 at least two times more effectively than the 25-hydroxylation of vitamin D2. Microsomal cytochrome P-450 catalyzed an efficient 25-hydroxylation of vitamin D3, but no 25-hydroxylation of vitamin D2 could be detected. The present results show a difference in the 25-hydroxylation of vitamin D2 and vitamin D3 in rat liver in vitro.  相似文献   

8.
To achieve biologic potency, vitamin D must undergo two successive hydroxylations, first, in the liver and then, in the kidney. Carbon tetrachloride is known to cause extensive damage to the liver, but its effect on vitamin D metabolism has not been studied thoroughly. The effect of carbon tetrachloride on renal hydroxylation of 25-hydroxyvitamin D3 has not been studied. To evaluate the acute effect of carbon tetrachloride on vitamin D metabolism in the liver, vitamin D depleted rats received a single intraperitoneal injection of carbon tetrachloride (2.0 mL/kg body weight). After 24 h, they were given 55, 550, or 5050 pmol [3H]vitamin D3 intravenously. Twenty-four hours after injection of [3H]vitamin D3, aliquots of serum and liver were analyzed for [3H]vitamin D3 and its metabolites by high performance liquid chromatography. Sera of carbon tetrachloride treated rats had higher [3H]vitamin D3 and [3H]25-hydroxyvitamin D and lower [3H]1,25-dihydroxyvitamin D3 concentrations than did control sera. Livers of carbon tetrachloride treated rats contained more [3H]vitamin D3, [3H]25-hydroxyvitamin D3, and more fat. Liver histology showed massive centrilobular necrosis in the treated rats. Thus, our experiment in rats given an acute dose of carbon tetrachloride provided no evidence of impairment of vitamin D metabolism by the liver, but offered a suggestion that 25-hydroxyvitamin D3 metabolism by the kidney might be impaired. To determine the acute effect of carbon tetrachloride on metabolism of vitamin D3 by the kidney, we studied hydroxylation of [3H]25-hydroxyvitamin D3 in isolated perfused kidney. Kidneys from the treated rats showed a 66% reduction in [3H]1,25-dihydroxyvitamin D3 production.  相似文献   

9.
Depleted uranium (DU) is used to reinforce armor shielding and increase penetrability of military munitions. Although the data are conflicting, DU has been invoked as a potential etiological factor in Gulf War syndrome. We examined regional brain DU accumulation following surgical implantation of metal pellets in male Sprague-Dawley rats for 3 or 6 mo. Prior to surgery, rats were randomly divided into five groups: Nonsurgical control (NS Control); 0 DU pellets/20 tantalum (Ta) pellets (Sham); 4 DU pellets/16 Ta pellets (Low); 10 DU pellets/10 Ta pellets (Medium); 20 DU pellets/0 Ta pellets (High). Rats were weighed weekly as a measure of general health, with no statistically significant differences observed among groups in either cohort. At the conclusion of the respective studies, animals were perfused with phosphate-buffered saline, pH 7.4, to prevent contamination of brain tissue with DU from blood. Brains were removed and dissected into six regions: cerebellum, brainstem (pons and medulla), midbrain, hippocampus, striatum, and cortex. The uranium content was measured in digested samples as its 238U isotope by high-resolution inductively coupled plasma-mass spectrometry. After 3 mo postimplantation, DU significantly accumulated in all brain regions except the hippocampus in animals receiving the highest dose of DU (p<0.05). By 6 mo, however, significant accumulation was measured only in the cortex, midbrain, and cerebellum (p<0.01). Our data suggest that DU implanted in peripheral tissues can preferentially accumulate in specific brain regions.  相似文献   

10.
Depleted uranium (DU) is uranium with a lower content of the fissile isotope U-235 than natural uranium. It is a radioelement and a waste product from the enrichment process of natural uranium. Because of its very high density, it is used in the civil industry and for military purposes. DU exposure can affect many vital systems in the human body, because in addition to being weakly radioactive, uranium is a toxic metal. It should be emphasized that, to be exposed to radiation from DU, you have to eat, drink, or breathe it, or get it on your skin. This particular study is focusing on the health effects of DU for the cholesterol metabolism. Previous studies on the same issue have shown that the cholesterol metabolism was modulated at molecular level in the liver of laboratory rodents contaminated for nine months with DU. However, this modulation was not correlated with some effects at organs or body levels. It was therefore decided to use a "pathological model" such as hypercholesterolemic apolipoprotein E-deficient laboratory mice in order to try to clarify the situation. The purpose of the present study is to assess the effects of a chronic ingestion (during 3 months) of a low level DU-supplemented water (20 mg L(-1)) on the above mentioned mice in order to determine a possible contamination effect. Afterwards the cholesterol metabolism was studied in the liver especially focused on the gene expressions of cholesterol-catabolising enzymes (CYP7A1, CYP27A1 and CYP7B1), as well as those of associated nuclear receptors (LXRα, FXR, PPARα, and SREBP 2). In addition, mRNA levels of other enzymes of interest were measured (ACAT 2, as well as HMGCoA Reductase and HMGCoA Synthase). The gene expression study was completed with SRB1 and LDLr, apolipoproteins A1 and B and membrane transporters ABC A1, ABC G5. The major effect induced by a low level of DU contamination in apo-E deficient mice was a decrease in hepatic gene expression of the enzyme CYP7B1 (-23%) and nuclear receptors LXRα (-24%), RXR (-32%), HNF4α (-21%) when compared to unexposed ones. These modifications on cholesterol metabolism did not lead to increased disturbances that are specific for apolipoprotein E-deficient mice, suggesting that chronic DU exposure did not worsen the pathology in this experimental model. In conclusion, the results of this study indicate that even for a sensitive pathologic model the exposure to a low dose of DU has no relevant impact. The results confirm the results of our first study carried out on healthy laboratory rodents where a sub-chronic contamination with low dose DU did not affect in vivo the metabolism of cholesterol.  相似文献   

11.
In vivo rat metabolism and pharmacokinetic studies of ginsenoside Rg3   总被引:3,自引:0,他引:3  
Metabolism of an anti-tumor active component of Panax ginseng, ginsenoside (20R)-Rg(3), was studied for better understanding its pharmacokinetics in rat. LC-MS was used to determine Rg(3) and its metabolites in rat plasma, urine and feces samples. An average half-life of 18.5 min was obtained after the ginsenoside was intravenously dosed at 5 mg/kg. However, Rg(3) was not detected in rat plasma collected after oral administration at 100 mg/kg. Only 0.97-1.15% Rg(3) of the dosed amount was determined in feces. Hydrolysis and oxygenated metabolites were detected and identified in feces collected after oral administration by using LC-MS and MS-MS.  相似文献   

12.
To clarify the role of uncoupling protein-3 (UCP3) in skeletal muscle, we used NMR and isotopic labeling experiments to evaluate the effect of UCP3 knockout (UCP3KO) in mice on the regulation of energy metabolism in vivo. Whole body energy expenditure was determined from the turnover of doubly labeled body water. Coupling of mitochondrial oxidative phosphorylation in skeletal muscle was evaluated from measurements of rates of ATP synthesis (using (31)P NMR magnetization transfer experiments) and tricarboxylic acid (TCA) cycle flux (calculated from the time course of (13)C enrichment in C-4 and C-2 of glutamate during an infusion of [2-(13)C]acetate). At the whole body level, we observed no change in energy expenditure. However, at the cellular level, skeletal muscle UCP3KO increased the rate of ATP synthesis from P(i) more than 4-fold under fasting conditions (wild type, 2.2 +/- 0.6 versus knockout, 9.1 +/- 1.4 micromol/g of muscle/min, p < 0.001) with no change in TCA cycle flux rate (wild type, 0.74 +/- 0.04 versus knockout, 0.71 +/- 0.03 micromol/g of muscle/min). The increased efficiency of ATP production may account for the significant (p < 0.05) increase in the ratio of ATP to ADP in the muscle of UCP3KO mice (5.9 +/- 0.3) compared with controls (4.5 +/- 0.4). The data presented here provide the first evidence of uncoupling activity by UCP3 in skeletal muscle in vivo.  相似文献   

13.
We investigated the occurrence of rickets in adolescent tamarins (Saguinus imperator) residing at the Los Angeles Zoo. Compared to tamarins in the same colony without clinical evidence of bone disease (N = 6), rachitic platyrrhines (N = 3) had a decrease in their serum calcium concentration (P < .05). The affected tamarins also had lower serum 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) levels than did nonaffected colony mates, but 2–10-fold higher concentrations than in Old World primates of a comparable developmental stage. New World primates in many different genera are known to exhibit target organ resistance to the active vitamin D3 metabolite, 1,25-(OH)2D3, compensated by maintenance of high circulating concentrations of 1,25-(OH)2D3. The relatively low serum 1,25-(OH)2D3 concentration in rachitic tamarins and ultraviolet B radiation deficient environment of these primates suggested that bone disease may be linked to a deficiency in substrate for 1,25-(OH)2D3, 25 hydroxyvtamin D3 (25-OHD3). Chronic exposure of platyrrhines in three different vitamin D resistant genera to an artificial UVB source resulted in 1) a significant increase in the mean serum 25-OHD3 (P < .001) and 1,25-(OH)2D3 (P < .02) level over that encountered in platyrrhines not exposed to UVB; and 2) prevention of rachitic bone disease in irradiated individuals. These data further show that the serum 25-OHD3 and 1,25-OH2D3 levels are positively correlated in vitamin D-resistant platyrrhines (r = 0.64; P= .0014) and suggest that a compromise in cutaneous vitamin D3 production by means of UVB deprivation may limit necessary 1,25-(OH)2D3 production. © 1992 Wiley-Liss, Inc.  相似文献   

14.
Lithium's effects on rat liver glucose metabolism in vivo   总被引:3,自引:0,他引:3  
Oral administration of lithium carbonate to fed-healthy rats strongly decreased liver glycogen content, despite the simultaneous activation of glycogen synthase and the inactivation of glycogen phosphorylase. The effect seemed to be related to a decrease in glucose 6-phosphate concentration and to a decrease in glucokinase activity. Moreover, in these animals lithium markedly decreased liver fructose 2,6-bisphosphate, which could be a consequence of the fall in glucose 6-phosphate and of the inactivation of 6-phosphofructo-2-kinase. Liver pyruvate kinase activity and blood insulin also decreased after lithium administration. Lower doses of lithium carbonate had less intense effects. Lithium administration to starved-healthy and fed-streptozotocin-diabetic rats caused a slight increase in blood insulin, which was simultaneous with increases in liver glycogen, glucose 6-phosphate, and fructose 2, 6-phosphate. Glucokinase, 6-phosphofructo-2-kinase, and pyruvate kinase activities also increased after lithium administration in starved-healthy and fed-diabetic rats. Lithium treatment activated glycogen synthase and inactivated glycogen phosphorylase in a manner similar to that observed in fed-healthy rats. Glycemia was not modified in any group of animals. These results indicate that lithium acts on liver glycogen metabolism in vivo in at least two different ways: one related to changes in insulinemia, and the other related to the direct action of lithium on the activity of some key enzymes of liver glucose metabolism.  相似文献   

15.
Recent studies have demonstrated that 3-deoxy-3-fluoro-D-glucose (3-FG) is metabolized to 3-deoxy-3-fluoro-D-sorbitol (3-FS), via aldose reductase, and 3-deoxy-3-fluoro-D-fructose (3-FF), via the sorbitol dehydrogenase reaction with 3-FS, in rat cerebral tissue (Kwee, I. L., Nakada, T., and Card, P. J. (1987) J. Neurochem. 49, 428-433). However, the biochemistry of 3-FG in other mammalian organs has not been investigated making the application of 3-FG as a metabolic tracer uncertain. To address this issue we investigated 3-FG metabolism and distribution in isolated cell lines and in rabbit tissues in vivo with 19F NMR and gas chromatography-mass spectrometry. In general, the production of 3-FS is well correlated with the known distribution of aldose reductase in all the systems studied. Further metabolism of 3-FS to 3-FF was verified to occur in cerebral tissue. Surprisingly, two new fluorinated compounds were found in the liver and kidney cortex. These compounds are identified as 3-deoxy-3-fluoro-D-gluconic acid, which is produced via glucose dehydrogenase activity on 3-FG, and 3-deoxy-3-fluoro-D-gluconate-6-phosphate. Based on enzyme studies, it is argued that the 3-deoxy-3-fluoro-D-gluconate-6-phosphate is derived directly from 3-deoxy-3-fluoro-D-gluconic acid and not as a product of pentose phosphate activity. Direct oxidation and reduction are the major metabolic routes of 3-FG, not metabolism through glycolysis or the pentose phosphate shunt. Thus, 3-FG metabolism coupled with 19F NMR appears to be very useful for monitoring aldose reductase and glucose dehydrogenase activity in vivo.  相似文献   

16.
The metabolism of vitamin D 3 in the chick   总被引:4,自引:0,他引:4  
  相似文献   

17.
  • 1.1. Berenil, administered to rats in vivo, promoted a decrease in liver SAMDC activity, but an increase in ODC and SAT activity.
  • 2.2. Its effect on ODC was completely prevented by cycloheximide, that on SAT only partially.
  • 3.3. Berenil had no effect on ODC activity in adrenalectomized rats. Adrenergic antagonists counteracted the effect of Berenil on ODC activity.
  • 4.4. Polyamine content was increased. The maximum modification was observed for putrescine and N1-acetylspermidine.
  相似文献   

18.
Two separate liver cytosolic proteins have been partially purified and identified by their selectivity for binding either [1α,2α(n)-3H]vitamin D3 or 25-hydroxy [26(27)-methyl-3H]vitamin D3. The chromatographic properties of the two proteins were not distinguishable by ion-exchange nor were they dependent upon the vitamin D3 nutritional status of the birds. However, in molecular exclusion chromatography, the binding proteins can be successfully resolved into two discrete entities. Their binding properties suggest that they are not identical with plasma vitamin D3 binding protein.  相似文献   

19.
Rats treated with varying amounts of 19-hydroxy-10(S),19-dihydrovitamin D3 prior to administration of physiologic doses of vitamin D3 exhibit normal intestinal calcium transport but are unable to mobilize bone calcium. In contrast, 19-hydroxy-10(R),19-dihydrovitamin D3 had no inhibitory activity. Circulating serum levels of 25-hydroxy[3H]vitamin D3 and 1 alpha, 25-dihydroxy[3H]vitamin D3 are markedly suppressed but not totally eliminated in animals predosed with 19-hydroxy-10(S),19-dihydrovitamin D3 before [3H]vitamin D3. Hepatic 25-hydroxy[3H]vitamin D3 levels were approximately equal in both 19-hydroxy-10(S),19-dihydroviotamin D3 treated and untreated rats. However, the rate of conversion of [3H]vitamin D3 to 25-hydroxyvitamin D3 in vivo is greatly reduced in the treated rats. The inhibitory vitamin analogue was also show to block hepatic microsomal 25-hydroxylation in vitro. These results indicate that 19-hydroxy-10(S),19-dihydrovitamin D3 is a specific inhibitor for a hepatic microsomal vitamin D3-25-hydroxylase system.  相似文献   

20.
Steroid hormones seem to be important for adipose tissue metabolism and accumulation. As progesterone has been suggested to modulate the glucocorticoid effects, the interactions between glucocortioid and progesterone on adipose tissue metabolism were investigated.Forty-eight male Wistar rats were adrenectomized and divided into four groups; controls (treated with vehicle only), dexamethasone treated (10 micro g per rat), progesterone treated (5mg per rat) and the last group received both dexamethasone and progesterone.The dexamethasone-treated group had a significant loss of body weight and smaller intra-abdominal fat depots compared to the control group in addition, dexamethasone increased LPL-activity and increased catecholamine stimulated lipolysis. When progesterone was given concomitantly the dexamethasone effects on adipose tissue mass, LPL-activity and lipolysis were blocked. When given alone progesterone had no influence on body weight, amount of adipose tissue, lipolysis or LPL-activity.These data indicate that progesterone acts as an anti-glucocorticoid in adipose tissue in vivo, thus attenuating the glucocorticoid effect on adipose tissue metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号